444 research outputs found

    On the Influence of Tools on Collaboration in Participative Enterprise Modeling – An Experimental Comparison between Whiteboard and Multi-Touch Table

    Get PDF
    The paper presents an experiment about the influence of the modeling tool on group work in the context of enterprise modeling. A goal modeling task was set where three groups of three persons worked with a whiteboard, and three groups of three persons worked with a multi-touch table. Comparisons of working styles between the two tools indicate that multi-touch tables promote parallel working and that a team member’s position plays a role in taking on certain tasks. Whiteboard users may more easily lose track of what teammates are doing

    Improving active participation during enterprise operations modeling with an extended story-card-method and participative modeling software

    Get PDF
    The COVID-19 pandemic emphasized the need for process automation, using agile software development practices. However, when agile methods are used in scaled contexts, many software development efforts fail, mainly due to lacking requirements engineering practices. When business-oriented software needs to be developed within a scaled context, the story-card method (SCM), developed as part of a previous study, assists in structuring emerging software requirements within a taxonomy that represents enterprise operation. The SCM helps agile team members to develop a common understanding about enterprise operation when they construct the enterprise operation taxonomy. Digital participatory enterprise modeling (PEM) may increase collaboration and understanding among team members, especially when team members are geographically dispersed, when they co-model their understanding of enterprise operations. Using design science research to further evolve the existing SCM, we identified two concerns regarding the existing SCM: (1) The modeling software did not encourage active participation during modeling, and (2) Low quality of the resulting cooperation structure diagram (CSD) that is used to derive an enterprise operation taxonomy, i.e., the need to further extend the existing SCM. As main contribution of this article, we addressed previous deficiencies of the SCM, developing an extended SCM (eSCM), based on principles and guidelines that would encourage online participation during PEM, also providing a comprehensive case to demonstrate the eSCM. As a second contribution, we used survey-feedback from research participants, as well as activity tracking to evaluate whether the modeling tool encouraged active PEM. Our third contribution is to evaluate the quality of the resulting CSDs with suggestions for future improvement.Open access funding provided by University of Pretoria.http://link.springer.com/journal/10270am2024Industrial and Systems EngineeringSDG-09: Industry, innovation and infrastructur

    Multi-Touch Table for Enhancing Collaboration during Software Design

    Get PDF
    Encouraging collaborative software design through the use of Multi-touch interfaces has become increasingly important because such surfaces can accommodate more than one user concurrently, which is particularly useful for collaborative software design. This study investigated the differences in collaborative design among groups of students working in PC-based and Multi-touch table conditions to determine the potential of the Multi-touch table to increase the effectiveness of collaboration during software design. The literature includes several interesting studies reflecting the role of Multi-touch tables in enhancing collaborative activities. Research has found that Multi-touch tables increase group interaction and therefore increase the attainment of group goals. Although many research efforts have facilitated collaboration among users in software design using Unified Modelling Language (UML), these studies examined distributed collaboration and not face-to-face collaboration. However, existing research that studied facilitating co-located collaborative software design has some limitations such as using technologies that prevent parallel design activities. Collaborative software design using Multi-touch table has not been widely explored. A structured literature review revealed that no Multi-touch collaborative UML design tool is available. Thus, a Multi-touch enabled tool called MT-CollabUML was developed for this study to encourage students to work collaboratively on software design using UML in a co-located setting. Eighteen master’s level students enrolled in the Software Engineering for the Internet module were selected to participate in the study. The participants formed nine pairs. The experiment followed a counterbalanced within-subjects design where groups switched experiment conditions to ensure each group used the Multi-touch table and PC-based conditions. All collaborative UML diagramming activities were video recorded for quantitative and qualitative analysis. Results show that using the MT-CollabUML tool in the Multi-touch table condition enhanced the level of collaboration among the team members and increased their shared contribution. It also increased the equity of participation; the individuals contributed almost equally to the task, and single-person domination decreased in the Multi-touch condition. Results also show that the Multi-touch table encourages parallel-participative design where both group members work in a parallel manner to accomplish the final agreed-upon design. The analysis of verbal communication shows that both experiment conditions encouraged subjects to use collaborative learning skills

    A framework for co-located collaborative business process modelling using touch technologies

