209 research outputs found

    Extended Formulation Lower Bounds via Hypergraph Coloring?

    Get PDF
    Exploring the power of linear programming for combinatorial optimization problems has been recently receiving renewed attention after a series of breakthrough impossibility results. From an algorithmic perspective, the related questions concern whether there are compact formulations even for problems that are known to admit polynomial-time algorithms. We propose a framework for proving lower bounds on the size of extended formulations. We do so by introducing a specific type of extended relaxations that we call product relaxations and is motivated by the study of the Sherali-Adams (SA) hierarchy. Then we show that for every approximate relaxation of a polytope P, there is a product relaxation that has the same size and is at least as strong. We provide a methodology for proving lower bounds on the size of approximate product relaxations by lower bounding the chromatic number of an underlying hypergraph, whose vertices correspond to gap-inducing vectors. We extend the definition of product relaxations and our methodology to mixed integer sets. However in this case we are able to show that mixed product relaxations are at least as powerful as a special family of extended formulations. As an application of our method we show an exponential lower bound on the size of approximate mixed product formulations for the metric capacitated facility location problem, a problem which seems to be intractable for linear programming as far as constant-gap compact formulations are concerned

    Small Extended Formulation for Knapsack Cover Inequalities from Monotone Circuits

    Full text link
    Initially developed for the min-knapsack problem, the knapsack cover inequalities are used in the current best relaxations for numerous combinatorial optimization problems of covering type. In spite of their widespread use, these inequalities yield linear programming (LP) relaxations of exponential size, over which it is not known how to optimize exactly in polynomial time. In this paper we address this issue and obtain LP relaxations of quasi-polynomial size that are at least as strong as that given by the knapsack cover inequalities. For the min-knapsack cover problem, our main result can be stated formally as follows: for any ε>0\varepsilon >0, there is a (1/ε)O(1)nO(logn)(1/\varepsilon)^{O(1)}n^{O(\log n)}-size LP relaxation with an integrality gap of at most 2+ε2+\varepsilon, where nn is the number of items. Prior to this work, there was no known relaxation of subexponential size with a constant upper bound on the integrality gap. Our construction is inspired by a connection between extended formulations and monotone circuit complexity via Karchmer-Wigderson games. In particular, our LP is based on O(log2n)O(\log^2 n)-depth monotone circuits with fan-in~22 for evaluating weighted threshold functions with nn inputs, as constructed by Beimel and Weinreb. We believe that a further understanding of this connection may lead to more positive results complementing the numerous lower bounds recently proved for extended formulations.Comment: 21 page

    Total Dual Integrality in Some Facility Location Problems

    Get PDF
    published_or_final_versio

    Online Primal-Dual Algorithms with Configuration Linear Programs

    Get PDF
    In this paper, we present primal-dual algorithms for online problems with non-convex objectives. Problems with convex objectives have been extensively studied in recent years where the analyses rely crucially on the convexity and the Fenchel duality. However, problems with non-convex objectives resist against current approaches and non-convexity represents a strong barrier in optimization in general and in the design of online algorithms in particular. In our approach, we consider configuration linear programs with the multilinear extension of the objectives. We follow the multiplicative weight update framework in which a novel point is that the primal update is defined based on the gradient of the multilinear extension. We introduce new notions, namely (local) smoothness, in order to characterize the competitive ratios of our algorithms. The approach leads to competitive algorithms for several problems with convex/non-convex objectives

