51 research outputs found

    Ultra-Reliable Short-Packet Communications: Fundamental Limits and Enabling Technologies

    Get PDF
    The paradigm shift from 4G to 5G communications, anticipated to enable ultra-reliable low-latency communications (URLLC), will enforce a radical change in the design of wireless communication systems. Unlike in 4G systems, where the main objective is to provide a large transmission rate, in URLLC, as implied by its name, the objective is to enable transmissions with low latency and, simultaneously, very high reliability. Since low latency implies the use of short data packets, the tension between blocklength and reliability is studied in URLLC.Several key enablers for URLLC communications have been designated in the literature. Of special importance are diversity-enabling technologies such as multiantenna systems and feedback protocols. Furthermore, it is not only important to introduce additional diversity by means of the above examples, one must also guarantee that thescarce number of channel uses are used in an optimal way. Therefore, it is imperative to develop design guidelines for how to enable reliable detection of incoming data, how to acquire channel-state information, and how to construct efficient short-packet channel codes. The development of such guidelines is at the heart of this thesis. This thesis focuses on the fundamental performance of URLLC-enabling technologies. Specifically, we provide converse (upper) bounds and achievability (lower) bounds on the maximum coding rate, based on finite-blocklength information theory, for systems that employ the key enablers outlined above. With focus on the wireless channel, modeled via a block-fading assumption, we are able to provide answers to questions like: howto optimally utilize spatial and frequency diversity, how far from optimal short-packet channel codes perform, how multiantenna systems should be designed to serve a given number of users, and how to design feedback schemes when the feedback link is noisy. In particular, this thesis is comprised out of four papers. In Paper A, we study the short-packet performance over the Rician block-fading channel. In particular, we present achievability bounds for pilot-assisted transmission with several different decoders that allow us to quantify the impact, on the achievable performance, of imposed pilots and mismatched decoding. Furthermore, we design short-packet channel codes that perform within 1 dB of our achievability bounds. Paper B studies multiuser massive multiple-input multiple-output systems with short packets. We provide an achievability bound on the average error probability over quasistatic spatially correlated Rayleigh-fading channels. The bound applies to arbitrary multiuser settings, pilot-assisted transmission, and mismatched decoding. This makes it suitable to assess the performance in the uplink/downlink for arbitrary linear signal processing. We show that several lessons learned from infinite-blocklength analyses carry over to the finite-blocklength regime. Furthermore, for the multicell setting with randomly placed users, pilot contamination should be avoided at all cost and minimum mean-squared error signal processing should be used to comply with the stringent requirements of URLLC.In Paper C, we consider sporadic transmissions where the task of the receiver is to both detect and decode an incoming packet. Two novel achievability bounds, and a novel converse bound are presented for joint detection-decoding strategies. It is shown that errors associated with detection deteriorates performance significantly for very short packet sizes. Numerical results also indicate that separate detection-decoding strategies are strictly suboptimal over block-fading channels.Finally, in Paper D, variable-length codes with noisy stop-feedback are studied via a novel achievability bound on the average service time and the average error probability. We use the bound to shed light on the resource allocation problem between the forward and the feedback channel. For URLLC applications, it is shown that enough resources must be assigned to the feedback link such that a NACK-to-ACK error becomes rarer than the target error probability. Furthermore, we illustrate that the variable-length stop-feedback scheme outperforms state-of-the-art fixed-length no-feedback bounds even when the stop-feedback bit is noisy

    Short-packet Transmission via Variable-Length Codes in the Presence of Noisy Stop Feedback

    Get PDF
    We present an upper bound on the error probability achievable using variable-length stop feedback codes, for a fixed size of the information payload and a given constraint on the maximum latency and the average service time. Differently from the bound proposed in Polyanskiy et al. (2011), which pertains to the scenario in which the stop signal is sent over a noiseless feedback channel, our bound applies to the practically relevant setup in which the feedback link is noisy. By numerically evaluating our bound, we illustrate that, for fixed latency and reliability constraints, noise in the feedback link can cause a significant increase in the minimum average service time, to the extent that fixed-length codes without feedback may be preferable in some scenarios.Comment: Submitted to a Transactions on Wireless Communication

