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Low-Latency Short-Packet Transmissions:
Fixed Length or HARQ?

Johan Östman, Rahul Devassy, Guido Carlo Ferrante, Giuseppe Durisi
Chalmers University of Technology, Gothenburg, Sweden

Abstract—We study short-packet communications, subject to
latency and reliability constraints, under the premises of lim-
ited frequency diversity and no time diversity. The question ad-
dressed is whether, and when, hybrid automatic repeat request
(HARQ) outperforms fixed-blocklength schemes with no feedback
(FBL-NF) in such a setting. We derive an achievability bound for
HARQ, under the assumption of a limited number of transmis-
sions. The bound relies on pilot-assisted transmission to estimate
the fading channel and scaled nearest-neighbor decoding at the
receiver. We compare our achievability bound for HARQ to state-
of-the-art achievability bounds for FBL-NF communications and
show that for a given latency, reliability, number of information
bits, and number of diversity branches, HARQ may significantly
outperform FBL-NF. For example, for an average latency of 1 ms,
a target error probability of 10−3, 30 information bits, and 3
diversity branches, the gain in energy per bit is about 4 dB.

I. INTRODUCTION

Fifth generation (5G) wireless systems are envisioned to sup-
port communications with stringent requirements on reliability
and latency—the so called ultra-reliable low-latency commu-
nications (URLLC) [1]. The objective is to enable use cases
like smart grids and wireless industrial control. While previous-
generation wireless systems focused mostly on the support of
large data rates, URLLC systems target transmission of small
data payloads, carried by short coded packets to meet the la-
tency requirements.

Performance analyses of wireless systems are often carried
out using asymptotic information-theoretic metrics like ergodic
capacity and outage capacity, under the implicit assumption that
a message is encoded into an arbitrarily large number of coded
symbols. Although a good approximation for systems where
latency concerns are secondary, such performance analyses are
not suitable for URLLC [2]. Instead, to study the performance
of URLLC links, one must resort to tools that allow for the anal-
ysis of communication systems in the nonasymptotic regime
where a message is encoded onto a finite, often small, number
of symbols.

For communications with fixed blocklength and no feedback
(FBL-NF), the nonasymptotic information-theoretic tools de-
veloped in [3] have recently enabled the characterization of
the maximum coding rate achievable for a given blocklength
and error probability in many scenarios of practical relevance
for 5G and beyond. For example, it has allowed for the study
of the rate achievable with short packets on general quasi-
static fading channels [4] and multiple-input multiple-output
(MIMO) Rayleigh block-fading channels [5]. Furthermore, the
practically relevant case of pilot-assisted transmission (PAT)
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and scaled nearest-neighbor (SNN) decoding has been analyzed
for single-input single-output (SISO) Rician block-fading chan-
nels [6] and for MIMO Rayleigh block-fading channels [7].

Finite-blocklength information theory prescribes that for
several channels, including the AWGN channel, short-packet
transmission incurs a rate loss from capacity roughly propor-
tional to the inverse of the square root of the blocklength [3].
However, when one is allowed to use variable-length stop-
feedback (VLSF) codes, the picture is different. Specifically,
capacity is approached much faster in the blocklength [8].
VLSF codes are an instance of variable-length feedback codes
where the encoder keeps on transmitting coded symbols until it
receives a single-bit feedback sent by the decoder to inform the
encoder that decoding is complete. Incremental redundancy hy-
brid automatic repeat request (HARQ) is an instance of VLSF
codes. In [8], decoding is attempted upon reception of every
new symbol. This setup was later extended to blocks of symbols
in [9], a scenario that is more relevant for HARQ. Under the
assumption that the received symbols are discarded and trans-
mission starts over if decoding is not successful after a finite
number of blocks, the rate penalty resulting from decoding after
each block of symbols rather than after each symbol was char-
acterized in [9] for the AWGN channel. However, such strategy
still outperforms FBL-NF codes for moderate latencies.

In [10], FBL-NF and HARQ are compared for the AWGN
channel by taking into account the delay caused by the transmis-
sion of a positive/negative acknowledgement (ACK/NACK).
The analysis, however, does not account for the event of an
undetected error, i.e., the event that an ACK is fed back al-
though the decision of the decoder is wrong. Furthermore, the
normal approximation [3] is used in the analysis. However, this
approximation, which is based on the Berry-Esseen theorem,
is accurate only when the blocklength and the error probability
are not too small and may not be suitable for URLLC.