    Lift & Project Systems Performing on the Partial-Vertex-Cover Polytope

    Full text link
    We study integrality gap (IG) lower bounds on strong LP and SDP relaxations derived by the Sherali-Adams (SA), Lovasz-Schrijver-SDP (LS+), and Sherali-Adams-SDP (SA+) lift-and-project (L&P) systems for the t-Partial-Vertex-Cover (t-PVC) problem, a variation of the classic Vertex-Cover problem in which only t edges need to be covered. t-PVC admits a 2-approximation using various algorithmic techniques, all relying on a natural LP relaxation. Starting from this LP relaxation, our main results assert that for every epsilon > 0, level-Theta(n) LPs or SDPs derived by all known L&P systems that have been used for positive algorithmic results (but the Lasserre hierarchy) have IGs at least (1-epsilon)n/t, where n is the number of vertices of the input graph. Our lower bounds are nearly tight. Our results show that restricted yet powerful models of computation derived by many L&P systems fail to witness c-approximate solutions to t-PVC for any constant c, and for t = O(n). This is one of the very few known examples of an intractable combinatorial optimization problem for which LP-based algorithms induce a constant approximation ratio, still lift-and-project LP and SDP tightenings of the same LP have unbounded IGs. We also show that the SDP that has given the best algorithm known for t-PVC has integrality gap n/t on instances that can be solved by the level-1 LP relaxation derived by the LS system. This constitutes another rare phenomenon where (even in specific instances) a static LP outperforms an SDP that has been used for the best approximation guarantee for the problem at hand. Finally, one of our main contributions is that we make explicit of a new and simple methodology of constructing solutions to LP relaxations that almost trivially satisfy constraints derived by all SDP L&P systems known to be useful for algorithmic positive results (except the La system).Comment: 26 page

    On duality and fractionality of multicommodity flows in directed networks

    Get PDF
    In this paper we address a topological approach to multiflow (multicommodity flow) problems in directed networks. Given a terminal weight μ\mu, we define a metrized polyhedral complex, called the directed tight span TμT_{\mu}, and prove that the dual of μ\mu-weighted maximum multiflow problem reduces to a facility location problem on TμT_{\mu}. Also, in case where the network is Eulerian, it further reduces to a facility location problem on the tropical polytope spanned by μ\mu. By utilizing this duality, we establish the classifications of terminal weights admitting combinatorial min-max relation (i) for every network and (ii) for every Eulerian network. Our result includes Lomonosov-Frank theorem for directed free multiflows and Ibaraki-Karzanov-Nagamochi's directed multiflow locking theorem as special cases.Comment: 27 pages. Fixed minor mistakes and typos. To appear in Discrete Optimizatio

    Facets and Algorithms for Capacitated Lot Sizing

    Get PDF
    The dynamic economic lot sizing model, which lies at the core of numerous production planning applications, is one of the most highly studied models in all of operations research. And yet, capacitated multi-item versions of this problem remain computationally elusive. We study the polyhedral structure of an integer programming formulation of a single-item capacitated version of this problem, and use these results to develop solution methods for multi-item applications. In particular, we introduce a set of valid inequalities for the problem and show that they define facets of the underlying integer programming polyhedron. Computational results on several single and multiple product examples show that these inequalities can be used quite effectively to develop an efficient cutting plane/branch and bound procedure. Moreover, our results show that in many instances adding certain of these inequalities a priori to the problem formulation, and avoiding the generation of cutting planes, can be equally effective

    Structural Iterative Rounding for Generalized k-Median Problems

    Get PDF
    This paper considers approximation algorithms for generalized k-median problems. This class of problems can be informally described as k-median with a constant number of extra constraints, and includes k-median with outliers, and knapsack median. Our first contribution is a pseudo-approximation algorithm for generalized k-median that outputs a 6.387-approximate solution with a constant number of fractional variables. The algorithm is based on iteratively rounding linear programs, and the main technical innovation comes from understanding the rich structure of the resulting extreme points. Using our pseudo-approximation algorithm, we give improved approximation algorithms for k-median with outliers and knapsack median. This involves combining our pseudo-approximation with pre- and post-processing steps to round a constant number of fractional variables at a small increase in cost. Our algorithms achieve approximation ratios 6.994 + ? and 6.387 + ? for k-median with outliers and knapsack median, respectively. These both improve on the best known approximations
    corecore