    Information-Theoretic Aspects of Low-Latency Communications

    Get PDF

    Joint source-channel coding with feedback

    Get PDF
    This paper quantifies the fundamental limits of variable-length transmission of a general (possibly analog) source over a memoryless channel with noiseless feedback, under a distortion constraint. We consider excess distortion, average distortion and guaranteed distortion (dd-semifaithful codes). In contrast to the asymptotic fundamental limit, a general conclusion is that allowing variable-length codes and feedback leads to a sizable improvement in the fundamental delay-distortion tradeoff. In addition, we investigate the minimum energy required to reproduce kk source samples with a given fidelity after transmission over a memoryless Gaussian channel, and we show that the required minimum energy is reduced with feedback and an average (rather than maximal) power constraint.Comment: To appear in IEEE Transactions on Information Theor

    Active sequential hypothesis testing

    Full text link
    Consider a decision maker who is responsible to dynamically collect observations so as to enhance his information about an underlying phenomena of interest in a speedy manner while accounting for the penalty of wrong declaration. Due to the sequential nature of the problem, the decision maker relies on his current information state to adaptively select the most ``informative'' sensing action among the available ones. In this paper, using results in dynamic programming, lower bounds for the optimal total cost are established. The lower bounds characterize the fundamental limits on the maximum achievable information acquisition rate and the optimal reliability. Moreover, upper bounds are obtained via an analysis of two heuristic policies for dynamic selection of actions. It is shown that the first proposed heuristic achieves asymptotic optimality, where the notion of asymptotic optimality, due to Chernoff, implies that the relative difference between the total cost achieved by the proposed policy and the optimal total cost approaches zero as the penalty of wrong declaration (hence the number of collected samples) increases. The second heuristic is shown to achieve asymptotic optimality only in a limited setting such as the problem of a noisy dynamic search. However, by considering the dependency on the number of hypotheses, under a technical condition, this second heuristic is shown to achieve a nonzero information acquisition rate, establishing a lower bound for the maximum achievable rate and error exponent. In the case of a noisy dynamic search with size-independent noise, the obtained nonzero rate and error exponent are shown to be maximum.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1144 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Nonasymptotic coding-rate bounds for binary erasure channels with feedback

    Get PDF
    We present nonasymptotic achievability and converse bounds on the maximum coding rate (for a fixed average error probability and a fixed average blocklength) of variable-length full-feedback (VLF) and variable-length stop-feedback (VLSF) codes operating over a binary erasure channel (BEC). For the VLF setup, the achievability bound relies on a scheme that maps each message onto a variable-length Huffman codeword and then repeats each bit of the codeword until it is received correctly. The converse bound is inspired by the meta-converse framework by Polyanskiy, Poor, and Verdú (2010) and relies on binary sequential hypothesis testing. For the case of zero error probability, our achievability and converse bounds match. For the VLSF case, we provide achievability bounds that exploit the following feature of BEC: the decoder can assess the correctness of its estimate by verifying whether the chosen codeword is the only one that is compatible with the erasure pattern. One of these bounds is obtained by analyzing the performance of a variable-length extension of random linear fountain codes. The gap between the VLSF achievability and the VLF converse bound, when number of messages is small, is significant: 23% for 8 messages on a BEC with erasure probability 0.5. The absence of a tight VLSF converse bound does not allow us to assess whether this gap is fundamental

    Reliable Transmission of Short Packets through Queues and Noisy Channels under Latency and Peak-Age Violation Guarantees

    Get PDF
    This work investigates the probability that the delay and the peak-age of information exceed a desired threshold in a point-to-point communication system with short information packets. The packets are generated according to a stationary memoryless Bernoulli process, placed in a single-server queue and then transmitted over a wireless channel. A variable-length stop-feedback coding scheme---a general strategy that encompasses simple automatic repetition request (ARQ) and more sophisticated hybrid ARQ techniques as special cases---is used by the transmitter to convey the information packets to the receiver. By leveraging finite-blocklength results, the delay violation and the peak-age violation probabilities are characterized without resorting to approximations based on large-deviation theory as in previous literature. Numerical results illuminate the dependence of delay and peak-age violation probability on system parameters such as the frame size and the undetected error probability, and on the chosen packet-management policy. The guidelines provided by our analysis are particularly useful for the design of low-latency ultra-reliable communication systems.Comment: To appear in IEEE journal on selected areas of communication (IEEE JSAC

    Low-Latency Short-Packet Transmissions: Fixed Length or HARQ?