Contributions: We consider an HARQ scheme employing
PAT and SNN decoding at the receiver for transmission of short
data packets over a SISO block-fading channel. Leveraging [8,
Thm. 3], which provides an extension of the dependence-testing
bound [3, Thm. 17] for FBL-NF to VLSF codes, we derive an
achievability bound on the minimum energy per bit required to
transmit a small information payload under a given latency and
reliability target. Differently from [8, Thm. 3], where decoding
stops when the accumulated information density correspond-
ing to one of the codewords exceeds a threshold, in our setup
decoding stops when the accumulated generalized information
density exceeds a threshold or the number of transmissions
reaches a maximum predetermined value.

Our bound depends on the cumulative distribution function
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Fig. 1. Example of the FBL-NF scheme with parameters u = 6, d = 5,
Lc = 4, L = 2, and v = 2.

(CDF) of the decoding time, i.e., the time at which the decoder
stops and makes a decision. This quantity has recently been
shown to be central in joint coding-queuing analyses of the
delay-violation probability in URLLC systems [11]. Our anal-
ysis provides means to assess whether HARQ results in lower
minimum energy per bit and higher maximum coding rate than
FBL-NF. In particular, our numerical results show that HARQ
may significantly outperform FBL-NF for low-latency targets.

Notation: We denote random vectors and scalars by upper-
case bold and standard letters, such as X and X , respectively,
and their realizations by lower-case letters. The identity matrix
of size a × a is written as Ia. The distribution of a circularly-
symmetric complex Gaussian random variable with variance σ2

is denoted by CN
(
0, σ2

)
. The superscript (·)H denotes Her-

mitian transposition. We write log(·) and log2(·) to denote the
natural logarithm and the logarithm to the base 2, respectively.
Finally, [a]+ stands for max{0, a}, ‖·‖ denotes the Euclidean
norm, and E[·] is the expectation operator.

II. SYSTEM MODEL

A. Setup

We consider a memoryless SISO Rayleigh block-fading
channel in which fading is assumed to stay constant within
a coherence block and to change independently across coher-
ence blocks. The channel coherence time and coherence band-
width are denoted by Tc and Bc, respectively. For a system
bandwidth B, the available number of diversity branches is
Lc = bB/Bcc. The duration of a transmitted codeword is
assumed to be much smaller than the coherence time. Hence, no
time diversity is available. This is in line with commonly used
fourth generation (4G) and 5G channel models, as discussed
in Section IV. We consider orthogonal frequency-division
multiplexing (OFDM) and assume that a resource block (RB)
consists of d OFDM symbols, each spanning u subcarriers.
Therefore, an RB consists of nc = ud symbols. The time
interval over which an RB is transmitted is referred to as slot, in
accordance with the 3rd generation partnership project (3GPP)
terminology. We let L be the number of diversity branches used
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Fig. 2. Two rounds of HARQ transmission with parameters u = 6, d = 5,
Lc = 4, L = 2, and `max = 2.

in a slot out of the available Lc. Hence, L RBs, amounting to
Lnc symbols, are transmitted in each slot, as shown in Fig. 1.

We shall consider two communication schemes: FBL-NF and
HARQ. In the FBL-NF case, a codeword is transmitted over
L diversity branches per slot and v slots in total. Hence, a
codeword consists of vLnc symbols, see Fig. 1. We assume
that transmissions on different slots occur on different diver-
sity branches, so that transmitted symbols in different slots
experience independent fading. This means that the number of
slots per codeword is no larger than `max = bLc/Lc. At the
receiver side, decoding is performed once the entire codeword
is received.

In the HARQ case, we consider one direction of a bidirec-
tional communication link. We assume that communication is
organised in rounds, each consisting of two consecutive slots
within the same diversity branches (time-division duplexing).
The two communicating devices are assigned one slot each
in every round. We assume that transmissions on different
rounds occur on different diversity branches (see Fig. 2). Hence,
transmitted symbols in different rounds experience independent
fading. Consequently, the maximum number of rounds allowed
is `max. In each round, a device transmits Lnc symbols during
one slot and listens for an ACK/NACK and possibly other data
during the next slot. At the other device (receiver), decoding is
attempted after the first slot. In the second slot, the receiver pig-
gybacks an ACK/NACK on its data, to inform the transmitter
whether to continue or to terminate transmission. If a NACK is
piggybacked, incremental redundant symbols are sent during
the next round. Rounds go on until the transmitter observes
an ACK or it reaches the maximum predetermined number of
rounds. Such an ACK/NACK transmission introduces a delay
compared to FBL-NF transmission, which we will take into
account in our analysis. We assume that the feedback delay per
round amounts to one slot. However, our analysis can be easily
generalized to arbitrary feedback delays. As illustrated in Fig. 2,
when the same amount of resources are used in HARQ (per
communication direction) and FBL-NF, the FBL-NF scheme
requires half of the time of the HARQ scheme.



