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KADATH: a spectral solver for theoretical physics

Philippe Grandclément

Laboratoire de l’Univers et Théories LUTH, Observatoire de Paris-Meudon, 5 Place J.

Janssen, 91195 Meudon Cedex, France.

Abstract

KADATH is a library that implements spectral methods in a very modular
manner. It is designed to solve a wide class of problems that arise in the con-
text of theoretical physics. Several types of coordinates are implemented and
additional geometries can be easily encoded. Partial differential equations of
various types are discretized by means of spectral methods. The resulting
system is solved using a Newton-Raphson iteration. Doing so, KADATH is able
to deal with strongly non-linear situations. The algorithms are validated by
applying the library to four different problems of contemporary physics, in
the fields of gauge field theory and general relativity.
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1. Introduction

Spectral methods are a class of numerical methods that aim at solving
partial differential equations. For detailed presentations of those techniques,
the reader should refer to the numerous books available like [1, 2, 3, 4, 5, 6].
The basic idea is to describe any field by an appropriate linear combination of
known functions called the basis functions. Classic examples of basis are the
trigonometrical functions or orthogonal polynomials (Chebyshev, Legendre,
etc.). The description of functions by their spectral expansion is by essence
non-local, which is to be contrasted with finite difference schemes. Spectral
methods are particularly appealing because of the very fast convergence of
the spectral expansion to the real function it describes. More precisely for
C∞functions the error decreases faster than any power-law of N , where N
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is the order of the expansion. A multi-domain decomposition, where the
physical space is decomposed into several computational regions, is usually
used to ensure such smoothness of the functions.

Originally, spectral methods were used in the context of numerical hy-
drodynamics and led to the successful computations of turbulence regimes
and various two or three-dimensional flows. Numerous applications can be
found in [2, 4]. The application of spectral methods to the field of general
relativity is somewhat more recent and starts with the pioneer work of the
Meudon group, in the late eighties. Since then, such methods have been
successfully applied by several groups to systems like binary black holes or
magnetized neutron stars. A review of spectral methods in the context of
general relativity can be found in [7].

LORENE is the library written by the Meudon group that implements spec-
tral methods for general relativity. It is written in C++, is used by several
groups worldwide and produced many results (see [8] for references). Nev-
ertheless, with time, it appeared that LORENE did encounter some difficulties
and had some serious limitations. The first one comes from the fact that
the library is designed to work with spherical coordinates only and from the
difficulty to implement new geometries like the bispherical one for instance.
Second, LORENE solves systems by an iterative loop that requires a splitting
of the equations in terms of operators (like the Laplace one) and sources.
This splitting is obviously not unique. If it can be natural in some cases, this
is not true when strong non-linearities occur, like for gauge field problems
where the use of LORENE proved problematic (the example shown in Sec. 7.1
was never successfully computed by LORENE). Finally, and even if learning
LORENE is manageable, it can still be somewhat difficult to write a complete
code. A more user-friendly coding style would be a good thing.

For all those reasons, it has been decided to think about a new library
that would use the many successes of LORENE and try to improve on its
weaknesses. The KADATH library is the result of this process and this work
is the first paper devoted to its description. The design of KADATH was also
inspired by some aspects of other spectral solvers, like the ones described in
[9, 10, 11]. Three different types of coordinates have been coded so far but
the setting is such that the inclusion of additional geometries is relatively
easy and straightforward. Spectral expansion is done either with respect to
Chebyshev or Legendre polynomials and trigonometrical functions. Systems
of equations are solved as such, by means of a Newton-Raphson iteration and
do require only a minimal rewriting of the equations. They are passed to the
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solver as character strings. Those strings are interpreted by KADATH using a
syntax close to the LateX one [12], so that the interface should be relatively
clear to any modern physicist. The library is written in C++. It has been
made public and can be downloaded by going to the KADATH web-site [13].

In its current state of development, the library deals with boundary value
problems. Moreover, the geometry of the various boundaries must be known
in advance and is fixed during the whole computation. Such kind of setting is
useful in computing stationary or periodic solutions and encompasses a wide
class of problems, as the four examples discussed in Sec. 7 illustrate. Never-
theless, the field of application of KADATH would be significantly broadened if
some of those restrictions could be lifted. One possible extensions would be
the possibility to deal with free boundary problems where the geometry is no
longer fixed but numerically determined in the course of the computation.
This would be required, for instance, to compute neutron stars in rotation,
where the shape of the surface of the star is an unknown. Another addition
to KADATH would be the inclusion of tools to study time-evolution problems.
This is however a major task that would require much time and work. Those
possible extensions, as long as a few others, are discussed in more detail in
Sec. 8.

This paper contains two main parts. In the first one, the basic numerical
techniques used by the library are exposed. Not all the details are given, for it
would be cumbersome. Nevertheless it should give the reader a good feeling
of what KADATH is about. Section 2 describes the way multi-domain settings
are implemented along with the three different types of geometries currently
present in KADATH . In Sec. 3, after a short introduction on spectral expansion,
the various basis used by KADATH are detailed, for different geometries and
different types of mathematical objects (scalars, tensors, etc.). The way
additional regularities are enforced is also discussed in some details. Section
4 is devoted to the discretization of partial differential equations by τ and
Galerkin methods. The resulting non-linear system is solved by a Newton-
Raphson iteration which is described in Sec. 5. The computation of the
Jacobian and its inversion are discussed, especially in the context of parallel
computing. Section 6 gives an outline of what a code that uses KADATH should
look like.

The second part of the paper is concerned with four different test problems
(Sec. 7). Those problems have been chosen because they illustrate different
aspects of KADATH , in terms of the type of equations, variables or geometries.
If those are not exactly new results, they are far from being trivial and
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they all relate to very contemporary physics. The existence of vortons in a
particular gauge field theory is confirmed in 7.1, a critical collapse solution
is constructed in Sec. 7.2, binary black holes spacetimes are obtained in 7.3
and the Kerr solution for a single rotating black hole is computed in 7.4.
Future developments and applications are discussed in Sec. 8.

2. Setting the geometry

2.1. Multi-domain decomposition

KADATH implements spectral methods in a multi-domain manner where the
physical space is split into several computational domains. The advantages
of using a multi-domain setting are numerous. First of all, when dealing
with discontinuous fields, the domains can be chosen so that the surfaces of
discontinuities coincide with the boundaries. Doing so, in each domains, all
the functions are C∞, thus recovering the spectral convergence that would
be lost otherwise (see Sec. 3.1). The use of several domains also enables
to use different resolutions in different parts of space, increasing accuracy in
regions where needed. This is called fixed-mesh refinement. There are also
some cases where setting a global and regular set of numerical coordinates is
troublesome. This is for instance the case of the bispherical coordinates, as
can be seen in Sec. 2.3. Such difficulties can be overcome by setting different
numerical coordinates in different regions of space.

For each domain, there is a mapping between a set of physical coordinates
(the (r, θ, ϕ) of spherical coordinates for instance) and a set of numerical co-
ordinates. The spectral expansion is performed with respect to the numerical
ones. The mapping between the two sets of coordinates ensures that the nu-
merical ones lies in the appropriate range to do the expansion. For instance,
a coordinate must be in [−1, 1] if Chebyshev polynomials are used.

The physical space is divided into a finite set of domains. Only touching
and not overlapping domains are considered. The domains are described by
the class Domain and its derived classes. The way the various domains are
set with respect to each other is encoded in the abstract class Space and
its derived classes. This is needed, for instance, to write the appropriate
matching conditions across the boundaries of the domains.

KADATH provides several domain decompositions that are listed below.
The library has been designed to be very modular in terms of the geometry,
so that it is relatively easy to implement new types of domains and spaces.
Among the possible future developments, one could think about square-like
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domains, three-dimensional cylindrical coordinates or spaces with more than
three dimensions.

2.2. Spherical space

The class Space spheric implements a decomposition of space in terms of
spherical shells. This is obviously intended mainly for spherical-like objects
but has also been successfully used for more complicated shapes, like the
toroidal one (see Sec. 7.1). This geometry is very similar to the one described
in [14].

In this setting, the physical coordinates are the standard spherical ones
(r, θ, ϕ). One notes θ the zenith angle and ϕ the azimuthal one, so that, in
terms of Cartesian coordinates, one gets:

x = r sin θ cosϕ (1)

y = r sin θ sinϕ (2)

z = r cos θ (3)

For all the type of domains, the numerical angular coordinates (θ⋆, ϕ⋆) are
identical to their physical counterparts. So far, the various fields are supposed
to be either symmetric or antisymmetric with respect to the z = 0 plane.
This implies that θ can be restricted to [0, π/2]. No symmetry is assumed
with respect to ϕ, which lies in [0, 2π[. Concerning the radial coordinate r,
three different types of domains are considered.

• The class Domain nucleus represents a spherical domain that encom-
passes the origin of the coordinate system and that extends up to a fi-
nite radius. The numerical radial coordinate r⋆ relates to r by r = αr⋆,
where α is a constant that gives the radius of the domain. r⋆ lies in
[0, 1].

• The class Domain shell represents a spherical shell, where the radius
r lies between to finite values. The numerical coordinate r⋆ relates to
r by an affine law r = αr⋆ + β, where α and β are constants. r⋆ spans
the intervale [−1, 1].

• The last type of spherical domain is called Domain compact an extends
from some finite radius up to infinity. This is done by demanding that

r⋆ relates to r by r =
1

α (r⋆ − 1)
, where α is a negative constant. r⋆ lies
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in [−1, 1]. As intended, the domain goes to r = ∞, which corresponds
to r⋆ = 1.

For axisymmetric problems that do not depend on ϕ, a variant of the
spherical space has been implemented. It is called Space polar and the
only difference is that the variable ϕ has been removed, making the space
two-dimensional, thus reducing the computational cost.

2.3. Bispherical space
Bispherical coordinates are implemented by the class Space bispheric.

In the standard point of view, bispherical coordinates (χ, η, ϕ) relate to the
Cartesian ones by:

x =
a sinh η

cosh η − cosχ
(4)

y =
a sinχ cosϕ

cosh η − cosχ

z =
a sinχ sinϕ

cosh η − cosχ

The coordinate η can take all the values in R, whereas χ goes from 0 to
π. ϕ is the angle around the x-axis and it lies in [0, π], once the symmetry
with respect to the plane z = 0 is taken into account.

Bispherical coordinates are such that the surfaces of constant η are non-
concentric spheres located on the x-axis, hence their name. There are given
by

(x− a coth η)2 + y2 + z2 =
a2

sinh2 η
(5)

This property makes those coordinates very appropriate to deal with physical
systems consisting of two spherical-like objects. So far, KADATH enables the
user to consider the space exterior to two spheres (for an application see Sec.
7.3). Let us call r1 and r2 the radii of those spheres and d their separation.
It is then easy to see that the space exterior to those two spheres is described
by the points such that η ∈ [η−, η+]. The values of η± and the scale factor a
are then uniquely defined and obey the following set of equations:

sinh η− =
a

r1
(6)

sinh η+ =
a

r2
(7)

d = a
(

coth η+ − coth η−
)

. (8)
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Those equations simply translate in terms of η the positions and sizes of the
spheres by making use of Eq. (5). Let us note that, doing so, the origin of
the Cartesian coordinates (i.e. the point x = y = z = 0) cannot be placed
arbitrarily.