    Get PDF
    We study short-packet communications, subject to latency and reliability constraints, under the premises of limited frequency diversity and no time diversity. The question addressed is whether, and when, hybrid automatic repeat request (HARQ) outperforms fixed-blocklength schemes with no feedback (FBL-NF) in such a setting. We derive an achievability bound for HARQ, under the assumption of a limited number of transmissions. The bound relies on pilot-assisted transmission to estimate the fading channel and scaled nearest-neighbor decoding at the receiver. We compare our achievability bound for HARQ to stateof-the-art achievability bounds for FBL-NF communications and show that for a given latency, reliability, number of information bits, and number of diversity branches, HARQ may significantly outperform FBL-NF. For example, for an average latency of 1 ms, a target error probability of 10^-3, 30 information bits, and 3 diversity branches, the gain in energy per bit is about 4 dB.Comment: 6 pages, 5 figures, accepted to GLOBECOM 201

    Systematic Transmission With Fountain Parity Checks for Erasure Channels With Stop Feedback

    Full text link
    In this paper, we present new achievability bounds on the maximal achievable rate of variable-length stop-feedback (VLSF) codes operating over a binary erasure channel (BEC) at a fixed message size M=2kM = 2^k. We provide new bounds for VLSF codes with zero error, infinite decoding times and with nonzero error, finite decoding times. Both new achievability bounds are proved by constructing a new VLSF code that employs systematic transmission of the first kk bits followed by random linear fountain parity bits decoded with a rank decoder. For VLSF codes with infinite decoding times, our new bound outperforms the state-of-the-art result for BEC by Devassy \emph{et al.} in 2016. We also give a negative answer to the open question Devassy \emph{et al.} put forward on whether the 23.4%23.4\% backoff to capacity at k=3k = 3 is fundamental. For VLSF codes with finite decoding times, numerical evaluations show that the achievable rate for VLSF codes with a moderate number of decoding times closely approaches that for VLSF codes with infinite decoding times.Comment: 7 pages, double column, 4 figures; comments are welcome! changes in v2: corrected 2 typos in v1. arXiv admin note: substantial text overlap with arXiv:2205.1539

    Short-Packet Communications: Fundamental Performance and Key Enablers

    Get PDF
    The paradigm shift from 4G to 5G communications, predicted to enable new use cases such as ultra-reliable low-latency communications (URLLC), will enforce a radical change in the design of communication systems. Unlike in 4G systems, where the main objective is to have a large transmission rate, in URLLC, as implied by its name, the objective is to enable transmissions with low latency and, simultaneously, very high reliability. Since low latency implies the use of short data packets, the tension between blocklength and reliability is studied in URLLC.\ua0Several key enablers for URLLC communications have been designated in the literature. A non-exhaustive list contains: multiple transmit and receive antennas (MIMO), short transmission-time intervals (TTI), increased bandwidth, and feedback protocols. Furthermore, it is not only important to introduce additional diversity by means of the above examples, one must also guarantee that the scarce number of channel uses are used in an optimal way. Therefore, protocols for how to convey meta-data such as control information and pilot symbols are needed as are efficient short-packet channel codes.\ua0This thesis focuses on the performance of reliable short-packet communications. Specifically, we provide converse (upper) bounds and achievability (lower) bounds on the maximum coding rate, based on finite-blocklength information theory, for systems that employ the key enablers outlined above. With focus on the Rician and Rayleigh block-fading channels, we are able to answer, e.g., how to optimally utilize spatial and frequency diversity, how far from optimal short-packet channel codes perform, and whether feedback-based schemes are preferable over non-feedback schemes.\ua0More specifically, in Paper A, we study the performance impact of MIMO and a shortened TTI in both uplink and downlink under maximum-likelihood decoding and Rayleigh block-fading. Based on our results, we are able to study the trade-off between bandwidth, latency, spatial diversity, and error probability. Furthermore, we give an example of a pragmatic design of a pilot-assisted channel code that comes within 2.7 dB of our achievability bounds. In Paper B, we partly extend our work in Paper A to the Rician block-fading channel and to practical schemes such as pilot-assisted transmission with nearest neighbor decoding. We derive achievability bounds for pilot-assisted transmission with several different decoders that allow us to quantify the impact, on the achievable performance, of pilots and mismatched decoding. Furthermore, we design short-packet channel codes that perform within 1 dB of our achievability bounds. Paper C contains an achievability bound for a system that employs a variable-length stop-feedback (VLSF) scheme with an error-free feedback link. Based on the results in Paper C and Paper B, we are able to compare non-feedback schemes to stop-feedback schemes and assess if, and when, one is superior to the other. Specifically, we show that, for some practical scenarios, stop-feedback does significantly outperform non-feedback schemes
    corecore