The input-output relation for the slot assigned for the forward
transmission in round j, satisfies

PYj |Y1,...Yj−1,X1,...,Xj
= PYj |Xj

=

L∏
k=1

PYj,k|Xj,k
(1)

with

Yj,k = Hj,kXj,k +Wj,k. (2)

Here, Yj = [Yj,1, . . . ,Yj,L] and Xj = [Xj,1, . . . ,Xj,L],
where Yj,k ∈ Cnc and Xj,k ∈ X =

{
x ∈ Cnc : ‖x‖2 = ncρ

}
for j = 1, 2, . . . , and k = 1, . . . , L. The variable ρ denotes the
SNR. The Rayleigh fading is modeled by Hj,k ∼ CN (0, 1),
and Wj,k ∼ CN (0, Inc) is the AWGN noise. The random
variables {Hj,k} and {Wj,k}, which are mutually independent,
are also independent over j and k. No a priori knowledge
of the realizations of {Hj,k} is available at the transmitter
and at the receiver. Consequently, it is reasonable to transmit
equal-power signals over the available diversity branches. This
justifies our assumption that Xj,k ∈ X for all j and k.

A code for the channel (1) in the HARQ setup is formally
defined next by adapting the notion of VLSF codes in [8].

Definition 1: An (`,M, ε, ρ, `max)-VLSF code, where ` ≥ 1,
M , `max are positive integers, ρ > 0, and 0 < ε < 1, consists
of

1) A random variable U with distribution PU defined on a set
U with | U| ≤ 2 that is revealed to both the transmitter and
the receiver before the start of transmission. U acts as a
common randomness and enables the use of randomized
encoding and decoding strategies.

2) An encoder f : U × {1, . . . ,M} → XL`max , that maps a
message J , which is uniformly distributed on {1, . . . ,M},
to a codeword in the set {c(1), . . . , c(M)}. Each code-
word is structured as c(m) = [c1(m), . . . , c`max(m)]
where cj(m) ∈ XL for j = 1, . . . , `max and m =
1, . . . ,M .

3) A sequence of decoders gv : U × CncLv → {1, . . . ,M},
1 ≤ v ≤ `max, and a stopping time τ∗, that is adapted to
the filtration {σ(U,Y1, . . . ,Yv)}`max

v=1, and satisfies both

E[τ∗] ≤ `, (3)

and the average packet error probability target

P[gτ∗(U,Y1, . . . ,Yτ∗) 6= J ] ≤ ε. (4)

After the stopping time is triggered, the decoder uses the
feedback channel to inform the encoder, through a one-bit
ACK, to stop the transmission of the current message and to
move to the transmission of the next one. We assume throughout
the paper that this bit is error free and that so are the NACK bits
transmitted in the previous feedback rounds. Differently from
most literature, we will consider in our analysis undetected
error events in which an ACK is fed back although the decoder
has chosen the wrong message.

For a given `, ε, and `max, the maximum coding rate R∗,
measured in information bits per channel use is defined as

R∗(`, ε, ρ, `max) =

sup

{
log2M

`Lnc
: ∃(`,M, ε, ρ, `max) -VLSF code

}
. (5)

We will also be interested in the problem of minimizing
the average number of transmissions ` for a given number of
messages M , which yields the following definition:

`∗(M, ε, ρ, `max) =

inf{` : ∃(`,M, ε, ρ, `max) -VLSF code} . (6)

Some of our results will also be expressed in terms of the
minimum energy per bit1 E∗b/N0, which is related to `∗ as

E∗b
N0

=
ρLnc
log2M

`∗(M, ε, ρ, `max). (7)

The corresponding metrics for FBL-NF are defined as in [6].