In bispherical coordinates, spatial infinity is described by η = 0 and χ = 0
implying that the surface r = ∞ is described by a single line. This makes
a simple compactification like the one used in the spherical case (see Sec.
2.2) impracticable. This can be seen if one forms the ratio of the Cartesian
coordinates with respect to r. As one approaches spatial infinity such ratio
goes like

x

r
→ η
√

η2 + χ2
(9)

which does not admit a well-defined limit when η → 0 and χ → 0. This
effect is closely related to the fact that the coordinate transformation (4) si
only C0 and not C∞at infinity, as can be seen in [11].

One way to overcome this difficulty is to excise a region of space around
the point η = 0 and χ = 0 (see [11] for another possibility). Doing so,
the physical space does no longer extend up to infinity but only to a finite
distance. The shape of the newly created exterior boundary is defined by the
shape of the excision region. For instance, in order to get a spherical outer
boundary of radius R, one needs to excise the region:

sinh2 η + sin2 χ

(cosh η − cosχ)2
≤ R2

a2
. (10)

The presence of the exterior boundary can also be useful for some problems
for which outer boundary conditions must be prescribed. This is especially
true for problems with radiation where outgoing waves can be present.

To summarize, KADATH implements bispherical coordinates in the region
defined by η− ≤ η ≤ η+ and Eq. (10). This corresponds to the region of
space exterior to two spheres of radii r1 and r2 and distant from d and inside
an outer sphere of radius R. The center of the outer sphere coincides with the
origin of the coordinates and is not freely specifiable. However, if needed, Eq.
(10) could be modified to accommodate any smooth outer boundary. Both
the inside of the two inner spheres and the exterior of the outer one, can be
matched with spherical-like domains as those seen in Sec. 2.2 to describe the
desired physical space.
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In order to perform numerical expansions, one needs to map the bispher-
ical coordinates (η, χ) onto some numerical coordinates (η⋆, χ⋆). Unfortu-
nately, with the region previously defined, this cannot be done simply using
a single domain. The bispherical region must be split into several domains,
each of them being mapped onto squares of numerical coordinates. In order
to do the splitting the following types of domains are defined.

• The class Domain bispheric rect represents a rectangular domain in
terms of (η, χ). More precisely, η lies in between two finite values ηmin

and ηmax. It relates to the numerical coordinate η⋆ by an affine-law

η =
ηmax − ηmin

2
η⋆ +

ηmax + ηmin

2
(11)

so that η⋆ ∈ [−1, 1]. χ goes from a lower boundary χmin up to π and
relates to its numerical counterpart via

χ = (χmin − π)χ⋆ + π (12)

so that χ⋆ ∈ [0, 1]. This choice of mapping will be justified by the
chosen basis of decomposition in Sec. 3.2.2.

• The class Domain bispheric chi first describes domains for which
η is given as a function of χ. χ goes from 0 to a boundary χmax and
relates to χ⋆ by

χ = χmaxχ
⋆ (13)

χ⋆ lies in [0, 1]. η goes from fixed value ηlim up to a variable bound
f (χ). The function f (χ) is given by the surface of excision (10) and
is computed numerically. η⋆ goes from [−1, 1] and is given by

η =
f (χ)− ηlim

2
η⋆ +

f (χ) + ηlim
2

(14)

• In the class Domain bispheric eta first, the variable χ is given in
terms of η. η is located between ηmin and ηmax and relates to η⋆ simply
by Eq. (11). χ goes a variable bound g (η) up to π. As for the
domain Domain bispheric chi first, the function g (η) is defined by
the excision shape. One then gets

χ = (g (η)− π)χ⋆ + π (15)

with χ⋆ ∈ [0, 1]
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Table 1: Relation between the various domains of the bispherical space. The table shows
to what correspond the boundaries of each domain. The labels are the same as in Fig. 1

Domain η⋆ = −1 η⋆ = 1 χ⋆ = 0 χ⋆ = 1
1 left inner sphere outer sphere x-axis domain 2
2 left inner sphere domain 3 x-axis domain 1
3 domain 2 domain 4 x-axis outer sphere
4 right inner sphere domain 3 x-axis domain 5
5 right inner sphere outer sphere x-axis domain 4

In the three types of domains ϕ coincides with the associated numerical
coordinates and goes from 0 to π.

A set of five such domains is needed to describe the space between the
two inner spheres and the exterior one. This is done in the following way.
Let us pick two sets of values (η1, χ1) and (η2, χ2) that lie on the excision
region. This means that they correspond to circles on the exterior sphere.
One will assume that η1 < 0 and that η2 > 0. The domain decomposition is
as follows, the labels of the domains are given in Fig. 1:

• One Domain bispheric chi first for which 0 ≤ χ ≤ χ1 (domain 1).

• One Domain bispheric rect for which χ1 ≤ χ ≤ π and η− ≤ η ≤ η1
(domain 2).

• One Domain bispheric eta first for which η1 ≤ η ≤ η2 (domain 3).

• One Domain bispheric rect for which χ2 ≤ χ ≤ π and η2 ≤ η ≤ η+

(domain 4).

• One Domain bispheric chi first for which 0 ≤ χ ≤ χ2 (domain 5).

As already stated, spherical domains can be added to this decomposition to
account for the interior of the inner spheres or for the exterior of the outer
one. This setting is shown in Fig. 1 both in the (η, χ) plane and in terms of
Cartesian coordinates. Table 1 shows to what correspond the boundaries of
each domain. In particular, one can see that the mappings have be chosen
so that χ⋆ = 0 always corresponds to the x-axis. This property will prove
useful when regularity conditions will be enforced (see Sec. 3.4.3).
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Figure 1: Multi-domain decomposition of the bispherical space. The inner spheres have
radii of 0.5 and 1 and are separated by a distance of 2. The radius of the outer sphere is
set to 4. The left panel shows the bispherical coordinates, along with the excision region
around η = 0 and χ = 0. The associated Cartesian coordinates, in the (x, y) plane, are
shown on the right panel.

2.4. Cylindrical space

Standard three-dimensional cylindrical coordinates are currently not im-
plemented in KADATH . The setting exposed in this section is devoted to the
study of critical phenomena in general relativity (see Sec. 7.2 and references
therein). The sought critical solution can be described on a two-dimensional
space of cylindrical topology. If this setting is more specialized than spherical
or bispherical coordinates, it is presented here as an illustration of the ability
of KADATH to deal with various geometries.

The cylindrical space is described by the class Space critic. The two
coordinates are x that ranges from 0 to 1 and τ that goes from 0 to 2π. x
relates to the height of the cylinder and τ is the azimuthal angle. Near x = 0
the fields of interest are either symmetric or antisymmetric. In order to take
this symmetry into account, space is split into two types of domains:

• Domain critic inner where x lies in [0, xlim] and simply relates to the
numerical coordinate x⋆ by x = xlimx

⋆. x⋆ covers the interval [0, 1].

• Domain critic outer where x is in [xlim, 1]. The numerical coordinate

x⋆ relates to x by an affine law x =
(1− xlim)

2
x⋆+

(1 + xlim)

2
and spans
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[−1, 1].

In both domains, the numerical angular coordinate τ ⋆ coincides with τ .
Given the fact that the fields have some symmetries with respect to τ = π,
it is possible to restrict τ ⋆ to [0, π[.

3. Spectral expansion

3.1. Generalities

An extensive discussion of spectral methods is beyond the scope of this
work. Only the basic properties required for the comprehension of the paper
are presented. Refs. [1, 2, 3, 4, 5, 6] could be useful for the reader interested
in more details.

In the one-dimensional case, let f (x) be a function on an interval Λ.
Given a set of known orthogonal functions Φi (x) on Λ, spectral theory en-
ables to construct an approximation of f in terms of a finite sum of the
Φi (x). This sum is called the interpolant of f and is expressed as:

INf (x) =

N
∑

i=0

aiΦi (x) (16)

where N is the order of the approximation. Typically, the basis functions are
either orthogonal polynomials like Legendre or Chebyshev ones, or trigono-
metrical functions. In this latter case, spectral theory is nothing but the
theory of discrete Fourier transform.

It can be shown that there exist N +1 points xi inside Λ such that f and
its interpolant exactly coincide at those points

f (xi) = INf (xi) . (17)

Those points are called the collocation points. In KADATH , one works with
the so-called Gauss-Lobato points which ensure that the boundaries of the
interval Λ coincide with the first x0 and last xN collocation points.

Spectral theory provides a rule to compute the coefficients ai in terms
of the values at the collocation points. Thanks to Eq. (16), the reverse
operation, that is the computation of the f (xi) in terms of the ai, is also
possible. So a function f can be described either in terms of its coefficients
or in terms of its value at the collocation points. Depending on the operation
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to be performed on f , a description could be more useful that the other. One
is working in the coefficient space when using the ai and in the configura-
tion space when considering the f (xi). The two descriptions are completely
equivalent in the sense that there is no information lost when going from one
space to the other.

The most appealing feature of spectral methods is the very fast conver-
gence of the interpolant INf to the real function f . Indeed, it can be shown
that, if f is a C∞function, then INf converges to f faster than any power-law
of N . This is known as the spectral convergence. In the case of analytic func-
tions, the convergence is even exponential. Such fast convergence enables to
reach good accuracy with only moderate number of points, especially com-
pared to other methods like finite difference schemes. As already stated in
Sec. 2.1 an appropriate multi-domain setting can usually ensure that the
functions are C∞in each domain even for globally less regular functions. Fail-
ing to do so will make the convergence only follow a power-law. This is called
the Gibbs phenomenom in the case of a discontinuous function.

3.2. Scalar fields
The choice of basis functions is crucial to the success of any spectral

solver. Moreover it is often a very good way of checking equations. Indeed,
for complicated ones, where many terms are involved, all of them must end
up having consistent basis. This section is devoted to the case of scalar fields.
Higher order tensors are discussed in Sec. 3.3.

3.2.1. Spherical coordinates

In the case of spherical coordinates, the standard basis of decomposition
of a scalar field is obtained by demanding that this field can be expressed as
a polynomial in terms of the Cartesian coordinates, as what is done in [15].
This condition prevents the appearance of singularities on the axis and at
the origin. In addition, one requires that the fields are either symmetric or
antisymmetric with respect to the plane z = 0. This last assumption covers
most of the situations of interest. By expressing the Cartesian polynomials
in terms of the spherical coordinates, one can get some constraints on the
basis of expansion.

Given that no symmetry is assumed with respect to the azimuthal angle
ϕ, a standard discrete Fourier transform is performed. The basis of decompo-
sition consists of the trigonometrical functions cos (mϕ) and sin (mϕ). The

collocation points are the ϕi = 2π
i

N + 1
with 0 ≤ i ≤ N .
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Concerning the zenith angle θ, the symmetry with respect to the plane
z = 0 is taken into account. This implies that the collocation points are the

θj =
π

2

j

N
. The associated basis functions are trigonometrical functions of

one given type and of one given parity. The exact choice depends on both
the function and the ϕ basis. More precisely, for a symmetric function, one
uses even cosines cos (2jθ) when the basis in ϕ is such that m is even and
odd sines sin ((2j + 1)θ) otherwise. For antisymmetric functions, odd cosines
are used for m even and even sines otherwise.

