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Abstract
This paper considers approximation algorithms for generalized k-median problems. This class of
problems can be informally described as k-median with a constant number of extra constraints,
and includes k-median with outliers, and knapsack median. Our first contribution is a pseudo-
approximation algorithm for generalized k-median that outputs a 6.387-approximate solution with
a constant number of fractional variables. The algorithm is based on iteratively rounding linear
programs, and the main technical innovation comes from understanding the rich structure of the
resulting extreme points.

Using our pseudo-approximation algorithm, we give improved approximation algorithms for k-
median with outliers and knapsack median. This involves combining our pseudo-approximation with
pre- and post-processing steps to round a constant number of fractional variables at a small increase
in cost. Our algorithms achieve approximation ratios 6.994 + ϵ and 6.387 + ϵ for k-median with
outliers and knapsack median, respectively. These both improve on the best known approximations.
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1 Introduction

Clustering is a fundamental problem in combinatorial optimization, where we wish to partition
a set of data points into clusters such that points within the same cluster are more similar than
points across different clusters. In this paper, we focus on generalizations of the k-median
problem. Recall that in this problem, we are given a set F of facilities, a set C of clients, a
metric d on F ∪ C, and a parameter k ∈ N. The goal is to choose a set S ⊂ F of k facilities
to open to minimize the sum of connection costs of each client to its closest open facility.
That is, to minimize the objective

∑
j∈C d(j, S), where we define d(j, S) = mini∈S d(i, j).

The k-median problem is well-studied from the perspective of approximation algorithms,
and many new algorithmic techniques have been discovered while studying it. Examples
include linear program rounding [3, 13], primal-dual algorithms [10], and local search [1].
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Recently, there has been significant interest in generalizations of the k-median problem
[4, 11]. One such generalization is the knapsack median problem. In knapsack median, each
facility has a non-negative weight, and we are given budget B ≥ 0. The goal is to choose a
set of open facilities of total weight at most B (instead of having cardinality at most k) to
minimize the same objective function. That is, the open facilities must satisfy a knapsack
constraint. Another commonly-studied generalization is k-median with outliers, also known
as robust k-median. Here we open k facilities S, as in basic k-median, but we no longer have
to serve all clients; now, we are only required to serve at least m clients C ′ ⊂ C of our choice.
Formally, the objective function is now

∑
j∈C′ d(j, S).

Both knapsack median and k-median with outliers have proven to be much more difficult
than the standard k-median problem. Algorithmic techniques that have been successful in
approximating k-median often lead to only a pseudo-approximation for these generalizations
– that is, they violate the knapsack constraint or serve fewer than m clients [2, 4, 6, 9].
Obtaining “true” approximation algorithms requires new ideas beyond those of k-median.
Currently the best approximation ratio for both problems is 7.081 + ϵ due to the beautiful
iterative rounding framework of Krishnaswamy, Li, and Sandeep [12]. The first and only
other true approximation for k-median with outliers is a local search algorithm due to Ke
Chen [5].

Generalized k-Median

Both knapsack median and k-median with outliers maintain the salient features of k-median;
that is, the goal is to open facilities to minimize the connection costs of served clients. These
variants differ in the way we put constraints on the open facilities and served clients. For
example, in k-median with outliers, we are constrained to open at most k facilities, and serve
at least m clients.

In this paper, we consider a further generalization of k-median that we call generalized
k-median (GKM). As in k-median, our goal is to open facilities to minimize the connection
costs of served clients. In GKM, the open facilities must satisfy r1 given knapsack constraints,
and the served clients must satisfy r2 given coverage constraints. We define r = r1 + r2 to
be the number of side constraints overall.

For each knapsack constraint, we have a unique non-negative budget and each facility
has a non-negative cost with respect to that budget. The open facilities satisfy all budgets.
Similarly, for each coverage constraint, we have a unique non-negative quota and each client
has a non-negative value with respect to that quota. Then the served clients must satisfy all
quotas.

1.1 Our Results
The main contribution of this paper is a refined iterative rounding algorithm for GKM.
Specifically, we show how to round the natural linear program (LP) relaxation of GKM to
ensure all except O(r) of the variables are integral, and the objective function is increased
by at most a 6.387-factor. It is not difficult to show that the iterative rounding framework
in [12] can be extended to show a similar result. Indeed, a 7.081-approximation for GKM
with at most O(r) fractional facilities is implicit in their work. The improvement in this
work is the smaller loss in the objective value.

▶ Theorem 1 (Pseudo-Approximation for GKM). There exists a poly-time pseudo-
approximation for GKM that outputs a solution of cost at most 6.387 ·Opt with at most O(r)
fractional facilities.
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Our improvement relies on analyzing the extreme points of certain set-cover-like LPs.
These extreme points arise at the intermediate steps of our iterative rounding, and by using
their structural properties, we obtain our improved pseudo-approximation for GKM. This
work reveals some of the structure of such extreme points, and it shows how this structure
can lead to improvements.

Our second contribution is improved “true” approximation algorithms for two special
cases of GKM: knapsack median and k-median with outliers. For both problems, applying
the pseudo-approximation algorithm for GKM gives a solution with O(1) fractional facilities.
Thus, the remaining work is to round a constant number of fractional facilities to obtain
an integral solution. To achieve this goal, we apply known sparsification techniques [12] to
pre-process the instance, and then develop new post-processing algorithms to round the final
O(1) fractional facilities.

We show how to round these remaining variables for knapsack median at arbitrarily
small loss, giving a 6.387 + ϵ-approximation, improving on the best 7.081 + ϵ-approximation.
For k-median with outliers, a more sophisticated post-processing is needed to round the
O(1) fractional facilities. This procedure loses more in the approximation ratio. In the
end, we obtain a 6.994 + ϵ-approximation, modestly improving on the best known 7.081 + ϵ-
approximation.

▶ Theorem 2 (Approximation for Knapsack Median). For any ϵ > 0, there exists a n(1/ϵ)-time
(6.387 + ϵ)-approximation for knapsack median.

▶ Theorem 3 (Approximation for k-Median with Outliers). For any ϵ > 0, there exists a
n(1/ϵ)-time (6.994 + ϵ)-approximation for k-median with outliers.

Organization

In this paper, we develop and analyze the pseudo-approximation algorithm for GKM guaran-
teed by Theorem 1. We defer the “true” approximation algorithms guaranteed by Theorems
2 and 3 to the full version of this paper [8], §6.

