26 research outputs found

    Agile and Versatile Robot Locomotion via Kernel-based Residual Learning

    Get PDF
    This work developed a kernel-based residual learning framework for quadrupedal robotic locomotion. Initially, a kernel neural network is trained with data collected from an MPC controller. Alongside a frozen kernel network, a residual controller network is trained via reinforcement learning to acquire generalized locomotion skills and resilience against external perturbations. With this proposed framework, a robust quadrupedal locomotion controller is learned with high sample efficiency and controllability, providing omnidirectional locomotion at continuous velocities. Its versatility and robustness are validated on unseen terrains that the expert MPC controller fails to traverse. Furthermore, the learned kernel can produce a range of functional locomotion behaviors and can generalize to unseen gaits

    Neural Learning of Stable Dynamical Systems based on Data-Driven Lyapunov Candidates

    Get PDF
    Neumann K, Lemme A, Steil JJ. Neural Learning of Stable Dynamical Systems based on Data-Driven Lyapunov Candidates. Presented at the Int. Conference Intelligent Robotics and Systems, Tokio

    Discovery and recognition of motion primitives in human activities

    Get PDF
    We present a novel framework for the automatic discovery and recognition of motion primitives in videos of human activities. Given the 3D pose of a human in a video, human motion primitives are discovered by optimizing the `motion flux', a quantity which captures the motion variation of a group of skeletal joints. A normalization of the primitives is proposed in order to make them invariant with respect to a subject anatomical variations and data sampling rate. The discovered primitives are unknown and unlabeled and are unsupervisedly collected into classes via a hierarchical non-parametric Bayes mixture model. Once classes are determined and labeled they are further analyzed for establishing models for recognizing discovered primitives. Each primitive model is defined by a set of learned parameters. Given new video data and given the estimated pose of the subject appearing on the video, the motion is segmented into primitives, which are recognized with a probability given according to the parameters of the learned models. Using our framework we build a publicly available dataset of human motion primitives, using sequences taken from well-known motion capture datasets. We expect that our framework, by providing an objective way for discovering and categorizing human motion, will be a useful tool in numerous research fields including video analysis, human inspired motion generation, learning by demonstration, intuitive human-robot interaction, and human behavior analysis

    A probabilistic framework for learning geometry-based robot manipulation skills

    Get PDF
    Programming robots to perform complex manipulation tasks is difficult because many tasks require sophisticated controllers that may rely on data such as manipulability ellipsoids, stiffness/damping and inertia matrices. Such data are naturally represented as Symmetric Positive Definite (SPD) matrices to capture specific geometric characteristics of the data, which increases the complexity of hard-coding them. To alleviate this difficulty, the Learning from Demonstration (LfD) paradigm can be used in order to learn robot manipulation skills with specific geometric constraints encapsulated in SPD matrices. Learned skills often need to be adapted when they are applied to new situations. While existing techniques can adapt Cartesian and joint space trajectories described by various desired points, the adaptation of motion skills encapsulated in SPD matrices remains an open problem. In this paper, we introduce a new LfD framework that can learn robot manipulation skills encapsulated in SPD matrices from expert demonstrations and adapt them to new situations defined by new start-, via- and end-matrices. The proposed approach leverages Kernelized Movement Primitives (KMPs) to generate SPD-based robot manipulation skills that smoothly adapt the demonstrations to conform to new constraints. We validate the proposed framework using a couple of simulations in addition to a real experiment scenario

    Macrobend optical sensing for pose measurement in soft robot arms

    Get PDF
    This paper introduces a pose-sensing system for soft robot arms integrating a set of macrobend stretch sensors. The macrobend sensory design in this study consists of optical fibres and is based on the notion that bending an optical fibre modulates the intensity of the light transmitted through the fibre. This sensing method is capable of measuring bending, elongation and compression in soft continuum robots and is also applicable to wearable sensing technologies, e.g. pose sensing in the wrist joint of a human hand. In our arrangement, applied to a cylindrical soft robot arm, the optical fibres for macrobend sensing originate from the base, extend to the tip of the arm, and then loop back to the base. The connectors that link the fibres to the necessary opto-electronics are all placed at the base of the arm, resulting in a simplified overall design. The ability of this custom macrobend stretch sensor to flexibly adapt its configuration allows preserving the inherent softness and compliance of the robot which it is installed on. The macrobend sensing system is immune to electrical noise and magnetic fields, is safe (because no electricity is needed at the sensing site), and is suitable for modular implementation in multi-link soft continuum robotic arms. The measurable light outputs of the proposed stretch sensor vary due to bend-induced light attenuation (macrobend loss), which is a function of the fibre bend radius as well as the number of repeated turns. The experimental study conducted as part of this research revealed that the chosen bend radius has a far greater impact on the measured light intensity values than the number of turns (if greater than five). Taking into account that the bend radius is the only significantly influencing design parameter, the macrobend stretch sensors were developed to create a practical solution to the pose sensing in soft continuum robot arms. Henceforward, the proposed sensing design was benchmarked against an electromagnetic tracking system (NDI Aurora) for validation

    A Robotic Torso Joint With Adjustable Linear Spring Mechanism for Natural Dynamic Motions in a Differential-Elastic Arrangement

    Get PDF
    To be operated in unknown or complex environments, modern robots have to fulfill various challenging criteria. Among them, one finds requirements such as a high level of robustness to withstand impacts and the capabilities to physically interact in a safe manner. One way to achieve that is to integrate variable-stiffness actuators into the systems, enabling compliant behavior through the elastic components and providing the additional adaptability of the impedance. Here, we introduce a novel adjustable linear stiffness joint mounted in a differential-elastic arrangement. The mechanism is integrated into the anthropomorphic upper body of the DLR David robot and responsible for the spinal rotation. Consequently, the actuator is crucial for the overall workspace of the robot and the realization of energy-efficient natural motions such as in dynamic running. The proposed hardware setup is experimentally validated in terms of the linearity in the spring characteristics, intrinsic damping, the excitation of resonance frequencies, and the ability to alter these resonance frequencies through stiffness adaptation during dynamic motions
    corecore