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Agile and Versatile Robot Locomotion via Kernel-based Residual
Learning

Milo Carroll1, Zhaocheng Liu1, Mohammadreza Kasaei1 and Zhibin Li2

Abstract— This work developed a kernel-based residual
learning framework for quadrupedal robotic locomotion. Ini-
tially, a kernel neural network is trained with data collected
from an MPC controller. Alongside a frozen kernel network,
a residual controller network is trained using reinforcement
learning to acquire generalized locomotion skills and robust-
ness against external perturbations. The proposed framework
successfully learns a robust quadrupedal locomotion controller
with high sample efficiency and controllability, which can
provide omnidirectional locomotion at continuous velocities. We
validated its versatility and robustness on unseen terrains that
the expert MPC controller failed to traverse. Furthermore, the
learned kernel can produce a range of functional locomotion
behaviors and can generalize to unseen gaits.

I. INTRODUCTION

The versatility of legged locomotion exceeds other forms,
such as wheeled locomotion, which requires continuous
ground support and cannot feasibly adapt to challenging
terrains [1], [2]. While quadrupedal animals access the most
remote locations by exploring terrains that are never seen
before [3], other forms of robots usually would fail to do so.

Traditional optimisation-based controllers perform well in
challenging terrains [4], [5], [6], [7]. However, due to high
computation demands, they are prone to external perturba-
tions and large model errors [3], [8]. Recently, Deep Rein-
forcement Learning (DRL) methods have resulted in many
robust locomotion controllers that operate at much higher
frequencies enabling higher resiliency against errors and
perturbations. However, RL-based controllers usually require
carefully designed reward functions and excessive training
data to produce an efficient controller with natural gaits [9],
[10], [11], [12]. Additionally, with the disagreement between
physics simulators and the real world, DRL controllers also
face the sim-to-real gap when testing on a real robot [13].

Many legged animals start walking shortly after birth [14]
due to pre-developed neural circuits, which are refined
rapidly to acquire expert skills. Inspired by this, Residual
learning (ResL) is introduced for training RL agents only to
adapt a prior control behavior, quickly learning robust and
natural legged locomotion [15], [16], [17], [18], [19]. ResL
methods can be grouped by the approach of providing the
control priors: library-based, controller-based, and learning-
based methods, of which have emerged chronologically. We
break these down in the following subsections.
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A. Residual Learning (ResL) Methods

Library-based references. These methods use pre-defined
trajectory loops, which are static and can be quired to
provide references [17], [18]. They have been shown to
produce robust and versatile locomotion in a sample efficient
manner requiring less than 10M timesteps to converge, only
requiring a library consisting of a single loop [17]. Improved
velocity control can be achieved with a gait library providing
trajectories queried by the target velocity. Yet, this can
only provide priors for discrete velocities. Thus continuous
velocity control requires the agent to work against the prior
rather than working with it.

Controller-based references. These methods leverage ex-
isting expert controllers to provide the priors within a
ResL framework, [19] and [20], using MPC and CPG-based
controllers, respectively. This is beneficial, as the expert
controller provides omnidirectional locomotion priors with
continuous velocity control. However, as the controllers are
adaptive to the robots state, the residual agent must learn
to model how these controllers respond, thus making the
RL problem considerably more challenging. This is further
reflected in the sample efficiency, with [19] and [20] both
requiring over 100M training timesteps to converge – con-
siderably more than the library-based methods.

Learning references. Learning has been incorporated into
the reference generation process in various ways [21], [22],
[23]. One approach uses a linear layer to adapt the trajec-
tories produced by a CPG controller [21], producing more
suitable trajectory priors for specific terrains. In [23], a
kernel is learned using a conditional variational auto-encoder
(cVAE [24]) from a motion database. The method provides
the desired omnidirectional locomotion, velocity control, and
versatility. Nevertheless, the sample efficiency of the method
remains weak (200M). When priors are stochastic [23] or
adaptive [19], [20], poor sample efficiency emerges. Thus,
here is an identified gap to achieve sample efficiency similar
to library-based methods and functionality comparable to
controller-based methods, in terms of generating omnidirec-
tional priors that are deterministic, non-adaptive, and provide
continuous velocity control.