B. PAT with SNN Decoding

Following [6], we assume that, for slot j and coherence
interval k, the input vector Xj,k is of the form [x(p),X

(d)
j,k ],

where x(p) ∈ Cnp , 1 ≤ np < nc, is a deterministic vec-
tor containing pilot symbols and ‖x(p)‖2 = npρ. The vec-
tor X

(d)
j,k ∈ Cnd contains the nd = nc − np data symbols.

Let PX(d) denote a distribution on Cnd such that Xj,k ∈ X
w.p.1 when X

(d)
j,k ∼ PX(d) . Let Y (p)

j,k and Y
(d)
j,k be the vectors

containing the received samples corresponding to the pilot and
data symbols, respectively. Given Y

(p)
j,k and Y

(d)
j,k , the receiver

computes the maximum likelihood estimate Ĥj,k of the fading
coefficient Hj,k as

Ĥj,k =
1

npρ
(x(p))HY

(p)
j,k . (8)

Next we define the SNN decoder. Denote a candidate
codeword and the observed channel outputs up
to the vth slot by xv = [x1,1, . . . ,x1,L, . . . ,xv,L]
and yv = [y1,1, . . . ,y1,L, . . . ,yv,L], respectively, where
xj,k ∈ X and yj,k ∈ Cnc for j = 1, . . . , v, and k = 1, . . . , L.
Here, xj,k and yj,k follow the structure outlined above. The
SNN metric is given by

q(v)(xv,yv) =

v∏
j=1

L∏
k=1

q(xj,k,yj,k) (9)

where

q(xj,k,yj,k) =

nd∏
i=1

exp
(
−|y(d)

j,k,i − ĥj,kx
(d)
j,k,i|

2
)
. (10)

Here, y(d)
j,k,i and x

(d)
j,k,i denote the ith entry of y

(d)
j,k and x

(d)
j,k,

respectively. We refer to this coding scheme as PAT-SNN.
Finally, we define the generalized information density in

slot v as a mapping X vL × CncLv → R, given as

ıvs(x
v,yv) =

v∑
j=1

L∑
k=1

ıs(xj,k,yj,k) (11)

where the generalized information density per coherence block
ıs(xj,k,yj,k) is

ıs(xj,k,yj,k) = log
q(xj,k,yj,k)

s

EX

[
q(X,yj,k)s

] . (12)

1We will not consider the energy spent to send the feedback bit reliably.



Here, X = [x(p),X
(d)

] with x(p) an arbitrary pilot vector
satisfying the properties listed above,X

(d) ∼ PX(d) , and s ≥ 0.
For the special case in whichPX(d) is a product distribution, i.e.,
PX(d)(x

(d)
j,k) =

∏nd

i=1 PX(x
(d)
j,k,i), we can write (12) as

ıs(xj,k,yj,k) =

nd∑
i=1

−s|y(d)
j,k,i − ĥj,kx

(d)
j,k,i|

2

− logEX

[
exp
(
−s|y(d)

j,k,i − ĥj,kX|
2
)]
. (13)

III. FINITE-BLOCKLENGTH ACHIEVABILITY BOUNDS

A. Fixed-Blocklength Transmission without Feedback

Next, we review an achievability bound for the channel in (2),
based on the random-coding union bound with parameter s [12,
Thm. 1]. This bound will be used to assess the performance of
PAT-SNN-FBL-NF transmission.

Theorem 1: Fix an integer 1 ≤ nd < nc, a rate R, and a
real number s ≥ 0. The average error probability for the PAT-
SNN-FBL-NF scheme, operating as described in Section II-B,
is upper-bounded as

ε ≤ E
[
exp
(
−
[
ıvs(X

v,Y v)− log(2vLncR − 1)
]+)]

(14)

where Xv = [X1,1,X1,2, . . . ,XL,1, . . . ,Xv,L] and each
Xj,k = [x(p),X

(d)
j,k ] with x(p) an arbitrary pilot vector

and X
(d)
j,k ∼ PX(d) , and Yj,k is the channel output according

to (2), for j = 1, . . . , v and k = 1, . . . , L.
Proof: See [6, Thm. 3].
Remark: The latency for the FBL-NF scheme is Td =

vdTo, where To is the OFDM symbol duration. In the HARQ
case we will analyze next, latency is a random variable. We will
investigate both its average value and its CDF.