1.2 Overview of Techniques
To illustrate our techniques, we first introduce a natural LP relaxations for GKM. The
problem admits an integer program formulation, with variables {xij}i∈F,j∈C and {yi}i∈F ,
where xij indicates that client j connects to facility i and yi indicates that facility i is open.
Relaxing the integrality constraints gives the linear program relaxation LP1. We focus on
only LP1 for now.

(LP1) minx,y

∑
i∈F

∑
j∈C

d(i, j) xij (LP2) : miny

∑
j∈C

∑
i∈Fj

d(i, j) yi∑
i∈F

xij ≤ 1 ∀j ∈ C y(Fj) ≤ 1 ∀j ∈ C

xij ≤ yi ∀i ∈ F, j ∈ C

W y ≤ b W y ≤ b∑
j∈C

aj(
∑

i∈F
xij) ≥ c

∑
j∈C

ajy(Fj) ≥ c

xij , yi ∈ [0, 1] ∀i ∈ F, j ∈ C yi ∈ [0, 1] ∀i ∈ F

The linear program LP1 is the standard k-median LP with the extra side constraints.
Note that

∑
i∈F xij ≤ 1 may seem opposite to the intuition that we want clients to get

“enough” coverage from the facilities, but that will be guaranteed by the coverage constraints
below.

The constraint Wy ≤ b corresponds to the r1 knapsack constraints on the facilities
y, where W ∈ Rr1×F

+ and b ∈ Rr1
+ . These r1 packing constraints can be thought of as a

multidimensional knapsack constraint over the facilities, and ensure that “few” facilities

ICALP 2021
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Figure 1 Half and quarter ball chasing.

are opened. Next,
∑

j∈C aj(
∑

i xij) ≥ c corresponds to the r2 coverage constraints on the
clients, where aj ∈ Rr2

+ for all j ∈ C and c ∈ Rr2
+ . These coverage constraints ensure that

“enough” clients are served. E.g., having one packing constraint
∑

i∈F yi ≤ k and one covering
constraint

∑
j∈C

∑
i∈F xij ≥ m ensures that at least m clients are covered by at most k

facilities; this is the k-median with outliers problem.

1.2.1 Constructing LP2

The idea from [12] is to prescribe a set Fj ⊆ F of permissible facilities for each client j such
that xij is implicitly set to yi1(i ∈ Fj). The procedure to construct these Fj ’s is given in
Proposition 4. Using this procedure, LP2 is also a relaxation for GKM. Note that in LP2,
we use the notation y(F ′) =

∑
i∈F ′ yi for F ′ ⊂ F .

Now consider solving LP2 to obtain an optimal extreme point ȳ. There must be |F |
linearly independent tight constraints at ȳ. The tight constraints of interest are the y(Fj) ≤ 1
constraints; in general, there are at most |C| such tight constraints, and we have little
structural understanding of the Fj-sets.

1.2.2 Prior Iterative Rounding Framework
Consider the family of Fj-sets corresponding to tight constraints, so F = {Fj | j ∈ C, ȳ(Fj) =
1}. If F is a family of disjoint sets , then the tight constraints of LP2 form a face of a
partition matroid polytope intersected with at most r side constraints (the knapsack and
coverage constraints.) Using ideas from, e.g., [12, 7], we can show that ȳ has at most O(r)
fractional variables.

Indeed, the goal of the iterative rounding framework in [12] is to control the set family F
to obtain an optimal extreme point where F is a disjoint family. To achieve this goal, they
iteratively round an auxiliary LP based on LP2, where they have the constraint y(Fj) = 1
for all clients j in a special set C∗ ⊂ C. Roughly, they regulate what clients are added to C∗

and delete constraints y(Fj) ≤ 1 for some clients. The idea is that a client j whose constraint
is deleted must be close to some client j′ in C∗. Since y(Fj′) = 1 we can serve j with the
facility for j′; the cost is small if j′’s facility is close to j.
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To get intuition, assume each client j can pay the farthest distance to a facility in Fj ,
and call this the radius of Fj . (Precisely, clients may not be able to afford this distance,
but we use this assumption to highlight the ideas behind our algorithmic decisions.) For
simplicity, assume every Fj-set is a ball whose radius is a power of two. Over time, this radius
shrinks if some y-variables in Fj are set to zero. Consider applying the following iterative
steps until none are applicable, in which case C∗ corresponds to the tight constraints: (1)
delete a constraint for j /∈ C∗ if the radius of Fj is at least that of some Fj′ for j′ ∈ C∗ and
Fj ∩ Fj′ ̸= ∅. (2) add j /∈ C∗ to C∗ if y(Fj) ≤ 1 is tight and for every j′ ∈ C∗ such that
Fj ∩ Fj′ ̸= ∅ it is the case that Fj′ has a radius strictly larger than Fj . If added then remove
all j′ from C∗ where j’s radius is half or less of the radius of j′ and Fj ∩ Fj′ ̸= ∅.

The approximation ratio is bounded by how much a client j with a deleted constraint
pays to get to a facility serving a client in C∗. After removing j’s constraint, the case to
worry about is if j’s closest client j′ ∈ C∗ is later removed from C∗. This happens only if j′′

is added to C∗, with Fj′′ having half the radius of Fj′ . Thus every time we remove j’s closest
client in C∗, we guarantee that j’s cost only increases geometrically. The approximation
ratio is proportional to the total distance that j must travel and can be directly related to
the distance of “ball-chasing” though these Fj sets. When we remove a client j from C∗

due to j′ ∈ C∗ such that Fj′ ∩ Fj ≠ ∅ and j′ has radius at most half of j, we call this a
half-chasing step. See Figure 1.

1.2.3 New Framework via Structured Extreme Points

The target of our framework is to ensure that the radius decreases in the ball-chasing at a
faster rate, in particular one-quarter. This gives closer facilities for clients whose constraints
are deleted. See Figure 1. To achieve this quarter-chasing step, we can simply change half to
one-quarter in step (2) above.

Making this change immediately decreases the approximation ratio; however, the challenge
is that F is no longer disjoint. Indeed, it can be the case that j, j′ ∈ C∗ such that Fj∩Fj′ ≠ ∅
if their radii differ by only a one half factor. Instead, our quarter ball-chasing algorithm
maintains that F is not disjoint, but has a bipartite intersection graph.