The basis with respect to the radial numerical coordinate r⋆ depends on
the type of domain. For both the shells and the compactified domain, it is
the standard Legendre of Chebyshev polynomials with the associated Gauss-
Lobato collocation points. In the nucleus, only polynomials of a given parity
are considered, in order to impose some regularity at the origin. If the asso-
ciated basis with respect to θ is even (resp. odd), with either sines or cosines,
even (resp. odd) polynomials are used. This is true for both symmetric and
antisymmetric functions. The collocation points are the Gauss-Lobato points
that are located in [0, 1].

Let us note that with this choice of basis, not any function is a true
polynomial of the Cartesian coordinates. The choice made here is slightly
less restrictive and has the advantage of being convenient and easy to handle.
Additional regularity conditions are discussed in Sec. 3.4

3.2.2. Bispherical coordinates

The same guidelines as in the spherical case are used to derive appropriate
basis of decomposition. One demands that scalar fields can be expressed as
polynomials in terms of Cartesian coordinates. Once again, only symmetric
or antisymmetric functions with respect to the plane z = 0 are considered.
This gives the following constraints on the basis.

The angle ϕ is expanded on cosines cos (mϕ) (resp. sines) for symmetric
(resp. antisymmetric) functions. The associated collocation points are the

ϕi = π
i

N
.

For the coordinate χ⋆, due to regularity conditions on the x-axis, only
polynomials (Chebyshev or Legendre) of some given parity must be taken
into account. The parity depends on the basis with respect to ϕ. Even
polynomials must be used when m is even and odd otherwise. This can be
seen in the expressions of the Cartesian coordinates given by Eqs. (4). This
is true for both symmetric and antisymmetric functions. The collocation
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points are the Gauss-Lobato points that are located in [0, 1].
The coordinate η⋆ is expanded on standard polynomials, either Chebyshev

or Legendre. The collocation points are the usual Gauss-Lobato points and
span the interval [−1, 1].

As in the spherical case, this choice of basis is slightly less restrictive than
what would be needed to get true Cartesian polynomials (see Sec. 3.4 for
more regularity conditions).

3.2.3. Cylindrical coordinates

As already stated, the functions considered in the critical phenomenom
case (see Sec. 7.2) are either symmetric or antisymmetric with respect to
x = 0. To account for this fact, in the inner domain, only polynomials of the
appropriate parity are used, either Chebyshev or Legendre. The collocation
points in terms of x⋆ are the Gauss-Lobato points and are located in [0, 1].
In the outer domain, standard polynomials are used.

Some symmetry is also taken into account with respect to τ = π. If
a function f is such that f (τ + π) = f (τ) then only even trigonometrical
functions are considered and f is expanded on both cos (2iτ) and sin (2iτ).
The other possibility is a function g such that g (τ + π) = −g (τ). In that
case, only odd trigonometrical functions are used.

3.3. Higher rank tensors

For tensors, the choice of spectral basis depends on both the geometry
and the tensorial basis. The simplest choice is the one of a Cartesian tensorial
basis. Let us precise that this choice can be made almost independently of the
geometry, as long as Cartesian coordinates are defined. For instance, a vector
~V can be described by its Cartesian components (V x, V y, V z) in spherical
geometry, meaning that each component is given in terms of (r, θ, ϕ).

Let us first turn to the case of a vector with a Cartesian tensorial basis.
The appropriate basis are obtained by demanding that this vector can be
expressed as the gradient of a scalar field. Given this assumption, it simply
follows the each component can be expressed as a polynomial of the Cartesian
coordinates. Thus each component behaves like a scalar field and the same
spectral basis are used. As far as the symmetry z = 0 is concerned (for the
spherical and bispherical cases), it is assumed that the components x and
y of the vector are symmetric and the z one antisymmetric (i.e. the vector
is the gradient of a symmetric scalar field). The same is true for higher
order tensors in Cartesian tensorial coordinates for they can be obtained as
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tensorial product of vectors. When needed, the appropriate z = 0 symmetry
is also obtained from this fact.

The case of a spherical orthonormal tensorial basis is also implemented,
when one is working in spherical geometry. The appropriate spectral basis of
each component can be derived from the Cartesian case by making a careful
use of the passage formulae that relates the two basis. For instance, if the
radial component of a vector behaves like a (symmetric) scalar, this is not
the case of the θ one for which the spectral basis with respect to θ involves
even sines for m even and odd cosines otherwise, as can be seen from the
formula

V θ = V x cos θ cosϕ+ V y cos θ sinϕ− V z sin θ. (18)

In the current state of KADATH , only Cartesian tensorial basis are imple-
mented in the bispherical case. In the spherical case, both Cartesian and
orthonormal spherical tensorial basis are defined. The cylindric space only
deals with scalars so far. Additional cases will be implemented when needed.

3.4. Additional regularity conditions

3.4.1. Galerkin basis

As stated in Sec. 3.2, the spectral basis chosen do not ensure a complete
regularity of the fields. Some additional constraints must be enforced by
means of an appropriate Galerkin technique which goes as follows. The fields
are not expanded onto any set of basis functions but only onto a subspace,
which verifies the additional constraints one wishes to enforce. For instance,
let us consider a one-dimensional function f (x) expanded onto even Cheby-
shev polynomials T2i (x). To fulfill the additional constraint that f vanishes
at x = 0 it is possible to use the Galerkin basis of the Gi = T2i+2+(−1)i+1. f
is expanded onto the Gi and thus, by construction, does verify the constraint
f (0) = 0. Let us note that, in general, a Galerkin basis is not orthogonal.

3.4.2. Regularity on the context of spectral methods

Given the geometries present in KADATH , two types of regularity must be
discussed. The regularity on one axis that must be enforced in both spherical
and bispherical cases and the regularity at the origin r = 0 in the case of
spherical coordinates only. The main reason why those regularities must be
carefully handled can be found in the way spectral methods compute some
ratios.

As an illustration, let us concentrate on the axis case in spherical coordi-
nates. For many operators, some functions must be divided by sin θ. This is
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the case of the Laplacian of a scalar f where terms like
cos θ

r2 sin θ

∂f

∂θ
do appear.

The division by sin θ can be troublesome on the axis where it vanishes. In
the case of spectral methods this difficulty can be overcome by working in
the coefficient space thus using the fact that the spectral approximation is
not local. However, doing so, what is computed is not the exact ratio of a
function g by sin θ (that would diverge for arbitrary function) but the reg-

ularized one R =
g − g (θ = 0)

sin θ
. R is obviously regular for any function g

because the finite part of g on the axis has been taken out. It does coincide
with the real ratio if and only if g vanishes on the axis.

There is another way to look at this problem. When one computes the
Laplacian of a function in spectral method, what is actually computed is not
the real Laplacian, but another operator that includes the finite parts on
the axis. Those finite parts cause the appearance of additional homogeneous
solutions (typically solutions that do not vanish on the axis). Some examples
of that can be found in [16], for the radial coordinate, either at the origin or at
infinity. The extra homogeneous solutions must be dealt with by enforcing
additional conditions on the solution. If one fails to do so, the resulting
system will not be invertible. The additional conditions are what we refer as
regularity conditions and are discussed in more detail in Sec. 3.4.3 and 3.4.4.

3.4.3. Regularity on the axis

Let us first consider the case of a scalar field f in spherical coordinates.
The regularity requires that f vanishes on the axis, except for the m = 0
case. Given the basis of decomposition discussed in Sec. 3.2.1 this can be
enforced by using the Galerkin basis cos (ℓθ)− 1 instead of standard cosines,
when m 6= 0. When the basis with respect to θ involves sines only, there is
no need to impose any additional condition. In the case m = 0 the standard
basis are used.

For higher order tensors the same guidelines as in Sec. 3.2.1 are used.
When a Cartesian tensorial basis of decomposition is employed, the regularity
conditions for each component are the same as in the scalar case. With a
spherical tensorial basis, they are slightly different. Typically one can allow
some components (the angular ones) to take non-zero values on the axis

for higher m. For instance, the component V θ of a vector ~V relates to the
Cartesian components by the passage formula (18). Given the regularity
conditions for the Cartesian components, it is easy to see that V θ can be
non-zero on the axis for m = 1.
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In the bispherical case, the situation is very similar. As seen in Sec.
2.3, the axis is described by χ⋆ = 0. For scalars or Cartesian components
of tensors, one demands that they vanish on the axis, for m > 0. When
even Chebyshev (resp. Legendre) polynomials are used, this is done by using
the Galerkin basis: T2i (χ

⋆) + (−1)i+1 (resp. L2i (χ
⋆) − L2i (0)). When odd

functions are used, not additional condition is enforced.

3.4.4. Regularity at the origin

The situation at the origin in the case of a spherical geometry is more
complicated. It can be shown that a true polynomial of Cartesian coordinates
would vanish as rℓ at the origin, where the θ basis is cos (ℓθ) or sin (ℓθ) (see
[15]). However this condition is difficult to enforce exactly and, in some cases,
has been found to generate instabilities.

As a first step one demands that for ℓ 6= 0 the functions vanish at the
origin. When using even Chebyshev (resp. Legendre) polynomials in r, this is
done by using the Galerkin basis: T2i+2 (r

⋆)+(−1)i+1 (resp. L2i (r
⋆)−L2i (0)).

Nothing needs to be done if odd polynomials are used. This choice of basis
enforces the first order of the regularity at the origin.

However, this is not sufficient to ensure that usual second order operators
like the Laplacian are well inverted. This is related to the appearance of
additional homogeneous solutions discussed in Sec. 3.4.2. The second order
of the regularity condition must be supplemented. This is done by demanding
that the derivative with respect to r vanishes at the origin, for ℓ > 1. If this
is automatically verified for even polynomials, this is not the case for odd
ones. When dealing with odd Chebyshev polynomials a possible choice of
Galerkin basis is given by T2i+3 − T ′

2i+3 (0) T1, for ℓ > 1 (and similarly for
Legendre).

This choice has proven to be sufficient to ensure that second order differ-
ential equation are solved properly at the origin. For higher order equations,
there may be need to further strengthen regularity. Let us note that, con-
trary to the regularity on the axis, the regularity conditions at the origin are
the same for scalars or components of tensors. This comes from the fact that
the transformations that relate the Cartesian components to the spherical
ones do not involve r (see for instance (18)).

The regularity on the axis must obviously also be enforced when the origin
is present. This is resulting in a two dimensional Galerkin basis for r and θ.
Putting all the pieces together, the appropriate basis of decomposition for a
scalar field symmetric with respect to z = 0, in a spherical nucleus would be
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• For ϕ : the standard Fourier decomposition in cos (mϕ) and sin (mϕ)

• For θ (regularity on the axis):

– cos (2jθ) for m = 0 (ℓ = 2j)

– cos (2jθ)− 1 for m even and m 6= 0 (ℓ = 2j)

– sin ((2j + 1) θ) for m odd (ℓ = 2j + 1)

• For r (regularity at the origin):

– T2i (r
⋆) for ℓ = 0

– T2i+1 (r
⋆) for ℓ = 1

– T2i+2 (r
⋆) + (−1)i+1 for ℓ even and ℓ 6= 0

– T2i+3 (r
⋆)− T ′

2i+3 (0)T1 for ℓ odd and ℓ 6= 1.