B. Learning Trajectory-based Controllers

Kinematic Motion Primitives (KMPs) [25] are used for
developing data-driven locomotion controllers [26], but they
produce static gaits and have no adaption, e.g. walking at
continuous target velocities. Similar controllability problems
exist in Dynamic Movement Primitives (DMPs) [27], [28],
[29]. Although, a trained DMP’s hyper-paramters can be
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Fig. 1: Overview of the proposed multi-stage robot locomotion framework, where the red components represent trainable
modules, and blue components represent fixed modules.

tuned to adjust amplitude, frequency, and offset of the trajec-
tories, showing potential for adaptive control. FastMimic [30]
exploits this, optimizing DMPs fitted to retargeted motion
capture data, demonstrating rapid imitation learning on a
physical robot [31].

Discriminative Neural Networks (NN) are frequently used
in trajectory prediction tasks but rarely within the locomotion
domain. In [32], an auto-encoder has been used to reconstruct
the robot’s state from a three-dimensional latent encoding;
Given the reconstructed states, they can execute trajectory-
based control. At inference time, [32] produce locomotion
by injecting time dependant oscillatory latents (∈ [0, 1]) into
the decoder, enabling the generation of unseen gait patterns
but not locomotion. In [33], a fully connected NN has been
trained to predict trajectories given the robots’ state. Despite
achieving a low validation loss, functional locomotion is
not observed due to the exclusion of time-dependent inputs.
However, the model was trained to seed the NN of an RL
agent, where functionality was not the primary concern.
Generative models recently proposed have shown greater
effectiveness. In [34], a cVAE has been used to develop a
controller capable of navigating obstacles, gaps, and other
challenging terrains. VAE-Loco [35] uses a disentangled
VAE [36] for trajectory prediction, producing an omnidirec-
tional controller that controls the step height, frequency, and
stance duration. However, as these methods are stochastic,
they are not considered as a candidate solution.

In this paper, we approach the problem by providing de-
terministic, controllable, and learned priors, and thus bridge
the gaps described in the aforementioned three ResL groups.
Our core contribution is a novel ResL framework that is both
sample efficient and highly controllable, providing omnidi-
rectional locomotion at continuous velocities. Moreover, our
framework is validated to be more robust and versatile than
optimization-based controllers, and demonstrates consider-
ably better performance in navigating across highly chal-
lenging terrains and robust responses to large perturbations.

The remainder of this paper is organized as follows:
Section II presents the proposed methodology. In Section III,
a set of simulation environments for training and evaluating
the framework will be designed. Following, Section IV

conducts experiments to evaluate the performance of the
proposed approach, discusses the findings, and compares the
framework to other approaches. Finally, Section V concludes
the core findings, weaknesses, and future research directions.

II. METHODOLOGY

The locomotion framework proposed here enables om-
nidirectional locomotion, and demonstrates agile and ver-
satile navigation across a broad range of unseen terrains.
Given a target location, the controller must autonomously
navigate a robot across challenging terrains, such that the
distance Dtarget between the robot’s position and the target
is less than a minimum threshold Dmin; maximizing the
targets reached within a time limit. The following subsection
presents a overview of our framework, and describes the non-
parametric modules followed by technical details of control
priors and the residual learning formulation.

A. Overview of the Proposed Architecture

The overall architecture of the proposed framework is
depicted in Fig. 1. As shown, it contains a kernel, a residual
RL agent, and a PD controller. The kernel is an MLP trained
to replicate the trajectories produced by a model-based MPC
controller. Given a set of velocity commands, it outputs foot
target positions in cartesian space relative to the robot’s
base. The RL agent learns to generate residual positional
trajectories, learning the robot’s dynamics and skills, such
as balance recovery, providing agility and versatility to the
framework. It produces foot target position deltas, summed
with the kernel output to retrieve the final targets, as shown to
be most effective by [18]. The final foot target positions are
converted into target joint angles using inverse-kinematics.
The PD controller is responsible for generating the applied
joint torques to realize the target joint angles.

B. Analytical Components

Command Generator: We introduce a Command Gerner-
ator module that generates X-Y and yaw velocity commands,
given the robot’s current location, posbase, and orientation,
ornbase, for chasing after a randomly sampled target lo-
cation, postarget. The commands update at a frequency of



20 hz, with a maximum delta of ±0.005. Velocity commands
are constrained with in the range X:±0.5, Y: ±0.2, Yaw:
±π/4.