The main technical challenge is obtaining an extreme point with O(r) fractional variables,
which is no longer guaranteed as when F was disjoint. Indeed, if F has bipartite intersection
graph, then the tight constraints form a face of the intersection of two partition matroid
polytopes intersected with at most r side constraints. In general, we cannot upper bound
the number of fractional variables arising in the extreme points of such polytopes. However,
such extreme points have a nice combinatorial structure: the intersection graph can be
decomposed into O(r) disjoint paths. We exploit this “chain decomposition” of extreme
points arising in our iterative rounding to discover clients j that can be removed from C∗

even if there is not a j′ ∈ C∗ where Fj′ has one quarter of the radius of Fj . We continue
this procedure until we are left with only O(r) fractional variables.

The main technical contribution of this work is showing how the problem can be reduced
to structural characterization of extreme points corresponding to bipartite matching. This
illustrates some of the structural properties of polytopes defined by k-median-type problems.
We hope that this helps lead to other structural characterizations of these polytopes and
ultimately improved algorithms.

ICALP 2021
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2 Auxiliary LP for Iterative Rounding

In this section, we construct the auxiliary LP, LPiter. We note that we use the same relaxation
used in [12]. Recall the two goals of iterative rounding, outlined in the technical overview; we
want to maintain a set of clients C∗ ⊂ C such that {Fj | j ∈ C∗} has bipartite intersection
graph, and C∗ should provide a good set of open facilities for the clients that are not in
C∗. Thus, we want to define LPiter to accommodate moving clients in and out of C∗, while
having the LP faithfully capture how much we think the clients outside of C∗ should pay in
connection costs.

2.1 Defining F -balls
Our starting point is LP2, so we assume that we have sets Fj ⊂ F for all j ∈ C. The next
proposition states that such sets can be found efficiently so that LP2 is a relaxation of GKM.

▶ Proposition 4. There is a poly-time algorithm that given GKM instance I outputs sets
Fj ⊆ F for j ∈ C such that Opt(LP2) ≤ Opt(I).

Proof. Let I be the given instance of GKM and (x∗, y∗) be an optimal solution to LP1.
Observe that if x∗

ij ∈ {0, y∗
i } for all i ∈ F, j ∈ C, then we can define Fj = {i ∈ F | x∗

ij > 0}
for all j ∈ C. It is easy to verify in this case that y∗ is feasible for LP2 and achieves the
same objective value in LP2 as (x∗, y∗) achieves in LP1, which completes the proof.

Thus our goal is to duplicate facilities in F and re-allocate the x- and y-values appropriately
until x∗

ij ∈ {0, y∗
i } for all i ∈ F, j ∈ C. To prevent confusion, let F denote the original set of

facilities, and let F ′ denote the modified set of facilities, where make n = |C| copies of each
facility in F , so for each i ∈ F , we have copies i1, . . . , in ∈ F ′.

Now we define x′ ∈ [0, 1]F ′×C and y′ ∈ [0, 1]F ′ with the desired properties. For each
i ∈ F , we assume without loss of generality that 0 ≤ xi1 ≤ xi2 ≤ · · · ≤ xin ≤ yi. We define
x′

i11, . . . , x′
inn and y′

i1
, . . . , y′

in
recursively:

Let y′
i1

= xi1 and x′
i1j = xij for all j ∈ [n].

Now for k > 1, let y′
ik

= xik − xi(k−1) and x′
ikj =

{
0 , j < k

y′
ik

, j ≥ k
for all j ∈ [n].

It is easy to verify that (x′, y′) is feasible for LP1 (after duplicating facilities) and
x′

ij ∈ {0, y′
i} for all i ∈ F ′, j ∈ C, as required. Further, it is clear that this algorithm is

polynomial time. ◀

In the technical overview, we assumed the radii of the Fj sets were powers of two. To
formalize this idea, we discretize the distances to powers of τ > 1 (up to some random
offset.) The choice of τ is to optimize the final approximation ratio. The main ideas of the
algorithm remain the same if we discretize to powers of, say 2, with no random offset. Our
discretization procedure is the following:

Fix some τ > 1 and sample the random offset α ∈ [1, τ) such that loge α is uniformly
distributed in [0, loge τ). Without loss of generality, we may assume that the smallest non-
zero inter-point distance is 1. Then we define the possible discretized distances, L(−2) =
−1, L(−1) = 0, . . . , L(ℓ) = ατ ℓ for all ℓ ∈ N. For each p, q ∈ F ∪ C, we round d(p, q) up to
the next largest discretized distance. Let d′(p, q) denote the rounded distances. Observe that
d(p, q) ≤ d′(p, q) for all p, q ∈ F ∪ C. The next proposition bounds the cost of discretization.

▶ Proposition 5. For all p, q ∈ F ∪ C, we have E[d′(p, q)] = τ−1
loge τ d(p, q)



A. Gupta, B. Moseley, and R. Zhou 77:7

Proof. If d(p, q) = 0, then the claim is trivial. Suppose d(p, q) ≥ 1. We can rewrite
d(p, q) = τ ℓ+f for some ℓ ∈ N, f ∈ [0, 1). Also, for convenience we define β = logτ α. Because
loge α is uniformly distributed in [0, loge τ), it follows that β is uniformly distributed in [0, 1).

It follows, d(p, q) is rounded to ατ ℓ = τ ℓ+β exactly when β ≥ f , and otherwise d(p, q) is
rounded to τ ℓ+β+1 when β < f . Thus we compute:

E[d′(p, q)] =
∫ f

β=0
τ ℓ+β+1 dβ +

∫ 1

β=f

τ ℓ+β dβ

= 1
loge τ

(τ ℓ+β+1|fβ=0 + τ ℓ+β |1β=f )

= 1
loge τ

(τ ℓ+f+1 − τ ℓ+1 + τ ℓ+1 − τ ℓ+f )

= 1
loge τ

(τ ℓ+f+1 − τ ℓ+f )

= τ − 1
loge τ

d(p, q). ◀

Now using the discretized distances, we can define the radius level of Fj for all j ∈ C by:

ℓj = min
ℓ≥−1
{ℓ | d′(j, i) ≤ L(ℓ) ∀i ∈ Fj}.

One should imagine that Fj is a ball of radius L(ℓj) in terms of the d′-distances. Thus, we
will often refer to Fj as the F -ball of client j. Further, to accommodate “shrinking” the Fj

sets, we define the inner ball of Fj by:

Bj = {i ∈ Fj | d′(j, i) ≤ L(ℓj − 1)}.