Let us mention that if the regularity on the axis is routinely handled in
the context of spectral methods, this is not the case of the conditions at
the origin. For many applications, like the meteorology simulations or the
black holes with excision (see Sec. 7.3 and 7.4), the origin is not part of the
computational domain. Even when the origin is present, various tricks are
usually employed to avoid dealing with regularity conditions. For instance, in
[17, 18] the region close to the origin is not described by spherical coordinates
but by Cartesian ones. In [19], the solution is sought in the configuration
space with collocation points that avoid the origin.

3.5. Effective number of unknowns

KADATH is designed to solve systems of equations in the coefficient space.
Using such a setting the unknowns are the true coefficients of the fields of
interest. By true coefficients one means that some of them are irrelevant. For
instance when using a standard Fourier transform the coefficient of sin (0) is
obviously meaningless. Some cases are less trivial. Indeed, the last coefficient
of an expansion in terms of odd Chebyshev polynomials is also irrelevant.
This is related to the fact that the value of such a function is, by construction,
0 at x = 0. The value of the function is freely specifiable only at N − 1 of
the N collocation points. To maintain the bijection between the coefficient
space and the configuration space one then needs to reduce the number of
true coefficients.
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Moreover the regularity conditions discussed in Sec. 3.4 reduce further-
more the true number of unknowns. As already stated, such additional con-
ditions are imposed by a Galerkin method. This implies that the unknowns
are not the coefficients onto the standard basis of expansion but rather onto
the Galerkin basis. The number of coefficients is then different, reflecting
the fact that the Galerkin basis contains informations about additional con-
ditions. For instance, suppose one works with N + 1 coefficients in terms of
even Chebyshev polynomials so that the function is expanded onto the T2i

with 0 ≤ i ≤ N . Suppose now that the Galerkin basis T2i+2 (r
⋆) + (−1)i+1 is

used to enforce that the function vanishes at the origin (like in Sec. 3.4.4).
It is easy to see that, in order to keep the same degree of approximation (i.e.
to truncate the series to the same order in terms of the polynomials), one
needs to go only up to i = N − 1. This is a general feature of the Galerkin
method.

The true number of coefficients and so the number of true unknowns is
determined by KADATH by making use of the type of field considered (scalar,
vector, rank-2 symmetric tensor...), the symmetry, the tensorial basis and
the geometry. Such computation is automated and should be transparent to
the user.

4. Setting equations

4.1. The weighted residual method

The usual way of solving partial differential equations in the context of
spectral methods is based on the framework of the weighted residual methods
(see for instance [7] for a more detailed presentation). Let us consider an
equation written formally as R = 0. R is a general function on the space of
interest. For instance, if one needs to solve a simple Poisson equation, one
would have R = ∆f − S, where S is the source and f the unknown field.
Obviously, more complicated, non-linear cases involving several unknown
fields are possible. The weighted residual method translates the functional
equation R = 0 into a finite set of discrete equations by demanding that the
scalar product (R, ξ) of R with respect to some test function ξ vanishes. The
scalar product is the same as the one used to define the spectral expansion.

Depending on the choice of test functions one generates different methods.
KADATH mainly implements the variant known as the τ -method. In this case
the test functions are the same as the spectral basis ones. Suppose that R is
expanded onto the ξ by R =

∑

C (ξ) ξ, C being the coefficient corresponding

19



to the basis function ξ. The sum is taken on all the dimensions, up to
the desired order of approximation. One can then show that the residual
equations (R, ξ) = 0 is equivalent to demanding that C (ξ) = 0. Doing so,
one then obtains as many equations as the total number of basis functions. In
the τ -method, the equations corresponding the last coefficients can be relaxed
and replaced by equations that describe appropriate matching between the
domains and boundary conditions. The exact number of equations that must
be relaxed depends on both the geometry and the equations themselves.

As mentioned is Sec. 3.4, when regularity conditions must be enforced, a
variant of the τ -method known as the Galerkin method is used. In this frame-
work, the fields are expanded onto the Galerkin functions G. However the
residuals R are expanded onto the standard basis. In the Galerkin method,
the test functions are the Galerkin ones. One then gets as many equations
as the number of Galerkin functions, formally written as (R,G) = 0. One
can show that such equations are linear combinations of the coefficients of
R which depend on the Galerkin basis used. As for the τ -method, some
equations can be relaxed to enforce additional conditions.

To summarize, one can say that KADATH solves equations in the coeffi-
cient space. Standard τ -method is used to impose appropriate matching and
boundary conditions. When regularity conditions must be enforced, this is
done by means of a Galerkin method.

4.2. Equations for the fields

The discretization of the field equations by means of the τ and Galerkin
methods are implemented by the class Equation and its derived classes.
Given the knowledge of the geometry and the type of equation, those objects
are able to produce the appropriate number of discrete residual equations.

The most widely used derived class is called Eq inside. It deals with
equations that must be solved inside a given domain, for instance a Pois-
son equation of the type ∆f − S = 0. For each type of domain, the τ or
Galerkin residual equations can be generated. Depending on the number of
boundaries, several equations are relaxed in order to impose matching and
boundary conditions. By default Eq inside assumes that the equation to
be solved contains second order derivative of the fields. For first order equa-
tions (resp. zeroth order) one would use the related class Eq one side (resp.
Eq full).

Boundary conditions are encoded in the class Eq bc which must be sup-
plied with the domain and the type of boundary. τ or Galerkin method
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of appropriate dimensions are constructed by this class. For instance, the
boundary conditions on a sphere are written with a two-dimensional Galerkin
method with respect to the angles (θ, ϕ), in order to account for the regularity
conditions on the axis.

The class Eq matching is used to impose the matching of quantities across
the boundary between two domains. This is done in the coefficient space and
so must be used only when the basis relative to the surface is the same on
both side of the boundary. This may seem restrictive but it covers most of
the geometries implemented in KADATH , at least when the same resolution is
used in each domain. This is the case for all the boundaries of the spherical
geometry but not for the boundary between the bispherical domains and the
spherical compactified one (see Sec. 2.3). In most of the cases the quantity
to be matched is simply an unknown field or its normal derivative. Never-
theless it is possible to impose the matching of different quantities across the
boundary. This would be useful in the case where different variables are used
in different domains (see an example in Sec. 7.2).

When the basis are not the same across the boundaries, because of differ-
ent geometries or different resolutions, one must use the class Eq matching non std

that performs the matching in the configuration space. In this case, given the
fact that the collocation points are usually different on the two sides of the
boundary, one must choose the set of points at which the matching conditions
are written. It is up to the user to make sure that this choice is consistent
and leads to a global problem that is not over or under-determined.

4.3. Integral equations

KADATH also enables to impose global conditions on the fields. One could
prescribe the value of the total energy content of space or the integral of
a given field on some surface, for instance. If the associated equations are
computed in terms of the coefficients of the fields, they are not functional
equations and do not require the machinery of the weighted residual method.
They simply translate into additional conditions that must be fulfilled by the
fields.

In order to ensure that the full system contains the same number of
unknowns than conditions, integral equations are generally associated with
global unknowns. This is for instance the case of black holes, where the local
rotation rate is an unknown that is constrained by demanding that a global
quantity, the spin, takes a given value (see Sec. 7.3). Another example is
found in the critic solution case of Sec. 7.2, where the period of the solution
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is sought by imposing that one of the modes of one of the fields vanishes at
the center.

5. Solving the system

5.1. Newton-Raphson iteration

It follows from the techniques described in Sec. 3 and 4, that the solver
translates a system of functional equations into a finite set of algebraic ones.
In general, those equations are non-linear and KADATH relies on the well-
known Newton-Raphson technique to find a solution (as in [9, 10]). Let us
consider a set of unknowns, formally denoted by the vector ~u. The system
of equation can be written as ~f (~u) = 0. Obviously the vectors ~u and ~f must
have the same size.

The solution is sought by iteration, starting from an initial guess ~u0. Let
us denote ~un the approximation of the solution found after nth iterations.
The Newton-Raphson scheme proceeds as follows. First one computes the
vector ~fn = ~f (~un). If ~fn is small in some appropriate sense (for instance the
maximum norm is smaller than a given threshold), then ~un is good enough
solution. If not, one needs to compute the Jacobian matrix Jn of the system
defined as:

Jn
ij =

∂fi
∂uj

(~un) (19)

where fi and uj denote to the ith and jth components of ~f and ~u respectively.
One row of the Jacobian corresponds to one equation, and one column to the
derivation with respect to one of the unknowns. The matrix is computed at
the position of the current solution ~un and so must be recalculated at each
iteration.

The linear system
Jn ~Xn = ~fn (20)

must then be solved and the next approximation of the solution is given by
~un+1 = ~un − ~Xn. The method is known to converge rapidly to the solution,
at least if the initial guess is good enough. For linear systems, the Newton-
Raphson method finds the solution in one iteration step.

5.2. Automatic differentiation

For simple problems it can be possible to explicitly derive an analytic
expression of the Jacobian matrix from the knowledge of the equations ~f .
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This can be done by making use of some software that can do symbolic
computations. Such analytic expression can then be fed to the code and
used to compute the Jacobian. However, in practice, that can be tricky
when the equations are complicated, especially if their explicit expressions
in terms of the unknowns are intricate (this is especially true for Sec. 7.4,
where an explicit expression of the equations in terms of the spatial metric
would be almost impracticable).

In the context of KADATH , the computation of the Jacobian is done nu-
merically by a technique of automatic differentiation based on the notion of
dual numbers. Each quantity x is supplemented by its infinitesimal variation
δx. The new object is usually denoted as 〈x, δx〉. The arithmetic of those
dual objects is then implemented in order to accommodate the usual rules
for differentiation. For instance one gets:

〈x, δx〉 + 〈y, δy〉 = 〈x+ y, δx+ δy〉 (21)

〈x, δx〉 × 〈y, δy〉 = 〈xy, xδy + yδx〉 (22)
√

〈x, δx〉 =

〈√
x,

δx

2
√
x

〉

. (23)

Let us consider a set of values ~u of our unknowns and let us supplemented
it with a set of infinitesimal variations δ~u. Using the extended algebra one
can apply the system of equations ~f to 〈~u, δ~u〉. This would result in the

following extended object
〈

~f (~u) , δ ~f (~u, δ~u)
〉

. The first part ~f (~u) is the

usual application of the system of equations to ~u and would be used to get
the term ~fn in the Newton-Raphson iteration (see Sec. 5.1).