B. HARQ Transmission

We provide next an achievability bound for the HARQ setup,
which closely follows [8, Thm. 3]. To prove [8, Thm. 3], one
computes the accumulated information density for each code-
word and stops when one of the information densities exceeds
a given threshold. In our case, instead of information density,
we accumulate generalized information density, see (12). Fur-
thermore, we only allow for a fixed number of transmission
rounds, after which transmission is terminated and a decision
is taken. This differs from the setup in [9] where, after a fixed
number of transmission rounds, the received data is discarded
and transmission is restarted. Incorporating these changes to [8,
Thm. 3], one obtains the following result.

Theorem 2 (Achievability HARQ): Fix three scalars γ > 0,
s ≥ 0, ρ > 0, and two positive integers `max and 1 ≤ np <
nc. Let {Xj}∞j=1 be a stochastic process such that Xj =
[Xj,1,Xj,2, . . . ,Xj,L], and Xj,k ∈ X are identical and in-
dependently distributed (i.i.d.) for j = 1, . . . and k = 1 . . . , L.
Let Xj,k = [x(p),X

(d)
j,k ] where x(p) is an arbitrary pilot vector

satisfying ‖x(p)‖2 = npρ and X
(d)
j,k ∼ PX(d) . Let {Xj}∞j=1

be an independent copy of {Xj}∞j=1. Moreover, define the
stopping times

τ = inf{v ≥ 1 : ıvs(X
v,Y v) ≥ γ}, (15)

τ = inf{v ≥ 1 : ıvs(X
v
,Y v) ≥ γ}, (16)

where Y v is the random vector representing the channel out-
puts corresponding to the channel input Xv between the
first and the vth round, according to (1). Then, there exists
an (`,M, ε, ρ, `max)-VLSF code with

` ≤ E[min{`max, τ}] , (17)
ε ≤ (M − 1)P[τ ≤ min{`max, τ}] + P[τ > `max] . (18)

Proof: We create a codebook with M independent code-
words, each belonging to XL`max . Each codeword is a com-
position of L`max subcodewords, belonging to X , where each
subcodeword contains np deterministic pilot symbols and nd =
nc − np data symbols distributed according to PX(d) .

For the mth codeword, 1 ≤ m ≤ M , we define a stopping
time based on the generalized information density in (11) as

τm=min{inf{1≤v≤`max : ivs(c
v(m),Y v) ≥ γ} , `max} (19)

where we use the convention that the infimum of the empty set
equals infinity. Let now τ∗ = min{τ1, τ2, . . . , τM}. Note that
this stopping time is different from the one in [8, Thm. 3] since
we are dealing here with a finite number of transmission. Let

Ĵτ∗ = arg max
1≤m≤M

{
iτ

∗

s (cτ
∗
(m),Y τ∗

)
}

(20)

denote the estimated message at stopping time τ∗. In words,
if the threshold is crossed within `max transmission rounds, we
choose the message corresponding to the largest overshoot. If
the threshold is not crossed within `max transmission rounds,
we simply choose the message with the largest accumulated
metric. For this decoding scheme, the average stopping time,
averaged over the codebook ensemble generated by the distri-
bution PX(d) , is upper-bounded as

E[τ∗] ≤ 1

M

M∑
j=1

E[τj |J = j] = E[min{τ, `max}] . (21)

In words, we upper-bound τ∗ by the minimum between `max and
the number of rounds required for the accumulated generalized
information density of the transmitted codeword to exceed the
threshold. Next we define two error events

E1={τ∗≤`max, Ĵτ∗ 6= J,max
m
{iτ

∗

s (cτ
∗
(m),Y τ∗

)}≥γ}, (22)

E2={τ∗=`max, Ĵτ∗ 6= J,max
m
{iτ

∗

s (cτ
∗
(m),Y τ∗

)}<γ}, (23)

such that ε = P[E1 ∪ E2]. Here, E1 is the event the threshold is
crossed within `max transmission rounds and an erroneous mes-
sage is chosen, and E2 is the event that, in transmission round
`max, the threshold has not been crossed and the decoder decides
for the wrong message. Hence, ε describes the undetected error
event. We proceed as follows:

ε ≤ P[E1] + P[E2] (24)

≤
M∑
j=2

P[τj≤τ1, iτjs (cτj (j) ,Y τj )≥γ|J = 1] + P[τ >`max]

= (M − 1)P[τ ≤ min{`max, τ}] + P[τ >`max] . (25)

Using the arguments in [8, Thm. 19] and [13, p. 35], we con-
clude that a randomized codebook attaining both ensemble
averages (21) and (25) simultaneously can be constructed by
using a convex combination of two deterministic codebooks.