Note that we defined L(−2) = −1 so that if ℓj = −1, then Bj = ∅.

2.2 Constructing LPiter

Our auxiliary LP will maintain three sets of clients: Cpart, Cfull, and C∗. Cpart consists of
all clients, whom we have not yet decided whether we should serve them or not. Then for all
clients in Cfull and C∗, we decide to serve them fully. The difference between the clients in
Cfull and C∗ is that for the former, we remove the constraint y(Fj) = 1 from the LP, while
for the latter we still require y(Fj) = 1. Thus although we commit to serving Cfull, such
clients rely on C∗ to find an open facility to connect to. Using the discretized distances,
radius levels, inner balls, and these three sets of clients, we are ready to define LPiter:

min
y

∑
j∈Cpart

∑
i∈Fj

d′(i, j)yi +
∑

j∈Cfull∪C∗

(
∑
i∈Bj

d′(i, j)yi + (1− y(Bj))L(ℓj)) (LPiter)

s.t. y(Fj) ≤ 1 ∀j ∈ Cpart

y(Bj) ≤ 1 ∀j ∈ Cfull

y(Fj) = 1 ∀j ∈ C∗

Wy ≤ b∑
j∈Cpart

ajy(Fj) ≥ c−
∑

j∈Cfull∪C∗

aj

0 ≤ y ≤ 1

ICALP 2021
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This completes the construction of LPiter. Note that we use the rounded distances in the
definition of LPiter rather than the original distances. Keeping this in mind, if Cpart = C

and Cfull, C∗ = ∅, then LPiter is the same as LP2 up to the discretized distances, so the
following lemma is immediate. The algorithm described by the lemma is exactly the steps
we took in this section.

▶ Lemma 6. There exists a poly-time algorithm that takes as input a GKM instance I and
outputs LPiter such that E[Opt(LPiter)] ≤ τ−1

loge τ Opt(I).

The remainder of the paper shows how to iterative round LPiter to obtain our pseudo-
approximation for GKM.

2.3 Understanding LPiter

Initially, all clients are in Cpart. For clients in Cpart, we are not sure yet whether we should
serve them or not. Thus for these clients, we simply require y(Fj) ≤ 1, so they can be
served any amount, and in the objective, the contribution of a client from Cpart is exactly
its connection cost (up to discretization) to Fj .

The clients in Cfull correspond to the “deleted” constraints in the technical overview.
Importantly, for j ∈ Cfull, we do not require that y(Fj) = 1; rather, we relax this condition
to y(Bj) ≤ 1. Recall that we made the assumption that every client can pay the radius of its
Fj set. To realize this idea, we require that each j ∈ Cfull pays its connection costs to Bj in
the objective. Then, to serve j fully, j must find (1− y(Bj)) units of open facility to connect
to beyond Bj . Now j truly pays its radius, L(ℓj), for this (1− y(Bj)) units of connections in
LPiter, so we can do ball-chasing to C∗ to find these facilities. In this case, we say that we
re-route the client j to some destination.

Note that using the discretized distances, a half-chasing step corresponds to intersecting a
neighboring ball of one radius level smaller, and a quarter-chasing step is analogously defined.

For clients in C∗, we require y(Fj) = 1. Note that the contribution of a j ∈ C∗ to the
objective of LPiter is exactly its connection cost to Fj . The purpose of C∗ is to provide
destinations for Cfull.

Finally, because we have decided to fully serve all clients in Cfull and C∗, regardless of
how much they are actually served in their F -balls, we imagine that they every j ∈ Cfull∪C∗

contributes aj to the coverage constraints, which is reflected in LPiter.

3 Basic Iterative Rounding Phase

In this section, we describe the iterative rounding phase of our algorithm. This phase has
two main goals: (a) to simplify the constraint set of LPiter, and (b) to decide which clients
to serve and how to serve them. To make these two decisions, we repeatedly solve LPiter to
obtain an optimal extreme point, and then use the structure of tight constraints to update
LPiter, and reroute clients accordingly.

Throughout our algorithm, we will modify the data of LPiter - we will move clients
between Cpart, Cfull, and C∗ and modify the F -balls and radius levels. The key property
that we wish to maintain is the Distinct Neighbors Property.

▶ Definition 7 (Distinct Neighbors Property). For all j1, j2 ∈ C∗, if Fj1 ∩ Fj2 ≠ ∅, then
|ℓj1 − ℓj2 | = 1. In words, if the F -balls of two clients in C∗ intersect, then they differ by
exactly one radius level.
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This simple property will enable quarter-chasing and a structural characterization of the
extreme points of LPiter - both of which are crucial to our improved algorithm.

3.1 The Algorithm

Our algorithm repeatedly solves LPiter to obtain an optimal extreme point ȳ, and then
performs one of the following three possible updates, based on the tight constraints:

1. If some facility i is set to zero in ȳ, we delete it from the instance.
2. If constraint ȳ(Fj) ≤ 1 is tight for some j ∈ Cpart, then we decide to fully serve client j

by moving j to either Cfull or C∗. Initially, we add j to Cfull then run Algorithm 2 to
decide if j should be in C∗ instead.

3. If constraint ȳ(Bj) ≤ 1 is tight for some j ∈ Cfull, we shrink Fj by one radius level (so
j’s new F -ball is exactly Bj .) Then we possibly move j to C∗ by running Algorithm 2
for j.

These steps are made formal in Algorithms 1 (IterativeRound) and 2 (ReRoute).
IterativeRound relies on the subroutine ReRoute, which gives our criterion for moving a
client to C∗. This criterion for adding clients to C∗ is the key way in which our algorithm
differs from that of [12]. In [12], the criterion used ensures that {Fj | j ∈ C∗} is a family
of disjoint sets. In contrast, we allow F -balls for clients in C∗ to intersect, as long as they
satisfy the Distinct Neighbors Property. Thus, our algorithm allows for rich structures in the
set system {Fj | j ∈ C∗}.

Algorithm 1 IterativeRound.

Input: LPiter

Result: Modifies LPiter and outputs an optimal extreme point of LPiter

1 repeat
2 Solve LPiter to obtain optimal extreme point ȳ.
3 if there exists a facility i ∈ F such that ȳi ≥ 0 is tight then
4 Delete i from F .
5 else if there exists a client j ∈ Cpart such that y(Fj) ≤ 1 is tight then
6 Move j from Cpart to Cfull.
7 ReRoute(j)
8 else if there exists a client j ∈ Cfull such that ȳ(Bj) ≤ 1 is tight then
9 Update Fj ← Bj and decrement ℓj by 1.