One can show that the second part δ ~f is a vector that is the product of
the Jacobian with the vector δ~u so that:

δ ~f (~u, δ~u) = (J (~u))× δ~u. (24)

The use of the dual numbers enables to automatically compute the product
of the Jacobian with any vector. In order to compute the whole Jacobian
matrix, one then proceeds as follows. First the unknowns are supplemented
with a variation vector that is zero except at the ith component which is
set to one. The system of equation is applied, in its extended form, to this
object. The variation of the result is then, by construction, the ith column
of the Jacobian. By taking all the possible values of i, the whole matrix can
be generated.
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5.3. Parallelization and linear system solvers

The size of the linear system (20) is the same as the total number of un-
knowns. If one considers Nf scalar fields, in Nd domains of d dimensions and
if N is the number of coefficients of the spectral expansion in each dimension,
then the Jacobian is an (m×m) matrix with m ≈ NfNdN

d. This number
can be quite large, especially in three dimensions. For instance, for Nf = 5,
Nd = 6, d = 3 and N = 21, which are big but not huge numbers, one would
get m & 250, 000. The resulting matrix would represent more than 500 GB
of data. Such amount of data would be difficult to store on a single processor,
without mentioning the number of operations required for the inversion.

There are several ways to overcome the difficulty of dealing with such big
matrices. One solution is to use an iterative technique to solve the system
(20) (see [20] for a general introduction to the iterative techniques and [9, 11]
for some applications). Doing so, the solution of the linear system is sought
in a loop that does not require the storage of the full matrix J. It is only
needed to be able to compute the product J~x for any vector x. If this is
exactly the information that is available from our automatic differentiation
technique (see Sec. 5.2), KADATH , in its current state, does not use this
kind of algorithms. Indeed, the tests conducted with the iterative solvers, in
the context of KADATH , showed a lack of stability, meaning that the conver-
gence was achieved only for some problems and only for moderate degrees
of freedom. The reason for that must probably be sought in the precondi-
tioning step. Indeed, the success of the iterative algorithms relies on the
knowledge of an efficient preconditioning matrix that approximates J−1. If
some preconditioning techniques have been successfully used in the context
of spectral methods like in [9, 11], they are only applicable when working in
the configuration space, which is not the case of KADATH . Nevertheless, for
very large problems, it is likely that the use of iterative techniques would
be highly desirable. This is why their implementations will be an important
axis of future development of the library.

That being said, in its current state, KADATH relies on a direct method to
invert the linear system. In order to deal with very large matrices, distributed
algorithms are available. Typically, each processor has the knowledge of
only some parts of the matrix. In this context, a parallelization of KADATH
is straightforward and is done via MPI. Indeed, the Jacobian is computed
columns by columns, each computation being independent of the other. Each
processor computes and stores a manageable set of columns. The size of the
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Jacobian is only limited by the total amount of memory available. This part
of the computation is perfectly linear in terms of the number of processors.

After having tested several libraries, it appeared that a parallel version of
LAPACK called Scalapack [21], was the best suited. However, before calling
the function that computes the solution the linear system, a redistribution
of the matrix amongst the various processors must be done. The reason for
this is purely computational and its goal is to ensure a better behavior of
Scalapack algorithms. Let us precise that Scalapack library does provide
the function needed to do this redistribution. The LU decomposition of J
itself does not require more memory than what is needed to distribute the
Jacobian across the various processors. Concerning the computational time,
it has been observed that the resolution of the linear system takes roughly
as much time as what is needed to compute the Jacobian itself, at least for
the cases exhibited in Sec. 7.

For small problems (typically 2-dimensional problems in low resolution),
a sequential version of KADATH can be used, where the linear system is solved
using the standard LAPACK library [22].

6. User interface

If KADATH is a rather intricate tool, a great effort has been made in its
design to render its use as simple as possible. This is especially true in the
way the equations are passed to the solver. In this section the various steps
in which KADATH should usually be called are briefly summarized. KADATH

is written in C++ and it is probably best if the user has at least some
knowledge of this language. What follows does not constitute an extensive
documentation of the library but is intended to give a feeling of what a typical
use of KADATH is. For more details, the would-be user is strongly advise to
take a look at the codes that have be made available in KADATH repository
(this is the case of the four examples discussed in Sec. 7).

The first step is to specify the geometry of space. This is done by calling
the constructor of one of the derived classes of Space (see Sec. 2). Various
parameters describing the geometry are required at this point, like the num-
ber of shells for a spherical space, or the various radii involved in a bispherical
one. The constructor must also be supplied with the required resolution (i.e.
the number of points) and the type of polynomials to be used (Legendre or
Chebyshev).
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On the desired geometry, the user needs to define the fields of interest.
They can be of various type, scalars, vectors, higher order tensors, metric
tensors, etc. As the solution is sought by iteration, those objects are usually
set to some initial guess. The choice of the initial values depends very much
on the problem. It can come from reading data from another code or by
finding appropriate analytic expressions. A crucial point of this step is to
affect each field with its correct spectral basis of decomposition. For most
cases, KADATH provides functions that do this automatically but the user
should make sure that those functions are appropriate for each given problem.
Failing to provide the right basis will either cause the solver to abort (if it
needs to sum two quantities with incompatible basis for instance), or cause
the appearance of Gibbs-like phenomenom (if a general function is expanded
onto symmetric basis for instance).

All the informations needed to solve a system are contained in the class
System of eqs. It is constructed from the space of interest and can be sup-
plied with the domains on which the system is to be solved, in case the
values of fields are not defined on the whole space. The list of variables and
constants are then passed to the system. By variables one means quantities
that are unknowns and that must be solved for, whereas constants are quan-
tities that can appear in the equations but have fixed values. Both type of
objects can be either fields or numbers. Each variable and constant must be
a quantity that has been initialized beforehand. Each of them is supplied
with a character string that is the name by which it will by recognized in the
equations. A special field is the metric one, when defined, for which addi-
tional functionalities are available (tensorial indices manipulation, covariant
derivative, etc.)

The equations are passed to the System of eqs as character strings.
Those strings are read by KADATH to generate the appropriate computa-
tion rules. The formalism used is inspired by LateX [12], especially in
the way indices are handled. Einstein’s convention of summation on re-
peated indices is used (for instance, in the 3-dimensional Cartesian case,
fi ∗ gi = fxg

x + fyg
y + fzg

z). Various reserved words are available to encode
some functions like sqrt that stands for the square root, dn for the normal
derivative with respect to one surface, or R for the Ricci scalar of a given met-
ric. When a quantity appears many times in the equations, it can be made
into a definition. Apart from the fact that it can simplify the writing of the
equations, it has the advantage that definitions are computed only when the
value of the variables change, and not each time they are encountered, thus
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resulting in a faster computation. When setting the equations, the user must
not only make sure they are correct but also that they give raise to as many
conditions as the number of unknowns, in order to get an invertible system.
This can be tricky at times, especially when different resolutions are used
in different regions of space. In some standard cases, member functions of
the Space class provide means to implement equations in the whole space
instead of passing them domain by domain.

Finally a solution of the system is sought, calling the member function
do newton, the required accuracy being passed as a parameter. At this point
KADATH verifies that the number of unknowns is consistent with the number
of equations before entering the Newton-Raphson loop. Once convergence is
achieved, the various data can be saved, manipulated, results printed, etc.

7. Test problems

In this section, four different problems are presented. The main goal
is to illustrate the ability of KADATH to deal with different and complicated
situations. The examples have been chosen to show various and different as-
pects of KADATH . Nevertheless, they are far from being merely test problems.
They all related to very contemporary physics. That being said, this paper
is not the place to extensively discuss physics and so explanations about this
are kept to the minimal level required for comprehension. Given the cur-
rent limitations of KADATH , the four problems have in common the fact that
they all are boundary value problems on a fixed and known geometry. The
results shown below were obtained by using Chebyshev polynomials. The re-
sults were roughly the same with Legendre polynomials, even if the observed
convergence seems to be slightly slower in this case.

Computations were conducted on a cluster of 10 quadcore bi-opterons
at 2.5 GHz. Each node has 16 Go of RAM and the cluster runs under
Linux. Under those conditions, the biggest Jacobian invertible has a size just
below 100, 000 and it takes 4 h to do the inversion. Most of the codes used
to compute the following results are available from the Codes/Par version

repository of KADATH .

7.1. Vortons

In classical field theory, some closed vortex loops can exist. Such loops
are stabilized either by twisting them, in which case one talks about knots,
or by centrifugal force when the vortex is spinning. This last case is called a
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vorton (see [23] for a review on this type of objects). In this section, vortons
are computed in the so-called Wittens theory [24]. In this model, super-
conducting cosmic strings are known to exist. They are, basically, straight
configuration of the fields. The idea behind vortons is to try to cut a piece of
a string, make it into a loop and try to stabilize it by giving it a spin. If this
idea dates back to [25, 26], it is only recently that the such solutions were
explicitly computed in [23].

From a mathematical point of view, vortons are described by two complex
scalar fields φ and σ. The vorton is computed by demanding that σ takes
the particular form

σ = Z exp [i (mϕ+ ωt)] (25)

where Z is a real function, m is the azimuthal winding number that con-
straints the topology of the vorton, ϕ is the angle around the axis of the loop
and ω is the angular velocity. No particular ansatz is assumed for the other
field that is described by its real and imaginary parts: φ = X + iY .

The geometry of the solution is such that the fields are axisymmetric.
Moreover, X and Z are symmetric with respect to the plane z = 0 and Y
is antisymmetric. Let us note that from the point of view of KADATH , Z is
not a scalar field but rather the harmonic m of a scalar field (i.e. Z cos (mϕ)
is the real scalar field). This has to be taken into account when setting the
appropriate spectral basis. This also changes the regularity conditions on the
axis, where Z must vanish, which would not be the case for a real scalar field
(see Sec. 3.4 for more details). Given the geometry, the problem is defined
on a polar space by the class Space polar (see Sec. 2.2).

Under those assumptions, the three unknown fields obey a set of three
elliptic equations:

∆X =

(

λφ

2

(

X2 + Y 2 − 1
)

+ γZ2

)

X (26)

∆Y =

(

λφ

2

(

X2 + Y 2 − 1
)

+ γZ2

)

Y (27)

∆mZ =

(

λσ

2

(

Z2 − η2σ
)

+ γ
(

X2 + Y 2
)

− ω2

)

Z (28)

where ∆m is the Laplacian of the mth-component of a scalar field, so that

∆mZ = ∆Z − m2Z

r2 sin2 θ
. This expression shows that Z must vanish on the

z-axis. At spatial infinity the fields are such that X = 1, Y = 0 and Z = 0.
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The equations are passed as such to KADATH . Being second order dif-
ferential equations, matching of the fields and of their normal derivatives is
performed at the boundaries between the various domains. The main diffi-
culty in finding solutions lies in the fact that the system involves many free
parameters λφ, λσ, γ, ησ, ω and m. It is believed that solutions only exist
in some parts of this huge parameter space. Another difficulty is related to
the existence of trivial solutions (like X = 1, Y = 0 and Z = 0 in the whole
space). If one does not start the solver from a good enough initial guess,
then the interesting solutions will be missed. For those reasons, it is quite
an achievement that the authors of [23] did identify an appropriate region of
the parameter space and were able to compute the associated vortons.