    Get PDF
    In recent years the field of Business Process Modelling (BPM) has gained increasing attention from both the business and research communities. One of the primary drivers for BPM is the improved understanding of Business Processes (BPs) and the competitive advantage gained over competitors. In addition, BPM can improve communication in an organisation and facilitate increased support for change management. BPM is a collaborative activity that needs to be carried out in a team environment, and Collaborative Business Process Modelling (CBPM) promotes improved readability, accuracy and quality of process models as well as a reduced workload for modellers. In spite of the increased popularity of CBPM, there is limited research related to the collaborative nature of the modelling tasks performed by modellers and specifically to the synchronisation of shared process models. In addition, tools and techniques to support CBPM do not support this synchronisation effectively or efficiently. This study proposes a conceptual framework for CBPM using touch technologies in a colocated collaborative environment. The main research problem addressed by this study is that modellers experience difficulties conducting BPM activities in a co-located collaborative environment. In order to address the research problem and clarify and elaborate on the problems of CBPM, a two-fold approach was undertaken. Firstly, after an in-depth literature review, a BPM survey was designed and then sent to modellers in South African Information Technology (IT) consulting companies in order to provide a more in-depth understanding of the status and challenges of CBPM in IT consulting organisations. The results revealed that available BPM software do not adequately cater for CBPM and software tools do not enforce versioning and synchronisation. In addition, hardware constraints were reported as well as problems with integrating different parts of the process model that the modellers were working on. The results of the survey also showed that the positive aspects of CBPM are that ideas could be shared and overall there is a better understanding of the BPs being modelled. The second part of the problem elaboration consisted of usability field studies with participants from both education and industry using a traditional popular BPM software tool, Enterprise Architect (EA). Whilst several benefits of CBPM were confirmed, several challenges were encountered, particularly with regard to the integration and synchronisation of models. To overcome the problems of CBPM, a framework was developed that allows for co-located CBPM using tablet PCs. The framework includes a developed prototype of the BPMTouch software which runs on tablet PCs, as well as some theoretical aspects of CBPM. The BPMTouch software supports effective and efficient CBPM and the synchronisation of process models since it allows multiple modellers to work together on one BP model, with each modeller using his/her own tablet. If one modeller makes changes to the model, the changes are immediately reflected on the tablets of the other modellers since the changes to the model are updated in real time. Modellers cannot draw on the same model simultaneously, however, everyone can see what the active modeller (active participant with the green flag) is doing. Other participants can then become the active modeller and make changes to the model once the flag has been released and re-allocated. The results from the field studies, industry surveys and usability evaluations were all incorporated into the BPMTouch software tool design and into the aspects of CBPM in order to assist with the process of co-located CBPM using touch technologies. Usability evaluations were carried out in which industry and student participants used BPMTouch to create an integrated model and simultaneously and synchronously create a process model. The evaluations of the BPMTouch prototype revealed that participants prefer this system over traditional BPM software since the BPMTouch removes the need for post modelling integration. The theoretical contribution of the framework consists of aspects proposing that organisations should take the potential benefits and challenges of CBPM into consideration and address the Critical Success Factors (CSFs) before embarking on a CBPM project. These aspects can help with decisions relating to CBPM. The use of this framework can improve the quality of process models, reduce the workload of modellers and in this way increase the success rate of CBPM projects

    Model-Driven Information Security Risk Assessment of Socio-Technical Systems

    Get PDF

    Applications of Virtual Reality

    Get PDF
    Information Technology is growing rapidly. With the birth of high-resolution graphics, high-speed computing and user interaction devices Virtual Reality has emerged as a major new technology in the mid 90es, last century. Virtual Reality technology is currently used in a broad range of applications. The best known are games, movies, simulations, therapy. From a manufacturing standpoint, there are some attractive applications including training, education, collaborative work and learning. This book provides an up-to-date discussion of the current research in Virtual Reality and its applications. It describes the current Virtual Reality state-of-the-art and points out many areas where there is still work to be done. We have chosen certain areas to cover in this book, which we believe will have potential significant impact on Virtual Reality and its applications. This book provides a definitive resource for wide variety of people including academicians, designers, developers, educators, engineers, practitioners, researchers, and graduate students

    eXtended Reality for Education and Training

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Product/Brand co-creation methodology crossing marketing, design thinking, creativity and management: ideas(r)evolution