10 Update Bj ← {i ∈ Fj | d′(j, i) ≤ L(ℓj − 1)}.
11 ReRoute(j)
12 else
13 Output ȳ and Terminate.
14 until termination

The modifications made by IterativeRound do not increase Opt(LPiter), so upon
termination of our algorithm, we have an optimal extreme point ȳ to LPiter such that
LPiter is still a relaxation of GKM and no non-negativity constraint, Cpart-constraint, or
Cfull-constraint is tight for ȳ. Further, it is easy to check that the Distinct Neighbors
Property is maintained.
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Algorithm 2 ReRoute.

Input: Client j ∈ Cfull

Result: Decide whether to move j to C∗ or not
1 if ℓj ≤ ℓj′ − 1 for all j′ ∈ C∗ such that Fj ∩ Fj′ ̸= ∅ then
2 Move j from Cfull to C∗.
3 For all j′ ∈ C∗ such that Fj ∩ Fj′ ≠ ∅ and ℓj′ ≥ ℓj + 2, move j′ from C∗ to Cfull.

3.2 Sketch of Analysis
Recall the goals from the beginning of the section: procedure IterativeRound achieves
goal (a) of making {Fj | j ∈ C∗} simpler while maintaining the Distinct Neighbors Property.
Since we moved facilities between C∗ and Cfull, achieving goal (b) means deciding which
facilities to open, and guaranteeing that each client has a “close-by” open facility. (Recall
from §2 that C∗ is the set of clients such that their Fj-balls are guaranteed to contain an
open facility, and Cfull are the clients which are guaranteed to be served but using facilities
opened in C∗.)

To achieve goal (b), we observe that ReRoute always gives quarter-chasing steps. That
is, if we move a client j from C∗ to Cfull, then we are guaranteed a neighboring client j′ ∈ C∗

with radius level at least two smaller than j. Thus, each time we re-route j to a further
destination (i.e. if j′ is subject to another quarter-chasing step), the extra distance j must
travel decreases geometrically. In the end, we can show that j will have an open facility
within O(1) times its radius.

4 Iterative Operation for Structured Extreme Points

In this section, we achieve two goals: (a) we show that the structure of the extreme
points of LPiter obtained from IterativeRound are highly structured, and admit a chain
decomposition. Then, (b) we exploit this chain decomposition to define a new iterative
operation that is applicable whenever ȳ has “many” (i.e., more than O(r)) fractional variables.
We emphasize that this characterization of the extreme points is what enables the new iterative
rounding algorithm.

4.1 Chain Decomposition
A chain is a sequence of clients in C∗ where the F -ball of each client j contains exactly two
facilities – one shared with the previous ball and other with the next.

▶ Definition 8 (Chain). A chain is a sequence of clients (j1, . . . , jp) ⊆ C∗ satisfying:
|Fjq
| = 2 for all q ∈ [p], and

Fjq
∩ Fjq+1 ̸= ∅ for all q ∈ [p− 1].

Our chain decomposition is a partition of the fractional C∗-clients given in the next
theorem, which is our main structural characterization of the extreme points of LPiter. (We
say a client j is fractional if all facilities in Fj are fractional; we denote the fractional clients
in C∗ by C∗

<1.) We defer the proof of the next structural theorem to the full version of this
paper [8] §8, and instead focus on how to apply it.

▶ Theorem 9 (Chain Decomposition). Upon termination of IterativeRound, there exists
a partition of C∗

<1 into at most 3r chains, along with a set of at most 2r violating clients
(clients that are not in any chain.)
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The proof relies on analyzing the extreme points of LPiter satisfying the Distinct Neighbors
Property. We show that this boils down to analyzing a bipartite matching polytope with r

side constraints.

4.2 Iterative Operation for Chain Decompositions
Leveraging Theorem 9, consider an optimal extreme point ȳ of LPiter, and its chain decom-
position. We show that if the number of fractional variables in ȳ is sufficiently large, there
exists a useful structure in the chain decomposition, which we call a candidate configuration.

▶ Definition 10 (Candidate Config). Let ȳ be an optimal extreme point of LPiter. A candidate
configuration is a pair of two clients (j, j′) ⊂ C∗

<1 such that:
1. Fj ∩ Fj′ ̸= ∅
2. ℓj′ ≤ ℓj − 1
3. Every facility in Fj and Fj′ is in at exactly two F -balls for clients in C∗

4. |Fj | = 2 and |Fj′ | = 2

One should imagine that a candidate configuration is two neighboring balls on a sufficiently
long chain.

▶ Lemma 11. If IterativeRound outputs an extreme point that has at least 15r fractional
facilities, then there exist a candidate configuration in C∗

<1.

To prove Lemma 11, which bounds the number of fractional facilities needed to have a
candidate configuration, we first prove a bound on the number of factional clients needed.
The bound on the number of facilities will follow by a dimension argument.

▶ Proposition 12. Suppose LPiter satisfies the Distinct Neighbors Property. Then each
facility is in at most two F -balls for clients in C∗.

Proof. Assume for contradiction that there exists a facility i such that i ∈ Fj1 ∩ Fj2 ∩ Fj3

for distinct clients j1, j2, j3 ∈ C∗. Then j1 and j2 differ by one radius level, and j2 and j3
differ by one radius level. However, now it cannot be the case that j1 and j3 also differ by
one radius level. This contradicts the Distinct Neighbors Property. ◀

▶ Lemma 13. Suppose LPiter satisfies all Basic Invariants, and let ȳ be an optimal extreme
point of LPiter such that no Cpart-, Cfull-, or non-negativity constraint is tight. If |C∗

<1| ≥
14r, then there exist a candidate configuration in C∗

<1.

Proof. We claim that in order for C∗
<1 to have a candidate configuration, it suffices to have

a chain of length at least four in C∗
<1. To see this, let (j1, j2, j3, j4, . . . ) ⊂ C∗

<1 be a chain
of length at least four. Then Fj2 ∩ Fj3 ̸= ∅, and by the Distinct Neighbors Property, either
ℓj3 = ℓj2 − 1 or ℓj2 = ℓj3 − 1.