The results presented in this section aim at reproducing some of the
results obtained in [23] in the case m = 2. The other parameters are as
follows λφ = 41.12, λσ = 40, ησ = 1 and γ = 22.3. One configuration
computed in [23] is used as an initial guess and a sequence of configurations
rotating at different speeds is then constructed by slowly varying ω. The
precision reached by the code is asserted by computing the deviation of the
solutions with respect to some virial theorem. The virial error is defined as

1 − 3 (ω2N −E0)

E2

(see Eq. (6.159) of [23]). N , E0 and E2 are integrals of

the fields which explicit expressions are given by Eqs. (6.154) of [23]. The
virial error is shown in the left panel of Fig. 2, as a function of ω, for three
different resolutions. The convergence of the virial error is rapid, as expected
with spectral method. The error is below 10−5 in the whole range of ω, for
the highest resolution.

The right panel of Fig. 2 shows the total energy E an the Noether charge
Q of the vortons, as a function of ω, as defined by Eqs. (6.155) and (6.157) of
[23]. The results are consistent with Fig. 30 of [23]. For the low values of ω,
one is limited by the fact that the vortons are bigger and bigger. One would
need to use more domains to get to smaller ω. At the higher end, there seem
to be a transition from the vorton solutions to solutions for which Y = 0
in the whole space. This transition prevents the code from reaching as high
values of ω as in [23], for a yet unknown reason. Figure 3 shows contours
of constant values for the fields for ω = 0.85. Let us finally mention that
vortons with m = 1 were also successfully computed. From the numerical
point of view, they mainly differ from the m = 2 case from the fact that the
basis of decomposition for Z is different.
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Figure 2: Sequence of vortons with different ω. The other parameters are m = 2,
λφ = 41.12, λσ = 40, ησ = 1 and γ = 22.3. The left panel shows the virial error for three
different resolutions. The curves are labeled by the number of points in each dimension.
The right panel shows the total energy E and Noether charge Q along the same sequence.

7.2. Critical collapse

Critical collapse was first observed in [27] when computing the evolution of
a spherically symmetric massless scalar field in general relativity. In the weak
field regime the field disperses at infinity whereas, in the strong field regime, a
black hole is formed via gravitational collapse. Just at the threshold between
those two cases, another type of solution appears. It is a naked singularity
and is called the critical solution. It has many interesting properties and we
refer the reader to [28] for a review on this subject. The structure of the
critical solution for a scalar field collapse has been extensively studied, for
instance in [29, 30]. This section is devoted to the computation of the critical
solution by KADATH .

As stated in [30], the critical spacetime can be found as the solution of a
2-dimensional non-linear problem. Coordinates can be chosen such that one
spatial variable x goes from 0 to 1 and one periodic variable τ goes from 0 to
2π. τ is the time coordinate. From the geometrical point of view, the space
of interest is a cylinder. The relevant class in KADATH is called Space critic

and is described in detail in Sec. 2.4. In order to take into account some
symmetries at x = 0, this space is separated into two domains.

The solution involves four fields, two describing the matter U and V and,
two for the gravitational field, f and a. The fields have some symmetries
with respect to τ = π so that one can restrict τ to [0, π[. More precisely
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Figure 3: Fields X , Y and Z (from left to right) for ω = 0.85. The other parameters are
the same as in Fig. 2. The continuous (resp. dashed) lines show constant positive (resp.
negative) value of the fields.

a (τ + π) = a (τ) (idem for f) and U (τ + π) = −U (τ) (idem for V ). Some
symmetries are also present at x = 0 where the metric fields f and a are even
function. Some combinations of the matter field are also even and finite at
x = 0 : Π = (V + U) / (2x) and Ψ = (V − U) / (2x2).

In order to take the symmetry at x = 0 into account, different sets of
unknowns are used in different regions of space. In the inner domain, one
works with Π and Ψ and in the outer one with U and V . Doing so, the various
fields are expanded into the appropriate spectral basis of decomposition, as
described in Sec. 3.2.3.

In the outer domain, the equations are given by

xf,x =
(

a2 − 1
)

f (29)

x
(

a−2
)

,x
= 1−

(

1 + U2 + V 2
)

a−2 (30)

x (f + x)U,x = f
[(

1− a2
)

U + V
]

− 2π

∆
xU,τ (31)

x (f − x) V,x = f
[(

1− a2
)

V + U
]

+
2π

∆
xV,τ (32)

where ∆ is the period of the solution that will be discussed later.
In the inner domain, one gets

xf,x =
(

a2 − 1
)

f (33)

x
(

a−2
)

,x
= 1−

(

1 + 2x2Π2 + 2x4Ψ2
)

a−2 (34)

x
(

f 2 − x2
)

Π,x = −Π
(

f 2 − x2
)

+ f
(

1− a2
) (

fΠ+ x2Ψ
)

(35)
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+f
(

fΠ− x2Ψ
)

+
2π

∆
x2 (fΨ,τ +Π,τ )

x
(

f 2 − x2
)

Ψ,x = −2Ψ
(

f 2 − x2
)

+ f
(

1− a2
)

(fΨ+Π) (36)

+f (Π− fΨ) +
2π

∆

(

fΠ,τ + x2Ψ,τ

)

.

The equations are first order differential equations. The variable τ being
periodic, no boundary conditions is needed. The situation with respect to
x is more complicated because some of the factors in front of the derivative
vanish at the boundaries. The appropriate number of boundary conditions
must be determined by a precise examination of the equations.

Let us first turn to the variable a. On the side x = 1 of the cylinder,
Eq. (30) is not degenerated, so that it is treated in the standard way, that is
standard first order τ -method (see Sec. 4.1). At the inner boundary however,
Eq. (34) is degenerated and becomes a2 = 1. The equation has to be treated
by a τ -method of zeroth order (all the residual equations are kept). In a
sense the equation is its own boundary condition.

For the other metric field f , in the outer region, the situation is also the
standard one. In the inner part, Eq. (33) is also degenerated and becomes
f (a2 − 1) = 0. As previously seen, this condition is already accounted for by
the equation for a at x = 0. This implies that the degeneracy is not effective
and that Eq. (33) must be treated by a standard first order τ -method. So
the field f does require a boundary condition on one side of the cylinder. It
is physically motivated and simply is f (x = 1) = 1.

Given this value of f at the outer side, one of the equations for the matter
fields equation (36) is actually degenerated and equivalent to the regularity
condition (20) of [30] (the sign in [30] is faulted by a typo). On the inner
side equation (35) is degenerated but equivalent to f 2Π (1− a2) = 0 and is
already accounted for by the equation for a. The other matter equation (36)
is also degenerated and gives a true condition fΠ−3f 2Ψ+2π/∆fΠ,τ = 0. So,
concerning the matter fields, no additional boundary conditions are needed
for there are two degeneracy conditions (one on each side), for two fields.

As one is dealing with first order equations, the fields themselves must
be matched at the interface between the two domains. This study is slightly
technical but it ensures that the constructed global system of equations is
well-posed and invertible. The final situation is summarized in Tab. 2. Let
us mention that such complicated setting (non-trivial matchings, different
order in the τ -method...) can be easily encoded in KADATH .
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Table 2: Construction of a well-posed problem. The columns x = 0 and x = 1 summarize
the behavior of the equations at the boundaries. The columns labeled inner and outer
give the order of the associated τ -method. The matching conditions at the interface are
also given. More details about this can be found in the core of the text.

Field x = 0 inner matching outer x = 1
a dege. ⇒ a2 = 1 0th. a− = a+ 1st non dege.
f dege. ⇔ a2 = 1 1st f− = f+ 1st f = 1

matter Π : dege. ⇔ a2 = 1 For Π : 1st 2xΠ− = V + + U+ U : 1st U : non dege.
Ψ : dege. Ψ : 0th 2x2Ψ− = V + − U+ V : 0st V : dege.

Along with the field equations, there is also a global condition that con-
straints the value of ∆ and that demands that the mode corresponding to
cos (2τ) in the expansion of f vanishes at x = 0. This last condition falls
into the category of the integral equations discussed in Sec. 4.3. It is be-
lieved that the equations are very sensitive to the initial guess and that they
will fail to converge to the critical one if one starts too far from it. This is
the reason for using the solution computed by [30] as a starting point of the
Newton-Raphson iteration. The errors that appear when passing data from
one code to the other introduce enough numerical noise to make the loop do
a few iterations.

The precision of the code is assessed by comparing the value of the period
∆ to the one given by Eq. (58) of [30]. The relative difference between the
two is shown in the left panel of Fig. 4, as a function of the number of points
in each dimension. The convergence is satisfactory even though it is difficult
to state that the evanescent regime has been reached. Let us note that the
convergence of the solution is significantly slower than for other problems, an
accuracy of 10−8 being reached with as many as 96 points in both dimensions.
This is expected, given the strong gradients appearing in the fields. Those
gradients are responsible for a rather low decay of the coefficients of the
spectral expansions. This was already observed in [30] and can be seen in
their Fig. 8 and 9. As an illustration, some fields at both sides of the cylinder
are shown in the right panel of Fig. 4. This plot is the equivalent of Fig. 4
of [30], except for the definition of the coordinate τ . In [30], the temporal
coordinate τ goes from 0 to ∆, whereas in this work, τ/∆ is used so that our
coordinate goes from 0 to π, once the symmetry at half-period is taken into
account.
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Figure 4: The left panel shows the relative error in computing the period ∆. The exact
value is assumed to be given by Eq. (58) of [30]. The convergence is shown with respect
to the number of points in each dimension. The right panel shows the values of f (x = 0)
(continuous line), Ψ (x = 0) /300 (dotted line) and U (x = 1) (dash-dot line), as a function
of τ .

7.3. Binary black holes

There is a long history of works that aim at computing the structure
of spacetimes that contain a system of binary black holes. Amongst the
many reasons to study such systems, one will mention the fact that they
are known to be good emitters of gravitational waves and so are one of the
main target for the gravitational wave detectors currently in operation [31].
Binary systems have also a great interest in the context of galaxy formation.
Indeed, it is believed that nowadays galaxies have been formed by successful
mergers of smaller galaxies. When the merger occurs, the black holes present
at the center of the smaller galaxies will become bounded and form a binary
system [32].

Under the influence of gravitational radiation, two black holes will not
remain on closed orbits but rather spiral towards each other, until they merge
into a single object. This process occurs in the strong field regime of gravita-
tion and must be described in the context of general relativity. Most of the
simulations are performed in the 3+1 formalism where a splitting of space
and time is introduced [33]. The main effect of this splitting is to separate
Einstein’s equations into two sets: (i) the constraint equations that do not
involve time (ii) and the evolution equations that contains Dalembert type
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operators. Doing so, the simulation of a binary system proceeds in two sep-
arate steps. First, one needs to produce a initial configuration that must
satisfy the constraint equations and that represents the physics of interest
as accurately as possible. This is known as the initial data problem [34]. In
a second step the behavior of the fields at latter times is obtained by using
the evolution equations. Let us mention that if the constraint equations are
fulfilled at the initial time, they are verified at all time steps, if the evolution
equations are used properly.