    Get PDF
    This thesis introduce a new innovation methodology called IDEAS(R)EVOLUTION that was developed according to an on-going experimental research project started in 2007. This new approach to innovation has initial based on Design thinking for innovation theory and practice. The concept of design thinking for innovation has received much attention in recent years. This innovation approach has climbed from the design and designers knowledge field towards other knowledge areas, mainly business management and marketing. Human centered approach, radical collaboration, creativity and breakthrough thinking are the main founding principles of Design thinking that were adapted by those knowledge areas due to their assertively and fitness to the business context and market complexity evolution. Also Open innovation, User-centered innovation and later on Living Labs models emerge as answers to the market and consumers pressure and desire for new products, new services or new business models. Innovation became the principal business management focus and strategic orientation. All this changes had an impact also in the marketing theory. It is possible now to have better strategies, communications plans and continuous dialogue systems with the target audience, incorporating their insights and promoting them to the main dissemination ambassadors of our innovations in the market. Drawing upon data from five case studies, the empirical findings in this dissertation suggest that companies need to shift from Design thinking for innovation approach to an holistic, multidimensional and integrated innovation system. The innovation context it is complex, companies need deeper systems then the success formulas that “commercial “Design thinking for innovation “preaches”. They need to learn how to change their organization culture, how to empower their workforce and collaborators, how to incorporate external stakeholders in their innovation processes, hoe to measure and create key performance indicators throughout the innovation process to give them better decision making data, how to integrate meaning and purpose in their innovation philosophy. Finally they need to understand that the strategic innovation effort it is not a “one shot” story it is about creating a continuous flow of interaction and dialogue with their clients within a “value creation chain“ mindset; RESUMO: Metodologia de co-criação de um produto/marca cruzando Marketing, Design Thinking, Criativity and Management - IDEAS(R)EVOLUTION. Esta dissertação apresenta uma nova metodologia de inovação chamada IDEAS(R)EVOLUTION, que foi desenvolvida segundo um projecto de investigação experimental contínuo que teve o seu início em 2007. Esta nova abordagem baseou-se, inicialmente, na teoria e na práctica do Design thinking para a inovação. Actualmente o conceito do Design Thinking para a inovação “saiu” do dominio da area de conhecimento do Design e dos Designers, tendo despertado muito interesse noutras áreas como a Gestão e o Marketing. Uma abordagem centrada na Pessoa, a colaboração radical, a criatividade e o pensamento disruptivo são principios fundadores do movimento do Design thinking que têm sido adaptados por essas novas áreas de conhecimento devido assertividade e adaptabilidade ao contexto dos negócios e à evolução e complexidade do Mercado. Também os modelos de Inovação Aberta, a inovação centrada no utilizador e mais tarde os Living Labs, emergem como possiveis soluções para o Mercado e para a pressão e desejo dos consumidores para novos productos, serviços ou modelos de negócio. A inovação passou a ser o principal foco e orientação estratégica na Gestão. Todas estas mudanças também tiveram impacto na teoria do Marketing. Hoje é possivel criar melhores estratégias, planos de comunicação e sistemas continuos de diálogo com o público alvo, incorporando os seus insights e promovendo os consumidores como embaixadores na disseminação da inovação das empresas no Mercado Os resultados empiricos desta tese, construídos com a informação obtida nos cinco casos realizados, sugerem que as empresas precisam de se re-orientar do paradigma do Design thinking para a inovação, para um sistema de inovação mais holistico, multidimensional e integrado. O contexto da Inovação é complexo, por isso as empresas precisam de sistemas mais profundos e não apenas de “fórmulas comerciais” como o Design thinking para a inovação advoga. As Empresas precisam de aprender como mudar a sua cultura organizacional, como capacitar sua força de trabalho e colaboradores, como incorporar os públicos externos no processo de inovação, como medir o processo de inovação criando indicadores chave de performance e obter dados para um tomada de decisão mais informada, como integrar significado e propósito na sua filosofia de inovação. Por fim, precisam de perceber que uma estratégia de inovação não passa por ter “sucesso uma vez”, mas sim por criar um fluxo contínuo de interação e diálogo com os seus clientes com uma mentalidade de “cadeia de criação de valor

    Semantic discovery and reuse of business process patterns

    Get PDF
    Patterns currently play an important role in modern information systems (IS) development and their use has mainly been restricted to the design and implementation phases of the development lifecycle. Given the increasing significance of business modelling in IS development, patterns have the potential of providing a viable solution for promoting reusability of recurrent generalized models in the very early stages of development. As a statement of research-in-progress this paper focuses on business process patterns and proposes an initial methodological framework for the discovery and reuse of business process patterns within the IS development lifecycle. The framework borrows ideas from the domain engineering literature and proposes the use of semantics to drive both the discovery of patterns as well as their reuse
    corecore