We only consider the former case, because both cases are analogous. Thus, if ℓj3 = ℓj2−1,
then we claim that (j2, j3) forms a candidate configuration. We already have the first two
properties of a candidate configuration. Now we verify the last two. Because j2 and j3 are
part of a chain, we have |Fj2 | = 2 and |Fj3 | = 2. Further, j2 has neighbors j1 and j3 along
the chain. By Proposition 12, each facility in Fj2 is in at most two F -balls for clients in
C∗. In particular, one of the facilities in Fj2 is shared by Fj1 and Fj2 , and the other must
be shared by Fj2 and Fj3 . Thus, each facility in Fj2 is in exactly two F -balls for clients in
C∗. An analogous argument holds for Fj3 , so (j2, j3) satisfies all properties of a candidate
configuration, as required.
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Now suppose |C∗
<1| ≥ 14r. By Theorem 9, C∗

<1 admits a chain decomposition into at
most 3r chains and a set of at most 2r violating clients. Then at least 12r of the clients
in C∗

<1 belong to the 3r chains. By averaging, there must exist a chain with size at least
12r
3r = 4, as required. ◀

Now we relate the number of fractional facilities with the number of fractional C∗-clients
by a dimension argument.

▶ Lemma 14. Let ȳ be an extreme point of LPiter such that no Cpart-, Cfull-, or non-
negativity constraint is tight. Then the number of fractional facilities in ȳ satisfies |F<1| ≤
|C∗

<1|+ r (recall that r is the number of side constraints.)

Proof of Lemma 14. We construct a basis ȳ. First, for each integral facility i ∈ F=1, we
add the integrality constraint ȳi ≤ 1 to our basis. Thus we currently have |F=1| constraints
in our basis.

It remains to choose |F<1| further linearly independent constraints to add to our basis.
Note that we have already added all tight integrality constraints to our basis, and no non-
negativity constraint is tight. Then the only remaining tight constraints we can add are the
C∗-constraints and the r side constraint.

We claim that we cannot add any C∗
=1-constraints, because every C∗

=1-constraint is of
the form y(Fj) = yij

= 1 for the unique integral facility ij ∈ F1. Note that here we used
the fact that there is no facility that is set to zero. Thus every C∗

=1-constraint is linearly
dependent with the tight integrality constraints, which we already chose.

It follows, the only possible constraints we can choose are the C∗
<1-constraints and the r

side constraints so:

|F<1| ≤ |C∗
<1|+ r. ◀

Lemma 11 is immediate by composing the above two lemmas.

Proof of Lemma 11. By Lemma 13, it suffices to show that |F<1| ≥ 15r implies that
|C∗

<1| ≥ 14r. Applying Lemma 14, we have:

15r ≤ |F<1| ≤ |C∗
<1|+ r. ◀

Our new iterative operation is easy to state. Find a candidate configuration (j, j′) and
move j from C∗ to Cfull.

Algorithm 3 ConfigReRoute.

Input: An optimal extreme point ȳ to LPiter s.t. there exists a candidate
configuration

Result: Modify LPiter

1 Let (j, j′) ⊂ C∗
<1 be any candidate configuration.

2 Move j from C∗ to Cfull.

It is easy to check that ConfigReRoute maintains the Distinct Neighbors Property
and weakly decreases Opt(LPiter).
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4.3 Sketch of Analysis
The first two properties of candidate configurations are used to re-route j to j′. Observe
a key difference between ReRoute and ConfigReRoute: In the former, we always
guarantee quarter-chasing steps. On the other hand, in ConfigReRoute, we only guarantee
a neighboring client of at least one radius level smaller, which corresponds to a half-chasing
step. This raises the worry that if all re-routings are due to ConfigReRoute, any potential
gains by ReRoute are not realized in the worst case. However we show that, roughly
speaking, the last two properties of candidate configurations guarantee that the half-chasing
steps of ConfigReRoute happen at most half the time.

In particular, suppose client j is re-routed via ConfigReRoute to j′ , which is exactly
one radius level smaller. If j′ is later re-routed via ReRoute, then we can re-route j to
j′ and then this new destination. This gives one half- and one quarter-chasing step. The
concern is if j′ is later re-routed via ConfigReRoute, which would give j two half-chasing
steps in a row. By analyzing the interactions between ReRoute and ConfigReRoute,
we show that there must exist a j′′ that gives j a quarter-chasing step. See Figure 2.

j j′

j′′

Figure 2 A chain of balls in C∗, where squares indicate facilities. First j is removed from C∗ as
part of candidate configuration (j, j′), so j′ has strictly smaller radius than j. Then j′′ is added to
C∗, which has strictly smaller radius than j′. This gives j a destination that is at least two radius
levels smaller.

5 Pseudo-Approximation Algorithm for GKM

The pseudo-approximation algorithm for GKM combine the iterative rounding algorithm
IterativeRound from §3 with the re-routing operation ConfigReRoute from §4 to
construct a solution to LPiter. PseudoApproximation is the algorithm guaranteed by
Theorem 1.

Algorithm 4 PseudoApproximation.

Input: LPiter

Result: Modifies LPiter and outputs an optimal extreme point of LPiter

1 repeat
2 Run IterativeRound to obtain an optimal extreme point ȳ of LPiter

3 if there exists a candidate configuration then
4 Run ConfigReRoute
5 else
6 Output ȳ and Terminate
7 until Termination
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5.1 Sketch of Analysis
There are two main components to analyzing PseudoApproximation. First, we show
that the output extreme point has O(r) fractional variables, which follows from Lemma 11.
Second, we bound the re-routing cost, which follows from the sketches in §3 and §4. In
particular, for each client, we can charge each of its half-chasing steps to a quarter-chasing
step. This improves on [12], where every re-routing is via half-chasing steps. Optimizing the
choice of τ (the discretization factor) gives our final approximation ratio.

5.2 Analysis of PseudoApproximation
In this section, we prove that PseudoApproximation satisfies the guarantees of Theorem 1.
We begin by analyzing the runtime and number of fractional facilities.

▶ Lemma 15. PseudoApproximation is a polynomial time algorithm that maintains the
Distinct Neighbors Property, weakly decreases Opt(LPiter), and outputs an optimal extreme
point of LPiter with at most 15r fractional variables.

Proof of Lemma 15. We first show that both IterativeRound and ReRoute are poly-
nomial time. It is clear that the latter runs in polynomial time. For IterativeRound, it
suffices to show that the number of iterations of IterativeRound is polynomial. In each
iteration, we make one of three actions. We either delete a facility from F , move a client
from Cpart to Cfull or shrink a F -ball by one radius level for a client in j ∈ Cfull.

