59 research outputs found

    Dataflow development of medium-grained parallel software

    Get PDF
    PhD ThesisIn the 1980s, multiple-processor computers (multiprocessors) based on conven- tional processing elements emerged as a popular solution to the continuing demand for ever-greater computing power. These machines offer a general-purpose parallel processing platform on which the size of program units which can be efficiently executed in parallel - the "grain size" - is smaller than that offered by distributed computing environments, though greater than that of some more specialised architectures. However, programming to exploit this medium-grained parallelism remains difficult. Concurrent execution is inherently complex, yet there is a lack of programming tools to support parallel programming activities such as program design, implementation, debugging, performance tuning and so on. In helping to manage complexity in sequential programming, visual tools have often been used to great effect, which suggests one approach towards the goal of making parallel programming less difficult. This thesis examines the possibilities which the dataflow paradigm has to offer as the basis for a set of visual parallel programming tools, and presents a dataflow notation designed as a framework for medium-grained parallel programming. The implementation of this notation as a programming language is discussed, and its suitability for the medium-grained level is examinedScience and Engineering Research Council of Great Britain EC ERASMUS schem

    Parallel Architectures for Planetary Exploration Requirements (PAPER)

    Get PDF
    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified

    A communication-ordered task graph allocation algorithm

    Get PDF
    technical reportThe inherently asynchronous nature of the data flow computation model allows the exploitation of maximum parallelism in program execution?? While this computational model holds great promise several problems must be solved in order to achieve a high degree of program performance?? The allocation and scheduling of programs on MIMD distributed memory parallel hardware is necessary for the implementation of e cient parallel systems?? Finding optimal solutions requires that maxi mum parallelism be achieved consistent with resource limits and minimizing communication costs and has been proven to be in the class of NP complete problems?? This paper addresses the problem of static allocation of tasks to distributed memory MIMD systems where simultaneous computation and communication is a factor?? This paper discusses similarities and di erences between several recent heuristic allocation approaches and identi es common problems inherent in these approaches?? This paper presents a new algorithm scheme and heuristics that resolves the identi ed problems and shows signi cant performance bene ts?

    Rediflow Multiprocessing

    Get PDF
    We discuss the concepts underlying Rediflow, a multiprocessing system being designed to support concurrent programming through a hybrid model of reduction, dataflow, and von Neumann processes. The techniques of automatic load-balancing in Rediflow are described in some detail

    Execution models for mapping programs onto distributed memory parallel computers

    Get PDF
    The problem of exploiting the parallelism available in a program to efficiently employ the resources of the target machine is addressed. The problem is discussed in the context of building a mapping compiler for a distributed memory parallel machine. The paper describes using execution models to drive the process of mapping a program in the most efficient way onto a particular machine. Through analysis of the execution models for several mapping techniques for one class of programs, we show that the selection of the best technique for a particular program instance can make a significant difference in performance. On the other hand, the results of benchmarks from an implementation of a mapping compiler show that our execution models are accurate enough to select the best mapping technique for a given program

    An implementation of SISAL for distributed-memory architectures

    Get PDF
    This thesis describes a new implementation of the implicitly parallel functional programming language SISAL, for massively parallel processor supercomputers. The Optimizing SISAL Compiler (OSC), developed at Lawrence Livermore National Laboratory, was originally designed for shared-memory multiprocessor machines and has been adapted to distributed-memory architectures. OSC has been relatively portable between shared-memory architectures, because they are architecturally similar, and OSC generates portable C code. However, distributed-memory architectures are not standardized -- each has a different programming model. Distributed-memory SISAL depends on a layer of software that provides a portable, distributed, shared-memory abstraction. This layer is provided by Split-C, a dialect of the C programming language developed at U.C. Berkeley, which has demonstrated good performance on distributed-memory architectures. Split-C provides important capabilities for good performance: support for program-specific distributed data structures, and split-phase memory operations. Distributed data structures help achieve good memory locality, while split-phase memory operations help tolerate the longer communication latencies inherent in distributed-memory architectures. The distributed-memory SISAL compiler and run-time system takes advantage of these capabilities. The results of these efforts is a compiler that runs identically on the Thinking Machines Connection Machine (CM-5), and the Meiko Computing Surface (CS-2)

    The NASA computer science research program plan

    Get PDF
    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified

    Activities of the Institute for Computer Applications in Science and Engineering

    Get PDF
    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April 1, 1985 through October 2, 1985 is summarized

    Porting the Sisal functional language to distributed-memory multiprocessors

    Get PDF
    Parallel computing is becoming increasingly ubiquitous in recent years. The sizes of application problems continuously increase for solving real-world problems. Distributed-memory multiprocessors have been regarded as a viable architecture of scalable and economical design for building large scale parallel machines. While these parallel machines can provide computational capabilities, programming such large-scale machines is often very difficult due to many practical issues including parallelization, data distribution, workload distribution, and remote memory latency. This thesis proposes to solve the programmability and performance issues of distributed-memory machines using the Sisal functional language. The programs written in Sisal will be automatically parallelized, scheduled and run on distributed-memory multiprocessors with no programmer intervention. Specifically, the proposed approach consists of the following steps. Given a program written in Sisal, the front end Sisal compiler generates a directed acyclic graph(DAG) to expose parallelism in the program. The DAG is partitioned and scheduled based on loop parallelism. The scheduled DAG is then translated to C programs with machine specific parallel constructs. The parallel C programs are finally compiled by the target machine specific compilers to generate executables. A distributed-memory parallel machine, the 80-processor ETL EM-X, has been chosen to perform experiments. The entire procedure has been implemented on the EMX multiprocessor. Four problems are selected for experiments: bitonic sorting, search, dot-product and Fast Fourier Transform. Preliminary execution results indicate that automatic parallelization of the Sisal programs based on loop parallelism is effective. The speedup for these four problems is ranging from 17 to 60 on a 64-processor EM-X. Preliminary experimental results further indicate that programming distributed-memory multiprocessors using a functional language indeed frees the programmers from lowl-evel programming details while allowing them to focus on algorithmic performance improvement
    corecore