In this section, one is interested in preparing an initial configuration that
represents two black holes in quasi-circular orbit along the same lines as in
[35]. Even if true circular orbits cannot exist due to gravitational radiation,
it is believed to be a rather good approximation, at least when the black holes
are relatively far apart. Technically this is done by imposing the existence
of an helical Killing vector (see for instance [36, 37] and references therein).
Another approximation usually done in this context is the so-called conformal
flatness approximation (see below for a precise definition). This has more to
do with the substantial mathematical simplification that results than with
any physical motivation. It was once believed that the conformal flatness
approximation would minimize the amount of spurious radiation in the data
sets but it turned out not to be the case. Nevertheless, the approximation
leads to a consistent mathematical problem, especially as far as the behaviors
of the fields at infinity are concerned [37].

In the 3+1 formalism, the 4-dimensional metric gµν that describes the
system is expressed in terms of purely spatial quantities. More precisely the
line element is given by

ds2 = gµνdx
µdxν = −

(

N2 −N iNi

)

dt2 + 2Nidtdx
i + γijdx

idxj (37)

where the Greek indices are 4-dimensional and run from 0 to 3 and the
Latin ones are purely spatial and go from 1 to 3. The 3+1 quantities that
describe the geometry are one scalar N the lapse, one vector N i the shift
(three independent functions) and one spatial metric γij (six independent
functions). The conformal flatness approximation states that the spatial
metric relates to the flat metric by a single scalar conformal factor Ψ. More
precisely one demands that

γij = Ψ4fij , (38)

where fij is the flat metric. This condition is only an approximation and it
is not believed to be exactly true.
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In this setting, the unknowns are the fields N , Ψ and N i. The associated
equations are obtained from Einstein equations by enforcing stationarity (i.e.
the time derivative are set to zero). It gives a set of five elliptic equations:

DiD
iN = −2

DiΨDiN

Ψ
+NΨ4AijA

ij (39)

DiD
iΨ = −Ψ5

8
AijA

ij (40)

DjD
jN i +

1

3
DiDjN

j = 2Aij

(

DjN − 6N
DjΨ

Ψ

)

(41)

where D is the covariant derivative with respect to the flat metric. fij is
also used to raise and lower indices of tensors. Aij is the conformal extrinsic
curvature tensor and represents the way the three metric is embedded in the
4-dimensional geometry. From the mathematical point of view it is defined
as being

Aij =
1

2N

(

DiN j +DjN i − 2

3
DkN

kf ij

)

. (42)

The elliptic equations must be supplemented by appropriate boundary
conditions. At infinity, it is demanded that flat spacetime is recovered which
implies that

N = 1 , N i = 0 and Ψ = 1 when r → ∞. (43)

The inner boundary conditions are enforced on two spheres that represent
the black holes themselves. They are basically obtained by demanding that
those two spheres are apparent horizons in equilibrium (see [38] for a review).
Those inner boundary conditions enforce the presence and the physical prop-
erties of the holes. On the sphere Sa (a = 1 or 2), one gets

N |
Sa

= n0 (44)

∂Ψ

∂r
+

Ψ

2r

∣

∣

∣

∣

Sa

= −Ψ3

4
Aijs

i
as

j
a (45)

N i
∣

∣

Sa

=
n0

Ψ2
sia + ΩM i

a + Ωam
i
a. (46)

Equation (44) is just a choice of time coordinate on the spheres and n0 is
a constant (in this section one takes n0 = 0.1). Equation (45) translates the
fact that the spheres are apparent horizons. sia is the unit vector normal to
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the sphere which reads (xa/ra, ya/ra, za/ra) in Cartesian coordinates centered
on the sphere a. Equation (46) states that the spheres are in equilibrium and
also contains information about the state of rotation of the holes. Ω is the
orbital velocity of the system and M i

a the constant vector (0, Xa, 0) where
Xa is the coordinate distance between the center of mass and the center of
the hole a. This part of the boundary condition accounts for the orbital
motion of the holes. Ωa is the local rotation rate of the black hole a and it is
associated to the local vector mi

a = (−ya, xa, 0). This last part accounts for
the spins of the objects.

Ω and the two Ωa are global unknowns that must be constrained by
additional equations, as discussed in Sec. 4.3. The proper value of the
orbital velocity is obtained by demanding that two integral quantities, the
Komar mass and the ADM mass are equal. This is closely linked to a virial
theorem, as discussed in [37].The two masses are defined as surface integrals
at infinity

MKomar =
1

4π

∮

∞

DiNdSi (47)

MADM =
−1

2π

∮

∞

DiΨdSi. (48)

In this work, the local rotation rates are determined by demanding that the
black holes are not rotating and so that their spin Sa vanish. The individual
spins can be defined by integrals on the spheres themselves

Sa =
1

8π

∮

S

Ψ6Aijm
i
adS

j . (49)

The total angular momentum is defined by a similar integral, taken at infinity,
and reads

J =
1

8π

∮

∞

Aijm
idSj, (50)

where mi = (−Y,X, 0). X and Y are the Cartesian coordinates with respect
to the center of mass.

This problem has been solved in the context of KADATH by using the bi-
spherical space implemented by the class Space bispheric (see Sec. 2.3).
The input parameters are the radii of the spheres (taken equal in this partic-
ular case) and their separation. A Cartesian tensorial basis of decomposition
is used. The unknown are the fields N , Ψ and N i = (Nx, Ny, N z) and the
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global quantities Ω and Ωa. Aij is defined as being a definition in terms of
the unknowns (given by Eq. (42)). The various vectors appearing in the
equations, like the mi are passed to KADATH as constants. The equations are
given by Eqs. (39, 40, 41) and the boundary conditions enforced on both
the spheres and at infinity. Matching of the fields and their normal deriva-
tives at the boundaries between the domains is imposed. The three integral
equations constraining the global quantities are also passed to the solver.

Contrary to the other cases presented in this paper, the binary black hole
configurations are really three-dimensional. This implies that the computa-
tional task is somewhat harder. Configurations with four different resolutions
have been computed with 9, 11, 13 and 15 points, respectively, in all dimen-
sions and in all the domains. Let us mention that the size of the Jacobian for
the higher resolution is just less than 100,000. Configurations for five differ-
ent separations are computed. It appears that the values of the fields depend
strongly from the value of Ω which must be obtained with a good accuracy.
Such accuracy can be measured by looking at the convergence of Ω as the
function of the number of points as in Fig. 5. The convergence is shown by
taking the difference between the value of Ω found for given resolution and
the one for the best available resolution (15 points in each dimension in this
case).

The physical quantities are usually given in their adimensional form. This
can be done by making use of the area mass of the black holes: m =

√

A/16π.
A is the area of the hole which is given by an integral on the horizon (i.e.
the sphere) :

A =

∫

S

Ψ4dS. (51)

The area mass of the system is simply M = m1+m2 and is constant along a
sequence of varying separation (see for instance [39]). It follows that M is the
total mass of the system when the black holes are infinitely separated. One
can then define the binding energy of the system as Eb = MADM −M . The
reduced mass is defined in the usual manner and in the case of equal mass
black holes is given by µ = M/4. The adimensional binding energy Eb/µ
and the adimensional total angular momentum J/Mµ are shown on Fig. 6,
as a function of the adimensional orbital velocity MΩ. The values obtained
by KADATH are compared to the data from [35]. The agreement is very good,
especially considering that the variations of J (resp. Eb) are small compared
to the values of J (resp MADM) itself.
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Figure 5: Convergence of Ω as a function of resolution (compared to the best available
value obtained with 15 points in each dimensions). The convergence is somewhat faster
for small separations.

Finally, contours of constant values of some fields are shown in Fig. 7, in
the orbital plane (the plane z = 0) for a separation of 12. The locations of
the spheres are clearly visible.

7.4. Kerr problem

In this section, one aims at recovering the exact solution for a single
stationary rotating black hole, along the lines of [40]. It is called the Kerr
solution and is known to be analytic, at least for some choices of coordinates
[41]. This is however not the case for the formalism that is used here. The
starting point is the same as the one used in the binary system case in Sec.
7.3. An orthonormal spherical tensorial basis of decomposition is used. Doing
so and for this problem, all the fields will independent of ϕ, thus recovering
the fact that the solution is axisymmetric.

In this section, and as opposed to what is done in Sec. 7.3, one aims
at recovering an exact solution and so one needs to remove the conformal
flatness approximation. Indeed, even for a single black hole, it is known that
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Figure 6: Binding energy (left panel) and total angular momentum (right panel), as a
function of MΩ. The circles denote the values obtained by KADATH and the solid curves
are data taken from [35].

their exists no choice of coordinates for which the conformal metric is flat
[42]. That being said, the unknowns are the same as in Sec. 7.3 : two scalars
the lapse N and the conformal factor Ψ and one vector, the shift N i, to
which one must add the conformal spatial metric γ̃ij itself. The metric is a
rank-2 symmetric tensor and so has six different components. By definition
of the conformal factor, γ̃ij is such that its determinant is one. As will be
seen in the following, the conformal metric still contains some gauge degrees
of freedom.

The constraint equations along with the trace of the evolution ones can
be written as

D̃iD̃
iN = −2

D̃iΨD̃iN

Ψ
+NΨ4AijA

ij (52)

R̃− 8
D̃iD̃

iΨ

Ψ
= Ψ4AijA

ij (53)

D̃jAij = −6Aij

D̃jΨ

Ψ
(54)

where Aij is the extrinsic curvature tensor which is given by

Aij =
1

2N

(

D̃iN j + D̃jN i − 2

3
D̃kN

kγ̃ij

)

(55)
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Figure 7: Values of the lapse function (left panel), the conformal factor (center panel)
and the component Ny of the shift (right panel), in the orbital plane z = 0. The coordi-
nate separation is 12. The continuous (resp. dashed) lines show constant positive (resp.
negative) value of the fields.

where D̃ denotes the covariant derivative associated to γ̃ij and R̃ is its scalar
Ricci tensor. Equations (52) to (55) are the equivalent of Eqs. (39) to (42),
in the non-conformally flat case.

At infinity one demands that flat spacetime is recovered which gives N =
1, Ψ = 1 and N i = 0, as in Sec. 7.3. The inner boundary conditions are
obtained in the same manner as in the binary case except that they must be
written with a general (non-flat) spatial three metric. One then gets, on the
sphere S

N |
S

= n0 (56)

4s̃i
D̃iΨ

Ψ
+ D̃is̃

i

∣

∣

∣

∣

∣

S

= −Ψ2Aij s̃
is̃j (57)

N i
∣

∣

S
=

n0

Ψ2
s̃i + Ωmi. (58)

Equations (56) to (58) are the equivalent of Eqs. (44) to (46), in the non-
conformally flat case and for a single black hole. s̃ is the unit outgoing
normal to the sphere, with respect to the conformal metric and Ω the rotation
parameter of the hole.