Remark: The average latency for the HARQ scheme is
Td = 2`dTo, where the factor 2 is due to the feedback delay
and To is the OFDM symbol duration. The maximum latency
is, however, 2`maxdTo. Note also that the CDF of the delay τ is
required to compute (25).

No closed-form expressions for (17) and (18) are available.
Furthermore, evaluating (18) is numerically challenging. In-
deed, M is typically very large (for a fixed rate R, it grows
exponentially in the blocklength), so the first probability is
very small thus preventing the use of Monte Carlo methods.
For the case of summands in (16) with negative drift, i.e.,
E
[
ıs(Xj,k,Yj,k)

]
< 0, we can further relax (18) by upper-

bounding P[τ ≤ min{`max, τ}] using Wald’s identity as [14,
Cor. 9.4.4]

P[τ ≤ min{`max, τ}] ≤ P[τ ≤ ∞] ≤ exp(−β∗γ) (26)

where β∗ is the positive solution of

κ(β) = logE

[
exp

(
β

L∑
k=1

ıs(X1,k,Y1,k)

)]
= 0. (27)

In the upcoming section, we let PX(d) be a product
distribution. Hence, the generalized information density is
given by (13). It then follows from Jensen’s inequality that
E
[
ıs
(
Xj,k,Yj,k

)]
< 0. This enables us to use (26) in our

numerical evaluations. Furthermore, we can express κ(β) as

κ(β) = L logE

E
[
q
(
X,y

)βs |Y = y
]

E
[
q
(
X,y

)s |Y = y
]β
 (28)

where X = [x(p),X
(d)

] with X
(d) ∼ PX(d) and Y distributed

as in (2), independent of X . From (28), we obtain β∗ = 1.
Remark: An upper bound similar to (26) with β∗ = 1

is obtained in [8, Eq. (113)] by using a change-of-measure
argument. We cannot follow the same strategy here because of
the mismatched decoding metric.

IV. NUMERICAL RESULTS

In this section, we compare the performance of HARQ and
FBL-NF. For the sake of concreteness, we consider i.i.d. input
symbols drawn uniformly from a quaternary phase-shift keying
(QPSK) constellation. We extract our channel parameters from
the TDL-C 300 ns–3km/h channel model [15]. We choose the
system bandwidth, subcarrier bandwidth, and OFDM symbol
duration equal to 20 MHz, 15 kHz, and 71.4 µs, respectively.
This results in 30 available diversity branches. The channel
model has coherence bandwidth Bc = 0.66 MHz, which im-
plies u ≤ 44. We let u = 24 and d = 3. Hence, an RB occupies
360 kHz and its duration is 214.2 µs. We also let ε = 10−3,
which corresponds to the least stringent reliability constraint for
URLLC [16]. The latency for HARQ is Td = 2Tod`, and thus
the minimum and maximum latency are 2Tod and 2Tod`max,
respectively. For FBL-NF, the minimum latency corresponds
to one slot duration, i.e., Tod, and the maximum latency is
Tod`max. Throughout this section, we assume that each message
contains k = log2M = 30 information bits. The channel and
system parameters are summarized in Table I.

TABLE I
PARAMETERS FOR TDL-C 300 NS–3 KM/H (UPPER HALF) AND SIGNAL

(BOTTOM HALF).

Symbol Parameter Value

Bc 50% coherence bandwidth 0.66 MHz
Tc 50% coherence time 85 ms
Lc Number of available diversity branches 30

k Information bits 30
ε Error probability 10−3

B System bandwidth 20 MHz
Bs Subcarrier bandwidth 15 KHz
To OFDM symbol duration 71.4 µs
u Subcarriers per RB 24
d OFDM symbols per RB 3
L Number of used diversity branches ≤ Lc

`max Max. number of transmission rounds bLc/Lc

Next, we detail how we evaluate the minimum energy per
bit (7). The procedure for computing the maximum coding
rate (5) is similar. In both FBL-NF and HARQ, we fix ρ, ε,
k, To, u, d, and L. For HARQ, we find the smallest threshold
γ such that the right-hand side of (18), relaxed using (26), is
below the desired error target. This γ is then used to evaluate
(17), which provides an upper bound on the average latency Td.
For FBL-NF, we search for the smallest v such that the right-
hand side of (14) is below the desired error target. Throughout
this section, all charts are obtained by optimizing over the
parameter s and the number of pilot symbols np.