Gait Generator: The gait generator, inspired by [31] and
[37], produces a contact schedule according the internal pa-
rameters: leg phases ϕ1:4 ∈ (0, 1], initial phases θ1:4 ∈ (0, 1],
swing ratio rswing ∈ (0, 1], and stance duration τstance.
ϕ1:4 ∈ (0, 1] are updated at each time-step (200hz). Step
cycles consist of two states: stance (ϕi > rswing), when the
feet are in contact with the ground, and swing (ϕi ≤ rswing)
when not. Given the initial phases and the current time, we
calculate the current phases:

τswing = τstance/(1− rswing)rswing, (1)
τstep = τstance + τswing, (2)

ϕi = θi + (τ/τstep) mod 1. (3)

Different gaits are mainly defined by θ1:4, which deter-
mine the coordination between legs. When using the MPC
controller [31], τstance and rswing must be tuned to produce
feasible gait patterns. Gait parameters are in Table I.

TABLE I: Gait generator parameters for different gaits.

Gaits θ1 θ2 θ3 θ4 τstance rswing

walk 0. 0.5 0.75 0.25 0.3 0.25
trot 0.9 0.4 0.4 0.9 0.3 0.4

bound 0.4 0.4 0.9 0.9 0.1 0.3

PD controller: We apply the torque control loop at
1000hz, as shown to be effective in the prior work of MELA
[38]. The Kp and Kd parameters are in Table II.

TABLE II: Parameters of the PD controller.

Gains abductor hip knee
Kp 100 100 100
Kd 1 2 2

Low Pass Filter: As in [19], only the residual outputs
of the agent, δAt, are parsed by the LPF as the kernel
trajectories are feasible and smooth:

δAlpf
t = αδAt + (1− α)δAlpf

t−1, (4)

where α is the smoothing factor, δAlpf
t is the residual after

passing through the LPF. Here setting α=0.1 can sufficiently
remove most of the noise. Some noise is beneficial for policy
exploration and improves responsiveness during highly noisy
instances where over-smoothing introduces bias.

C. Kernel

Training Labels: During swing states, the MPC con-
troller [39], [31], [37] uses Raibert Heuristics [40], which
generates positional target trajectories prefswing . We use these
as labels for the swing legs. During stance states, we use
the foot positions p′stance after applying the motor torques
generated by the MPC stance controller as the labels.

Network Inputs include the leg phase variables and
velocity commands. We use the transformed normalized
phase |ϕi| (5), forcing the phase greater than one during

swing states; This differentiates swing and stance states in
input space while allowing the network to generalize to
different gaits using an alternative rswing .

|ϕi| =

{
1 + (ϕi/rswing), if ϕi <= rswing

(ϕi − rswing)/(1− rswing), otherwise
.

(5)
We denote the previously described as kernel-base. As

it accepts all the leg phases, it models the relative leg
phases; As such, it cannot predict alternative gait patterns.
kernel-ind overcomes this modeling each leg individually,
passing a single leg phase, velocity commands, and a one-
hot encoding referring to the target leg. The final variant,
kernel-ext, builds on kernel-base, additionally accepting step
height and ride height commands. Note, in the data collection
process for kernel-ext, we randomly select either step height
∈ [0.05, 0.18] (default: 0.1) or the ride height ∈ [0.18, 0.28]
(default: 0.24) before walking to a new target location.

Using Optuna [41] to perform hyper-parameter tuning with
Bayesian Optimization, we find the best results using the
hyper-parameters in Table III.

TABLE III: Kernel hyper-parameters (All variants).

LR Linear LR decay Dropout Batch-norm
0.0024, 0.7 5e− 6 False
Network Activation Loss Batch size
(256x4) ReLU L1 200

D. Residual Agent

The residual RL agent, outputs positional residuals with
a maximum magnitude of 5cm in each dimension for each
leg. We also note that the kernel-base variant is applied for
these experiments. Table IV shows the PPO hyper-parameters
selected via a random search.

TABLE IV: PPO hyper-parameters.