The evolution equations, written in the stationary case, can be seen as
equations for the spatial metric and they are

D̃iD̃jN − 2
D̃iND̃jΨ

Ψ
− 2

D̃jND̃iΨ

Ψ
+ 2γ̃ij

D̃kND̃kΨ

Ψ
−NR̃ij − 6N

D̃iΨD̃jΨ

Ψ2
(59)
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+2N
D̃iD̃jΨ

Ψ
+ 2Nγ̃ij

D̃kD̃
kΨ

Ψ
+ 2Nγ̃ij

D̃kΨD̃kΨ

Ψ2
+ 2NΨ4AikA

k
j

−Ψ4

(

4AijN
k D̃kΨ

Ψ
+NkD̃kAij + AikD̃jN

k + AjkD̃iN
k

)

= 0 ,

where R̃ij is the Ricci curvature of γ̃ij. It is the curvature that contains
the second order operators in terms of the metric (i.e. the expression of R̃ij

involves terms that look like ∆ (γ̃ij)).
Equations (59) are obviously symmetric and so represent six components.

However, if used as such, they do not lead to a well-posed problem because
they are not all independent. The construction of a well-behaved problem is
rather tricky in this case and is related to both the inner conditions for the
spatial metric and the choice of gauge.

The problem of knowing what boundary conditions must be enforced on
the metric on the horizon is a very contemporary one and several proposals
have been made in the literature. However only one has been successfully
applied so far and it is known as the no-boundary treatment [40]. The basic
idea is to assume that Eqs. (59) are somewhat degenerate on the horizon
(like some equations of Sec. 7.2) and so that they require less boundary
conditions. If the degeneracy is not strictly demonstrated, there are some
good reasons to believe that it is true, at least at the first order (see section
IV-B of [40]). However the code used in [40] does not use Eqs. (59) as such
but a variation of them that aims at imposing that the spatial metric fulfills
a particular gauge known as the Dirac gauge. This gauge can be written as

Diγ̃
ij = 0, (60)

where D denotes the covariant derivative with respect to the flat metric. The
gauge is used to simplify the explicit expression of R̃ij .

When the full set of Eqs. (59) is used, a full no-boundary treatment
leads to a non-invertible system of equations because the gauge has to be
imposed at some point. The idea is to use Eq. (60), or at least some part of
it, as a boundary condition for the metric. From the numerical experiments
conducted with KADATH , it is found that a way of recovering the Kerr space-
time is to use only the component θ of Eq. (60) as a boundary condition
for the component (θ, r) of Eqs. (59). The other components of Eqs. (59)
are treated as degenerate without any boundary condition. It is somewhat
surprising to observe that imposing only one component of the Dirac gauge
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and only on the horizon is sufficient to obtain the full gauge in whole space,
as will be checked a posteriori. Finally one has to note that the conformal
metric γ̃ij must be, by definition of Ψ, such that its determinant is unity:
det (γ̃) = 1. This is an additional equation on the components of the metric
and it is used in place of the (ϕ, ϕ) component of Eqs. (59).

To summarize the situation, the equations that one uses when solving
this problem in the context of KADATH are, as far as the metric is concerned:

• the (r, r), (r, ϕ), (θ, θ) and (θ, ϕ) components of Eq. (59), without any
boundary conditions near the horizon (i.e. a τ -method of first order is
used in the inner domain).

• the (r, θ) component of Eq. (59) is used in the standard way, with the
component θ of Eq. (60) as an inner boundary condition.

• the condition on the determinant of the metric provides the last equa-
tion. As it contains no derivative, it is solved by a τ -method of zeroth
order.

At spatial infinity, one demands that the metric goes to the flat one, which is
possible only in the single black hole case (for a binary system, gravitational
waves would probably forbid this).

The reason why the setting described above leads to a system of equations
that behaves correctly and why it is the only combination that does so, at
least in the context of this paper, is currently not known. Further studies
and deeper mathematical understanding of the system is probably required
but beyond the scope of this work.

Using a spherical space, those equations have been solved using four dif-
ferent resolutions (9, 11, 13 and 17 points in each dimension). Sequences of
black holes rotating at different values of Ω have been obtained. One single
spherical shell is used and the value of n0 is set to 0.5 in all the cases (see
Eq.(56)). The results are presented as a function of the usual Kerr parame-
ter J/M2 = a/M where J is the total angular momentum and M the ADM
mass of the system. Both quantities are computed by surface integrals at
infinity (see Sec. 7.3). The value of the Kerr parameter as a function of the
adimensional quantity MΩ is plotted in Fig. 8. A value of a/M ≈ 0.91 is
reached. This value is lower for lower resolutions as can be seen in Fig. 9.

Two error diagnostics are shown in Fig. 9. On the left panel the residual
error on the full set of equations is plotted. By full set, one means not only
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Figure 8: Value of the Kerr parameter as a function MΩ for the high resolution configu-
rations. The values for lower resolutions lies almost exactly on the same curve.

the equations used to solve the system but also the ones that were forgotten.
In particular one can think of the (ϕ, ϕ) component of Eq. (59) or the Dirac
Gauge in whole space. This is a very strong test and it shows, as already
stated, that the Dirac gauge is enforced in the whole space by only its θ
component on the horizon. The right panel of Fig. 9 shows the relative
difference between the ADM and Komar masses (as defined by Eqs. (47)
and (48)). Like in the binary case, those two quantities should be equal.
However, it is never directly enforced in the single black hole case and so
gives a check of the precision of the code. As stated in Sec.7.3, this is related
to a virial theorem [37]. Both plots in Fig. 9 are shown as a function of a/M
and for the four different resolutions. The errors decay as the resolution
increases and are higher for higher values of the Kerr parameter. This is
probably related to the fact that the fields have stronger gradients when
a/M increases and so need more points to be accurately described. This
effect is also observed in [40]. Some examples of the fields, for a/M ≈ 0.91
are shown in Fig. 10.
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Figure 9: Precision reached by the code as a function of a/M , for the four different
resolutions. The left panel shows the maximal error on the full set of equations and the
right one the relative difference between the Komar and ADM masses. The curves are
labeled by the number of points in each dimensions.

8. Perspectives

This presentation of the KADATH library was intended to convince the
physicists that it can be a valuable tool in the study of a wide class of
problems where partial differential equations are involved. Several domain
decompositions have been presented (Sec. 2) and the associated spectral
basis exhibited (Sec. 3). The discretization of field equations by means of
the τ and Galerkin methods have been discussed in Sec. 4 and the solution
of the resulting non-linear system explained in Sec. 5. The construction of a
code that uses the KADATH library is briefly sketched in Sec. 6.

The resolution of four different problems has also been presented. Solu-
tion called vortons have been computed in Sec. 7.1, using a standard KADATH

setting with spherical domains. In Sec. 7.2 the computation of a critic solu-
tion in the context of core collapse has been presented. This case illustrates
the use of specialized domains and different variables in different regions of
space. Section 7.3 explained the study of spacetimes containing two black
holes. It makes use of the bispherical coordinates implemented in KADATH .
The ability of the library to deal with intricate sets of equations is clearly
illustrated by Sec. 7.4, where the Kerr black hole is recovered, in the 3+1
formalism of general relativity.
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Figure 10: Values of the lapse function (left panel), the component N r of the shift (center
panel) and of the component γ̃rr of the spatial metric. The associated value of a/M is
about 0.91. The continuous (resp. dashed) lines show constant positive (resp. negative)
value of the fields.

Even if KADATH is currently in a production state, where it can be used
to study new and interesting physics, there are still some developments that
come to mind. One can for instance think about implementing new geome-
tries like true cylindrical coordinates (as opposed to the specialized ones used
in Sec. 7.2) or deformed spheres. Such spheres have been extensively used in
the LORENE library to match the physical surfaces of deformed objects, like
rotating neutron stars. This case is in fact a situation where the surface of
the domains in not known beforehand but must be determined by the code.
To do so, there will be need to have some additional unknowns that would
describe the shape of the various domains. Those unknowns would be associ-
ated to additional equations constraining the shapes. In the case of neutron
stars, one would for instance demand that the surface of the object is the
surface on which the specific enthalpy vanishes. Given those techniques have
already been successfully applied in many codes, they should work properly
with KADATH . Geometries with more than three spatial dimensions could
also be studied, in order to simulate things like brane worlds. Needless to
say that in this last case, the resulting size of the system would be quite big
and possibly difficult to handle.

It would be also interesting to test the behavior of KADATH on much bigger
clusters than the one used so far. Several such clusters (with much more
than 1000 nodes) are available to the scientific community and there is hope
to install KADATH on such machines. Another way to deal with very big
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matrices would be to use iterative techniques to invert the Jacobian. As
stated in Sec. 5.3, this solution is currently not retained in KADATH because of
several difficulties (lack of generality and absence of simple preconditionning
techniques). Nevertheless, a much more detailed study of those algorithms
should be undertaken. A successful use of the iterative techniques would
potentially result in a dramatic decrease of the resources needed to handle
the Jacobian, thus making the library easier to use, especially in the three-
dimensional case.

A major extension of KADATH would be the possibility to perform time
evolutions. Even when spectral methods are used to discretize space, time is
usually dealt with by means of finite difference schemes. One of the reason
for this lies in the fact that the interval of interesting time is usually not
known in advance. Also the discretization with respect to time is usually
believed to lead to smaller errors that the spatial ones, thus making the use
of temporal spectral methods less appealing. If those mixed schemes (finite
difference in time and spectral in space), could be almost directly used with
KADATH , it is not clear what this will improve with respect to already existing
codes. Indeed, for free evolutions (like in [43]) for which the only equations
solved are hyperbolic ones, the whole KADATH machinery would not be used
but to compute the sources. On the other hand, for constrained evolutions
(like in [44]), one would need to solve elliptic equations at each time-step,
which would probably be impracticable for three-dimensional problems with
KADATH . The library however, could be very useful in investigating schemes
that are fully spectral, in time as in space. Results of this type are very
few and are only available for very simple systems (see [45] for an example
with only one spatial dimension). For such fully spectral codes, time is
just another coordinate that is treated in the same manner as the spatial
dimensions. If this could in theory be solved by KADATH , there is a long road
to compute complicated system evolutions in this framework (like the binary
black holes for instance). Preliminary tests, using systems with symmetries
(like rotating single objects or pure gravitational waves), would be in order
to check whether such computations are doable or not.

Obviously all the work done would be quite pointless without applications
to real physics problems and it is the main axis of future work. There are
plans to apply the library to the computation of solutions in gauge field
theories, like monopoles with or without gravity, vortons in more complicated
theories than the one exposed in Sec. 7.1. In this area of physics, the field
of application is huge. KADATH has been designed especially with this kind
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of things in mind and it is believed that it will be very efficient in findings
those solutions.

Another area of application is the one of general relativity, especially in
the context of compact objects, black holes or neutrons stars. One of the
main application would be the computation of binary black holes configu-
rations without the conformal flatness approximation. In a sense it would
be a merging of Sec. 7.3 and 7.4. But there are some conceptual difficul-
ties coming from the presence of outgoing gravitational waves in this case.
The applications of KADATH to cases containing neutron stars would also be
interesting. If the gravitational field is usually weaker than for black holes
and so easier to handle, the inclusion of matter can cause many additional
difficulties.

In the hopefully long life of KADATH , there is hope that it will also be
applied to problems that are not yet known to the author. This would fully
test the modularity of KADATH . Should this be successful, then KADATH would
have reached its main objective.
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