In Fig. 3, we show the minimum energy per bit required to
fulfill the reliability target as a function of average latency. It
can be seen that, for fixed L, HARQ significantly outperforms
FBL-NF. For example, forL = 3 and Td = 1ms, the difference
is about 4 dB. It can also be seen thatE∗b/N0 does not decrease
monotonically with the average latency for both HARQ and
FBL-NF, but there exists a latency T ∗d for which E∗b/N0 is
minimized. When Td < T ∗d , increasing the average blocklength
provides an SNR gain that outweighs the rate penalty (see (7)),
whereas the opposite is true when Td > T ∗d . HARQ performs
better than FBL-NF because for a fixed ε, changes in the average
blocklength result in larger changes in the required SNR than
in FBL-NF. We also observe a tradeoff between the average
latency and the number of diversity branches used: choosing
a large L is more energy efficient for small average latency
(Td < 0.7 ms in Fig. 3), since in this regime the number of
possible retransmissions is small, and thus higher diversity is
beneficial. As the average latency increases, choosing a smaller
number of diversity branches is preferable.

In Fig. 4, we compare the maximum coding rate achievable
with the two schemes as a function of the average latency. It can
be seen that larger rates are achievable by using HARQ rather
than FBL-NF. A similar behavior was reported for the AWGN
channel in [9]. The rate increases with L in both systems, since
a larger L allows for more diversity and longer codewords.

The results presented so far are in terms of average latency.
However, average and maximum latencies are not equal in
HARQ. Hence, one may argue that the above comparisons are
unfair since the maximum latency with HARQ may be larger
than the latency with FBL-NF. In Fig. 5, we illustrate the CDF
of the latency for both FBL-NF and HARQ, for the case L = 2,
and ρ ∈ {−5,−2} dB. The CDF of the FBL-NF latency is a
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Fig. 3. E∗
b/N0 versus average latency forL ∈ {2, 3, 5, 6} and 30 information

bits. The remaining parameter values are given in Table I.
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Fig. 4. R∗ versus average latency for ρ = −2 dB and L ∈ {2, 3, 5, 6}. The
remaining parameter values are given in Table I.

step function since the latency is deterministic whereas the CDF
of HARQ is a staircase function with steps at multiples of the
duration of a transmission round. We see from Fig. 5 that the
probability of the latency in HARQ being larger than in FBL-
NF decreases with SNR. For ρ = −5 dB, this probability is
about 0.097; for ρ = −2 dB, the probability is about 0.054.
The reason is that, as the SNR increases, it is more likely that
one round is enough to satisfy the reliability constraint.

An important application where the CDF of the delay plays
a pivotal role is in joint coding-queuing analyses of URLLC
systems. Indeed, when taking into account also queuing delays,
an optimum latency-aware design must be based on the CDF
of the latency rather than on its average [11]. As a conse-
quence, the results in this paper are relevant to the joint coding-
queuing analysis of URLLC systems over memoryless block-
fading channels with limited diversity. Specifically, the tools
introduced in this paper can be used to extend the analysis
in [11], where the physical layer was modeled as a simple
binary-input AWGN channel, to block-fading scenarios and
practically-relevant pilot-based transmission schemes.
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[12] A. Martinez and A. Guillén i Fàbregas, “Saddlepoint approximation of
random–coding bounds,” in Proc. Inf. Theory Applicat. Workshop (ITA),
San Diego, CA, U.S.A., Feb. 2011.

[13] H. G. Eggleston, Convexity. New York: Cambridge university press,
1958.

[14] R. G. Gallager, Stochastic Processes: Theory for Applications. Cam-
bridge, U.K.: Cambridge Univ. Press, 2013.

[15] 3GPP, “TR 38.901: Study on channel model for frequencies from 0.5 to
100 GHz,” 3GPP, Tech. Rep., 2017.

[16] P. Schulz et al., “Latency critical IoT applications in 5G: Perspective on
the design of radio interface and network architecture,” IEEE Commun.
Mag., vol. 55, no. 2, pp. 70–78, Feb. 2017.