LR LR exp decay Entropy Epochs Rollout
1e− 3 1e− 7 5e− 6 10 20000

Batch size FE Actor Critic
4000 (128x2) (128x1) (641)

State space: As opposed to other ResL methods pro-
viding deterministic priors [17], [18], we find excluding
the reference motion results in better learning. Although,
we found improved performance passing the leg phases
variables. Peak performance was achieved including neither,
but passing the residual after passing through the LPF from
the previous time-step δAlpf

t−1, which rectifies the Markov
Property violation induced by using a LPF.

TABLE V: Residual RL agent state features.

Feature Description Dimensions
vbase Frontal, lateral, vertical velocities of the robots base 3
abase Roll, pitch, yaw velocities of the robots base 3
vcmd Target frontal and lateral velocities 2
acmd Target yaw velocities 1
q Joint angles 12
q̇ Joint angles rotational velocities 12

CoM Position of the center of the mass 3
pitchbase Pitch of the robot base 1
rollbase Roll of the robot base 1
fc1:4 Contact state of each foot of the robot 4
δAlpf

t−1 Residual applied at the previous time-step 12



Fig. 2: Evaluation of zero-shot task generalization on different terrains: (A) Tabletop: a 360-degrees see-saw platform with
the maximum inclination angle of 5 degrees; (B) A seesaw table with maximum 6 degrees inclination angle; (C) sinusoidal
surface; (D) Stairs on a flat ground.

TABLE VI: Reward function parameters.

ϕi ∈ Φ γ′ γ q weight
Linear velocity vcmd vbase 18.42 0.0076
Angular velocity acmd abase 7.47 0.0264
Center of mass [0, 0,−1] CoM 2.35 0.0298
Distance to target 0 Dtarget 0.74 0.0169
Roll and Pitch [0, 0] [pitchbase, rollbase] 7.47 0.0298
ri ∈ Fnom Reward function weight

Falling penalty r =

{
−19.8, if the robot fell
0, otherwise

1

Target reached r =

{
8.75, if Dtarget ≤ Dmin

0, otherwise
1

Reward Function: We use a mixture of radial basis
functions (RBF), ϕi(γ

′, γ, q) = exp(−(γ′−γ)2q), (shown to
be effective in [30], [38]), and nominal rewards ri ∈ Fnom

to define each feature of the reward function. RBF reward
function features, ϕi ∈ Φ, are parameterized by the target,
γ′, and the curve steepness, q; A steeper RBF function
incentivises learning and accommodates for attributes with
small numeric errors. Equation (6) represents our reward
function and its parameters are summarized in Table VI.

Rt =
∑
ϕi∈Φ

ωiϕi(γ
′
i, γi, qi) +

∑
ri∈Fnom

ri. (6)

III. SIMULATIONS

In this section, multiple scenarios for different aspects
of training and evaluation of the kernel and residual agent
will be designed. To this end, a simulated A1 Unitree
quadruped is used in the PyBullet [42] physics simulator.
In our simulations, we wrap the PyBullet simulation in an
Open-Ai Gym [43] environment during RL experiments.

A. Training the framework

The first stage of the training process, training the kernel,
requires collecting locomotion data from an expert MPC
controller. The MPC controller [31] executes the trot gait,
with a stance duration of 0.2 s, which reduces the variation
in CoM allowing the network to learn better. It navigates to
500 consecutive target locations over the flat terrain, set at a
minimum distance of 2.5m in a random direction. Collecting
the data network inputs { vcmd, acmd, q, ϕ1:4} before
actions are taken, and labels {prefswing, p′stance} and after
each time-step (200hz).

In the second stage, we train the residual RL agent
on randomly selected terrains for five consecutive episodes
(75% height field, 25% perlin). The height-field perturbations
are sampled uniformly ∼∈ [3cm, 4.5cm]. Also, force pertur-
bations are applied to the robot at a random point on the
robot body, in a random direction horizontally, at intervals
∼∈ [5, 8] seconds, with a magnitude ∼∈ [100, 350]N, for
a duration of 0.3s. The agent is trained for a total of 20M
timesteps, tasked with navigating to randomly selected target
locations, with a precision of Dmin = 0.5m, using 5 cpu’s
in parallel, taking roughly 8 hours (NVIDIA GeForce GTX
1060 6GB, AMD Ryzen 5 2600X Six-Core Processor).

