7,005 research outputs found

    On micro-structural effects in dielectric mixtures

    Full text link
    The paper presents numerical simulations performed on dielectric properties of two-dimensional binary composites on eleven regular space filling tessellations. First, significant contributions of different parameters, which play an important role in the electrical properties of the composite, are introduced both for designing and analyzing material mixtures. Later, influence of structural differences and intrinsic electrical properties of constituents on the composite's over all electrical properties are investigated. The structural differences are resolved by the spectral density representation approach. The numerical technique, without any {\em a-priori} assumptions, for extracting the spectral density function is also presented.Comment: 24 pages, 8 figure and 7 tables. It is submitted to IEEE Transactions on Dielectrics and Electrical Insulatio

    Magic number behavior for heat capacities of medium sized classical Lennard-Jones clusters

    Get PDF
    Monte Carlo methods were used to calculate heat capacities as functions of temperature for classical atomic clusters of aggregate sizes 25N6025 \leq N \leq 60 that were bound by pairwise Lennard-Jones potentials. The parallel tempering method was used to overcome convergence difficulties due to quasiergodicity in the solid-liquid phase-change regions. All of the clusters studied had pronounced peaks in their heat capacity curves, most of which corresponded to their solid-liquid phase-change regions. The heat capacity peak height and location exhibited two general trends as functions of cluster size: for N=25N = 25 to 36, the peak temperature slowly increased, while the peak height slowly decreased, disappearing by N=37N = 37; for N=30N = 30, a very small secondary peak at very low temperature emerged and quickly increased in size and temperature as NN increased, becoming the dominant peak by N=36N = 36. Superimposed on these general trends were smaller fluctuations in the peak heights that corresponded to ``magic number'' behavior, with local maxima found at N=36,39,43,46N = 36, 39, 43, 46 and 49, and the largest peak found at N=55N = 55. These magic numbers were a subset of the magic numbers found for other cluster properties, and can be largely understood in terms of the clusters' underlying geometries. Further insights into the melting behavior of these clusters were obtained from quench studies and by examining rms bond length fluctuations.Comment: 15 pages, 17 figures (PDF format

    Undecidable First-Order Theories of Affine Geometries

    Get PDF
    Tarski initiated a logic-based approach to formal geometry that studies first-order structures with a ternary betweenness relation (\beta) and a quaternary equidistance relation (\equiv). Tarski established, inter alia, that the first-order (FO) theory of (R^2,\beta,\equiv) is decidable. Aiello and van Benthem (2002) conjectured that the FO-theory of expansions of (R^2,\beta) with unary predicates is decidable. We refute this conjecture by showing that for all n>1, the FO-theory of monadic expansions of (R^2,\beta) is \Pi^1_1-hard and therefore not even arithmetical. We also define a natural and comprehensive class C of geometric structures (T,\beta), where T is a subset of R^2, and show that for each structure (T,\beta) in C, the FO-theory of the class of monadic expansions of (T,\beta) is undecidable. We then consider classes of expansions of structures (T,\beta) with restricted unary predicates, for example finite predicates, and establish a variety of related undecidability results. In addition to decidability questions, we briefly study the expressivity of universal MSO and weak universal MSO over expansions of (R^n,\beta). While the logics are incomparable in general, over expansions of (R^n,\beta), formulae of weak universal MSO translate into equivalent formulae of universal MSO. This is an extended version of a publication in the proceedings of the 21st EACSL Annual Conferences on Computer Science Logic (CSL 2012).Comment: 21 pages, 3 figure

    Kadath: a spectral solver for theoretical physics

    Get PDF
    Kadath is a library that implements spectral methods in a very modular manner. It is designed to solve a wide class of problems that arise in the context of theoretical physics. Several types of coordinates are implemented and additional geometries can be easily encoded. Partial differential equations of various types are discretized by means of spectral methods. The resulting system is solved using a Newton-Raphson iteration. Doing so, Kadath is able to deal with strongly non-linear situations. The algorithms are validated by applying the library to four different problems of contemporary physics, in the fields of gauge field theory and general relativityComment: Accepted to Journal of Computational Physic

    The combinatorics of binary arrays

    Get PDF
    This paper gives an account of the combinatorics of binary arrays, mainly concerning their randomness properties. In many cases the problem reduces to the investigation on difference sets.postprin

    Skyrmion Gas Manipulation for Probabilistic Computing

    Full text link
    The topologically protected magnetic spin configurations known as skyrmions offer promising applications due to their stability, mobility and localization. In this work, we emphasize how to leverage the thermally driven dynamics of an ensemble of such particles to perform computing tasks. We propose a device employing a skyrmion gas to reshuffle a random signal into an uncorrelated copy of itself. This is demonstrated by modelling the ensemble dynamics in a collective coordinate approach where skyrmion-skyrmion and skyrmion-boundary interactions are accounted for phenomenologically. Our numerical results are used to develop a proof-of-concept for an energy efficient (μW\sim\mu\mathrm{W}) device with a low area imprint (μm2\sim\mu\mathrm{m}^2). Whereas its immediate application to stochastic computing circuit designs will be made apparent, we argue that its basic functionality, reminiscent of an integrate-and-fire neuron, qualifies it as a novel bio-inspired building block.Comment: 41 pages, 20 figure
    corecore