We can delete each facility from F at most once, so we make at most |F | deletions. Each
client can move from Cpart to Cfull at most once, because we never move clients back from
Cfull to Cpart, so we do this operations at most |C| times. Finally, observe that ℓj ≥ −1 for
all j ∈ C over all iterations. We conclude that we can shrink each F -ball only polynomially
many times.

For the runtime of PseudoApproximation, it suffices to show that the number of calls
to IterativeRound and ConfigReRoute is polynomial.

In every iteration of PseudoApproximation, either we terminate or we are guaranteed
to move a client from C∗ to Cfull in ConfigReRoute. Each client can be removed from
C∗ only polynomially many times, because each time a client is removed, in order to be
re-added to C∗, it must be the case that we shrunk the F -ball of that client. However, again
because ℓj ≥ −1 for all j ∈ C, we can shrink each F -ball only polynomially many times.

It is easy to check that both IterativeRound and ReRoute maintain the Distinct
Neighbors Property and weakly decrease Opt(LPiter).

Finally, upon termination of PseudoApproximation, there is no candidate configuration,
so Lemma 11 implies that ȳ has at most 15r fractional variables. ◀

5.3 Analysis of Re-Routing Cost
We now bound the re-routing cost by analyzing how C∗ evolves throughout PseudoAp-
proximation. This is one of the main technical contributions of our paper, and it is where
our richer C∗-set and relaxed re-routing rules are used. [12] prove an analogous result about
the re-routing cost of their algorithm. In the language of the following theorem statement,
they show that α = τ+1

τ−1 for the case β = 1. We improve on this factor by analyzing the
interactions between ReRoute and ConfigReRoute. Interestingly, analyzing each of
ReRoute and ConfigReRoute separately would not yield any improvement over [12] in
the worst case, even with our richer set C∗. It is only by using the properties of candidate
configurations and analyzing sequences of calls to ReRoute and ConfigReRoute that
we get an improvement.
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▶ Theorem 16 (Re-Routing Cost). Upon termination of PseudoApproximation, let S ⊂ F

be a set of open facilities and β ≥ 1 such that d(j, S) ≤ βL(ℓj) for all j ∈ C∗. Then for all
j ∈ Cfull ∪ C∗, d(j, S) ≤ (2 + α)L(ℓj), where α = max(β, 1 + 1+β

τ , τ3+2τ2+1
τ3−1 ).

We will need the following discretized version of the triangle inequality.

▶ Proposition 17. Let j, j′ ∈ C such that Fj and Fj′ intersect. Then d(j, j′) ≤ L(ℓj)+L(ℓj′).

Proof. Let i ∈ Fj ∩ Fj′ . Then using the triangle inequality we can bound:

d(j, j′) ≤ d(j, i) + d(i, j′) ≤ d′(j, i) + d′(i, j′) ≤ L(ℓj) + L(ℓj′). ◀

The next lemma analyzes the life-cycle of a client that enters C∗ at some point in
PseudoApproximation. Our improvement over [12] comes from this lemma.

▶ Lemma 18. Upon termination of PseudoApproximation, let S ⊂ F be a set of
open facilities and β ≥ 1 such that d(j, S) ≤ βL(ℓj) for all j ∈ C∗. Suppose client j

is added to C∗ at radius level ℓ during PseudoApproximation (it may be removed
later.) Then upon termination of PseudoApproximation, we have d(j, S) ≤ αL(ℓ), where
α = max(β, 1 + 1+β

τ , τ3+2τ2+1
τ3−1 ).

Proof. Consider a client j added to C∗ with radius level ℓ. If j remains in C∗ until
termination, the lemma holds for j because α ≥ β. Thus, consider the case where j is later
removed from C∗ in PseudoApproximation. Note that the only two operations that can
possibly cause this removal are ReRoute and ConfigReRoute. We prove the lemma
by induction on ℓ = −1, 0, . . . . If ℓ = −1, then j remains in C∗ until termination because it
has the smallest possible radius level and both ReRoute and ConfigReRoute remove a
client from C∗ only if there exists another client with strictly smaller radius level.

Similarly, if ℓ = 0, we note that ReRoute removes a client from C∗ only if there exists
another client with radius level at least two smaller, which is not possible for j. Thus, if j

does not remain in C∗ until termination, there must exist some j′ that is later added to C∗

with radius level at most ℓ− 1 = −1 such that Fj ∩ Fj′ ≠ ∅. We know that j′ remains in C∗

until termination since it is of the lowest radius level. Thus:

d(j, S) ≤ d(j, j′) + d(j′, S) ≤ L(0) + L(−1) + βL(−1) = L(0).

Now consider ℓ > 0 where j can possibly be removed from C∗ by either ReRoute or
ConfigReRoute. In the first case, j is removed by ReRoute, so there exists j′ that is
added to C∗ such that ℓj′ ≤ ℓ− 2 and Fj ∩ Fj′ ≠ ∅. Applying the inductive hypothesis to j′,
we can bound:

d(j, S) ≤ d(j, j′) + d(j′, S) ≤ L(ℓ) + L(ℓ− 2) + αL(ℓ− 2) ≤ (1 + 1 + α

τ2 )L(ℓ).

It is easy to verify by routine calculations that 1 + 1+α
τ2 ≤ α given that α ≥ τ3+2τ2+1

τ3−1 .
For our final case, suppose j is removed by ConfigReRoute. Then there exists j′ ∈ C∗

such that Fj ∩ Fj′ ̸= ∅ and ℓj′ ≤ ℓ − 1. Further, |Fj′ | = 2. If j′ remains in C∗ until
termination, then:

d(j, S) ≤ d(j, j′) ≤ L(ℓ) + L(ℓ− 1) + βL(ℓ− 1) ≤ (1 + 1 + β

τ
)L(ℓ).