B. Evaluating the framework

The framework is evaluated for it’s versatility in four
terrains in ascending difficulty: A) Tabletop, B) Seesaw,
C) Sinusoidal, and D) Stairs (see Fig. 2). We set 5 target
locations to reach per run, placed to challenge the agent,
and start from 4 different starting locations. The pivoting
tabletop has a maximum rotation around the pivot of 5deg.



Fig. 3: The realized velocities of the robot given velocity
commands for the MPC controller and kernel variants.

The seesaw has an decline/incline of 6deg. The stairs have
a step height of 4cm. The sinusoidal terrain has a maximum
incline of 11.5deg.

Furthermore, we separately evaluate the robustness of the
framework applying external forces to the robot. It is tasked
with walking to a single target location on a flat terrain,
where a force is applied to a random location on the robots
body in a random direction in the horizontal plane for a
duration of 0.3 seconds. We determine success by the robots
ability to reach the target location. For each magnitude of
force applied ([250N, 900N]), we run 10 attempts and record
the percentage of successfully completed tasks, as shown in
Table X detailed in the next section.

IV. RESULTS AND ANALYSIS

The section analyzes the experiments, discusses observa-
tions in relation to related works, and provides numerical
evaluations for the kernel and the framework as a whole.

A. Kernel Analysis

To understand the degree kernel variants capture the
characteristics and controllability of the MPC controller, we
compare the velocity control performance exhibited on a flat
terrain, where a single velocity command is varied while the
others are fixed to zero. Fig. 3 demonstrates a performance
gap between all variants and the MPC controller. The kernels
cannot move at negative frontal velocities nor can they match
the maximum lateral, angular and positive frontal velocities
achieved with the MPC controller. In addition, the kernels
experience extremely high variance when turning, showing
a significant performance gap in the realized yaw velocities.
We observe no performance deterioration in kernel-ext from
kernel-base, despite achieving lower validation loss (Ta-
ble VII). kernel-ind is the weakest when moving at negative
frontal velocities, but also experiences erratic behaviour
when commanded with high yaw velocities.

The variant, kernel-ind, demonstrates gait generalization
capabilities, producing unseen gait patterns that result in
effective locomotion. Fig. 4 shows the production of walk
and bound gaits, which were not provided during training.
Although it produces these gaits, the kernel behaves unde-
sirably when inputting high yaw commands as seen when
executing the trot gait Fig. 3.

Fig. 4: Zero-shot gait patterns generated using Kernel-ind.
Grey segments show the realized foot contacts, while the red
segments show foot contact error against the contact schedule
from the gait generator.

Fig. 5: The peak realized the height of each foot over a
step cycle as the step height command increases (blue line),
controlled using kernel-ext.

Fig. 6: The realized height of the robots’ base as the
ride height command increases (blue line), controlled using
kernel-ext.

Training of kernel-ext results a minimal increase in
the validation loss (L1=7.1e − 4, see Table VII), while
allowing us to control the ride and step heights live, as
shown in Fig. 5 and Fig. 6 (The video can be found at
https://youtu.be/bUZJadWCRXU). We observed that the target
step height and ride height commands are not realized pre-
cisely, although it clearly demonstrates the desired behaviour.
Furthermore, we see greater inaccuracies in the realized
steps heights, where the error increases as the target height
increases.

B. Kernel Results

Our method demonstrates far superior results (6.2e − 4
mean absolute error) compared to [33], which achieves a
validation loss 0.007 (MSE), approximating 0.083 mean
absolute error. Furthermore, our method yields a functional
locomotion controller, as demonstrated by Fig. 3. The results
(Table VII) required training on 2.1 hours of locomotion
data. Table VIII shows the results of training with less data,
determined by the number of target locations reached. The
validation performance deteriorates as the number of targets
decreases. However, training with only ten target locations

https://youtu.be/bUZJadWCRXU


Fig. 7: Training of the agent with kernel-base to provide the
priors, with the mean and standard deviation over four seeds.

TABLE VII: Performance of kernel variants, showing the
mean minimum validation loss and the standard deviation.

Kernel-variant Mean Validation Loss Standard Deviation
Kernel-base 6.2e− 4 6.9e− 6
Kernel-ind 7.2e− 4 4.9e− 6
Kernel-ext 7.1e− 4 1.0e− 5

TABLE VIII: Kernel-base performance as the amount of
data increases.

Number of Targets 10 25 50
Mean Validation Loss 1e− 3 9.1e− 4 8.4e− 4

Standard Deviation 3.1e− 6 9.8e− 6 5.3e− 6
Number of Targets 100 200 400

Mean Validation Loss 7.7e− 4 6.7e− 4 6.2e− 4
Standard Deviation 6.2e− 6 5.5e− 6 6.9e− 6

(3.1 minutes), the kernel achieves a validation loss of 1e−3,
capable of producing locomotion simulation.

C. Residual Agent Analysis

During training, we record the success rate, target count,
and reward. An episode is considered successful after nav-
igating to more than two target locations and not falling.
The target count is the number of target locations reached
with in a 60s period. The agent converges after only 7.5M
timesteps (see Fig. 7), showing significantly improved sam-
ple efficiency over other omnidirectional ResL methods: [20],
[19], and [23], requiring 250M, 100M, and 200M timesteps,
respectively. This suggests deterministic reference motions,
as provided by kernel-base and gait libraries, simplifies the
learning scenario. Furthermore, our framework outperformed
the kernel to seeded-agent framework [33], which required
200M timesteps.

D. Residual Agent Results

We measured the average reward per time-step, using the
final reward function (Table VI); The success rate, defined
as the proportion of complete runs (reaching all the targets),
and the fall rate. Our framework (kernel+agent) demonstrates
versatility outperforming the MPC controller used to train
the kernel in every evaluation terrain with a success rate
of 93% in the most challenging stairs terrain. The results
are summarized in Table IX. Furthermore, it is more robust
against perturbations, able to regularly recover its balance

TABLE IX: Evaluation comparing locomotion controllers.

Tabletop Reward/steps Num Targets Success Rate
MPC (0.2) 0.016±0.11 2.5±2.89 0.5
Kernel 0.065±0.0085 2.25±1.5 0
Kernel+Agent 0.097±0.001 5±0.0 1
Seesaw Reward/steps Num Targets Success Rate
MPC (0.2) 0.065±0.018 0.0±0.0 0
Kernel 0.043±0.00245 0.0±0.0 0
Kernel+Agent 0.091±0.0006 5±0.0 1
Stairs Reward/steps Num Targets Success Rate
MPC (0.2) 0.073±0.0022 0.0±0.0 0
Kernel 0.047±0.0019 0.0±0.0 0
Kernel+Agent 0.089±0.0024 4.75±1.0 0.9375
Sinusoidal Reward/steps Num Targets Success Rate
MPC (0.2) 0.082±0.0057 3±1.83 0.25
Kernel 0.042±0.0021 0±0.0 0
Kernel+Agent 0.089±0.0026 4.75±1.0 0.9375

TABLE X: Robustness against perturbations, using the MPC
with (τstance =0.2).

Force (N) 250 300 350 400 450 500 550
MPC 1.0 0.8 0.9 0.7 0.5 0.3 0.4

Kernel 1.0 1.0 1.0 0.8 0.5 0.3 0.3
Kernel+Agent 1 1 1 1 0.9 0.8 0.9

Force (N) 600 650 700 750 800 850 900
MPC 1.0 0.4 0.1 0.2 0 0 0

Kernel 0 0 0 0 0 0 0
Kernel+Agent 0.8 0.7 0.4 0.8 0.6 0.3 0.2

after perturbations of 800N where the MPC controller fails
(Table X).

V. CONCLUSIONS

In this work, we developed a ResL framework that is both
sample efficient and highly controllable, providing omnidi-
rectional locomotion at continuous velocities. We achieved
this by providing deterministic trajectory priors using a NN
trained on expert data collected from an MPC controller.
Additionally, our residual agent applied positional trajecto-
ries without knowledge of the priors or the terrain. Through
a set of simulated scenarios, the framework demonstrated
navigation on the most challenging terrains and demonstrated
superior performance over the MPC controller used to train
the kernel. Furthermore, the kernel exhibited gait generaliza-
tion capabilities, producing locomotion for walk and bound
gaits, when provided with only trot data.

For future work, we propose using the residual agent to
adapt the trajectories produced for unseen gaits, to enable
expert level control without any guidance directly from an
expert controller. Additionally, we hypothesise the frame-
work could exhibit greater robustness if the agent has direct
control over the body height and the step height.
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