Otherwise, j′ is removed by ReRoute at an even later time because some j′′ is added to
C∗ such that ℓj′′ ≤ ℓj′ − 2 and Fj′ ∩ Fj′′ ≠ ∅. Applying the inductive hypothesis to j′′, we
can bound:

d(j, S) ≤ d(j, j′) + d(j′, j′′) + d(j′′, S) ≤ (1 + 2
τ

+ 1 + α

τ3 )L(ℓ).

where α ≥ τ3+2τ2+1
τ3−1 implies 1 + 2

τ + 1+α
τ3 ≤ α.
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Now, we consider the case where j′ is later removed by ConfigReRoute. To analyze this
case, consider when j was removed by ConfigReRoute. At this time, we have |Fj′ | = 2 by
definition of Candidate Configuration. Because Fj ∩Fj′ ̸= ∅, consider any facility i ∈ Fj ∩Fj′ .
When j is removed from C∗ by ConfigReRoute, we have that i is in exactly two F -balls
for clients in C∗, exactly Fj and Fj′ . However, after removing j from C∗, i is only in one
F -ball for clients in C∗ - namely Fj′ .

Later, at the time j′ is removed by ConfigReRoute, it must be the case that |Fj′ | = 2
still, so Fj′ is unchanged between the time that j is removed and the time that j′ is removed.
Thus the facility i that was previously in Fj ∩ Fj′ must still be present in Fj′ . Then this
facility must be in exactly two F -balls for clients in C∗, one of which is j′. It must be the
case that the other F -ball containing i, say Fj′′ , was added to C∗ between the removal of j

and j′.
Note that the only operation that adds clients to C∗ is ReRoute, so we consider the

time between the removal of j and j′ when j′′ is added to C∗. Refer to Figure 2. At this
time, we have j′ ∈ C∗, and Fj′ ∩ Fj′′ ≠ ∅ because of the facility i. Then it must be the case
that j′′ has strictly smaller radius level than j′, so ℓj′′ ≤ ℓj′ − 1 ≤ ℓ− 2. To conclude the
proof, we note that Fj ∩ Fj′′ ≠ ∅ due to the facility i, and apply the inductive hypothesis
to j′′:

d(j, S) ≤ d(j, j′′) + d(j′′, S) ≤ (1 + 1 + α

τ2 )L(ℓ, )

which is at most αL(ℓ). ◀

Now using the above lemma, we can prove Theorem 16.

Proof of Theorem 16. Consider any client j that is in Cfull ∪ C∗ upon termination of
PseudoApproximation. It must be the case that ReRoute(j) was called at least once
during PseudoApproximation. Consider the time of the last such call to ReRoute(j). If
j is added to C∗ at this time, note that its radius level from now until termination remains
unchanged, so applying Lemma 18 gives that d(j, S) ≤ αL(ℓj), as required. Otherwise, if j

is not added to C∗ at this time, then there must exist some j′ ∈ C∗ such that Fj ∩ Fj′ ≠ ∅
and ℓj′ ≤ ℓj . Then applying Lemma 18 to j′, we have:

d(j, S) ≤ d(j, j′) + d(j′, S) ≤ L(ℓj) + L(ℓj′) + αL(ℓj′) ≤ (2 + α)L(ℓj). ◀

5.4 Putting it all Together: Pseudo-Approximation for GKM
In this section, we prove Theorem 1. In particular, we use the output of PseudoApproxim-
ation to construct a setting of the x-variables with the desired properties.

Proof of Theorem 1. Given as input an instance I of GKM, our algorithm is first to
run the algorithm guaranteed by Lemma 6 to construct LPiter from LP1 such that
E[Opt(LPiter)] ≤ τ−1

loge τ Opt(I). Note that we will choose τ > 1 later to optimize our
final approximation ratio. Then we run PseudoApproximation on LPiter, so by The-
orem 15, PseudoApproximation outputs in polynomial time LPiter along with an optimal
solution ȳ with O(r) fractional variables.

Given ȳ, we define a setting x̄ for the x-variables: for all j ∈ Cpart, connect j to all
facilities in Fj by setting x̄ij = ȳi for all i ∈ Fj . For all j ∈ C∗, we have ȳ(Fj) = 1, so connect
j to all facilities in Fj . Finally, to connect every j ∈ Cfull to one unit of open facilities, we
use the following modification of Theorem 16:
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▶ Proposition 19. When PseudoApproximation terminates, for all j ∈ Cfull ∪ C∗, there
exists one unit of open facilities with respect to ȳ within distance (2 + α)L(ℓj) of j, where
α = max(1, 1 + 2

τ , τ3+2τ2+1
τ3−1 ).

The proof of the above proposition is analogous to that of Theorem 16 in the case β = 1,
so we omit it. To see this, note that for all j ∈ C∗, we have ȳ(Fj) = 1. This implies that
each j ∈ C∗ has one unit of fractional facility within distance L(ℓj). Following an analogous
inductive argument as in Lemma 18 gives the desired result.

By routine calculations, it is easy to see that α = τ3+2τ2+1
τ3−1 for all τ > 1. Now, for all

j ∈ Cfull, we connect j to all facilities in Bj . We want to connect j to one unit of open
facilities, so to find the remaining 1− ȳ(Bj) units, we connect j to an arbitrary 1− ȳ(Bj)
units of open facilities within distance (2 + α)L(ℓj) of j, whose existence is guaranteed by
Proposition 19. This completes the description of x̄.

It is easy to verify that (x̄, ȳ) is feasible for LP1, because ȳ satisfies all knapsack constraints,
and every client’s contribution to the coverage constraints in LP1 is exactly its contribution
in LPiter. Thus it remains to bound the cost of this solution. We claim that LP1(x̄, ȳ) ≤
(2 + α)Opt(LPiter), because each client in Cpart and C∗ contributes the same amount to
LP1 and LPiter (up to discretization), and each client j ∈ Cfull has connection cost at most
2 + α times its contribution to LPiter.

In conclusion, the expect cost of the solution (x̄, ȳ) to LP1 is at most:

(2 + α)E[Opt(LPiter)] ≤ τ − 1
loge τ

(
2 + τ3 + 2τ2 + 1

τ3 − 1

)
Opt(I).

Choosing τ > 1 to minimize τ−1
loge τ (2 + τ3+2τ2+1

τ3−1 ) gives τ = 2.046 and τ−1
loge τ (2 + τ3+2τ2+1

τ3−1 ) =
6.387. ◀

5.5 From Pseudo-Approximation to True Approximation
To extend PseudoApproximation to a true approximation algorithm for the special cases
of knapsack median and k-median with outliers, we need to round the final O(1) fractional
facilities from the output of PseudoApproximation. To do so, we wrap PseudoApprox-
imation with pre-processing and post-processing algorithms. The pre-processing involves
enumeration to overcome the unbounded integrality gap, and the post-processing rounds the
final O(1) fractional facilities. See [8], §6 for details.
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