
UCRLLR-122353

An Implementation of SISAL
for Distributed-Memory Architectures

Patrick C. Beard

June 1995

DISCLAIMER

This document was prepared as an account of work Sponsored by an agency of the United States Government. Neither
the United States Government nor the University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represenk that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply ik endorsement, recommendation, or favoring by
the United States Government or the University of California. The views and opinions of authors expressed herein do
not necessarily state or rdect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE cantractors from the
Office of SCientXic and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 5764401, ETS 626-8401

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161

An Implementation
for Distribited-Memo9 I

UCRGLR-l22353
Distribution Categorg UC-705

of SISAL
Architectures

Patrick C. Beard
University of Calif omia, DaGis

Master of Science Thesis

Manuscript date: June 1995

LAWRENCE LIVERMORE NATIONAL LABORATORY
University of California Livermore, Calif o h a 94551

An Implementation of SISAL

for Distributed-Memory Architectures

Patrick Charles Beard

BSME, University of California at Berkeley, 1987

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Computer Science

in the

OFFICE OF GRADUATE STUDES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Committee in Charge

1995

1

Patrick C. Beard
June 1995
Computer Science

An Implementation of SISAL

for Distributed-Memory Architectures

Abstract

This thesis describes a new implementation of the implicitly parallel functional

programming language SISAL, for massively parallel processor supercomputers.

The Optimizing SISAL Compiler (OSC), developed at Lawrence Livermore

National Laboratory, was originally designed for shared-memory multiprocessor

machines and has been adapted to distributed-memory architectures. OSC has

been relatively portable between shared-memory architectures, because they are

architecturally similar, and OSC generates portable C code. However,

distributed-memory architectures are not standardized - each has a different

programming model. Distributed-memory SISAL depends on a layer of software

that provides a portable, distributed, shared-memory abstraction. This layer is

provided by Split-C, a dialect of the C programming language developed at U. C.

Berkeley, which has demonstrated good performance on distributed-memory

architectures. Split-C provides important capabilities for good performance:

support for program-specific distributed data structures, and split-phase

memory operations. Distributed data structures help achieve good memory

locality, while split-phase memory operations help tolerate the longer

communication latencies inherent in distributed-memory architectures. The

distributed-memory SISAL compiler and run-time system takes advantage of

these capabilities. The results of these efforts is a compiler that runs identically .

on the Thinking Machines Connection Machine (CM-S), and the Meiko

Computing Surface (CS-2).

ii

Acknowledgments

This work was supported by the U.S. Department of Energy, by Lawrence

Evermore National Laboratory (L W) under contract No. W-7405-ENG-48.

Funding was also provided by the Student Employee program administered by

the director's office. I would like to thank my committee members: Dr. John Feo

(chair), Dr. David Culler, and Dr. Kent Wilken. Kudos to my colleagues at LLNL

for their invaluable guidance: Scott Denton, Pat Miller, Cindy Solomon, Srdjan

Mitrovic, Tom DeBoni, and Judy Mi&&. I would also like to thank the Berkeley

team for letting me use (and abuse) their CM-S's, and for creating (and

maintaining) Split-C: Chad Yoshikawa (Meiko Split-C), Steve Lumetta (Split€

debugger), and Arvind Krishnaxnurthy (T3D Split€).

Most of all, thanks to my fiance, Bettina Kamriani, for her wisdom,

patience and confidence in me, i d my parents for helping me when I needed it

most.

iii

Contents

2

3

... Acknowledgments ... u

List of Listings ... vi

List of Figures ... vi

List of Tables ... vu

1 Introduction .. 1

..

1.2

1.3

SISAL Compiler Overview ... 5

2.1 A Tour of the SISAL System ... 5

21.1 SISAL'S Run-Time System .. 5

2.1.2 Back-End Code Generator .. 8

Distributed-Memory Programming Model 9

Future of SISAL .. 3

Scope of the Thesis ... 3

22

23 Implications for SISAL .. 10

24 Distributed Shared-Mem~ry .. 12

The Split-C Language .. 12

The Split-C Programming Model .. 14

Implementing Distributed-Memory SIS. .. 15

Run-time System Changes .. 15

24.1

2.4.2

3.1 Getting SISAL Running ... 15

3.1.1

3.1.2 Code Generation Changes .. 19

3.2 Compiler Verification .. 22

3.3 Optimizations for Distributed-Memory ... 23

4

3.3.1 SISAL Run-Time System 0ptimiza.tiOnS 23

Results & Discussion ... 26

4.1 Performance Studies .. 26

iv

4.1.1 Performance Studies of Life .. 27

4.1.2 Performance Studies of Laplace ... 31

4.1.3 Performance Studies of Matrix Multiplication 33

4.2 Related Work .. 34

4.3 Conclusions & Future Work ... 35

Bibliography .. 38

Appendix ... 40

AS

A.2

A.3

SEAL Program: Life ... 40

SEAL Program: Laplace .. 42

A.21 Original Laplace ... 42

A.22 Modified Laplace .. 43

SISAL Program: Matrix Multiply .. 44

A.3.1 Simple Matrix Multiply ... 44

A.3.2 Re-Transposed Matrix Multiply ... 45

V

List 04 Listings

listing 3.1: Parallel initialization of the distributed task queue 16

listing 3.2 C representation of a global pointer .. 17

listing 3.3 Split-C post-increment code ... 17

listing 3.4: Equivalent C post-increment code .. 17

listing 3.5: Typedef for SISAL array data type .. 18

listing 3.6 Typedef for global pointer to SEAL array ... 18

listing 3.7: Macro for addition of any types ... 20

listing 3.8 Typedef for global pointer to SISAL array ... 21

listing 4.1: Data type for activation records ... 36

listing 3.9: Simple SISAL program to build an array in parallel 22

List of Figures

figure 4.1: Life evolution. 10x10 initially. and after 2 iterations 27

figure 4.2 Life speedups for 64 processor CM-5 .. 29

figure 4.3 32 processor Meiko CS-2, 2 i teratio~ .. 31

v i

List of Tables

table 4.1: CM-5 Life perfomiance for 100x100 & 250x250 grid size 28

table 4.2 CM-5 Life performance for 500x500 & lOOOxl000 grid size 29

table 4.3 Meiko Life performance for 100x100 & 250x250 grid size 30

table 4.4 Meiko Life performance for 500x500 & 1000x1000 grid size 30

table 4.5: Original Laplace performance for 256x256 grid size 32

table 4.6: Modified Laplace performance for 256x256 & 512x512 grid size 32
table 4.7: Modified Laplace performance for 1024x1024 grid size 32

table 4.8 Matrix Multiplication without pre-transposition 33

table 4.9: Matrix Multiplication with pre-transposition .. 33

table 4.10: Relative speedups using.pre-transposition .. 34

.....

vii

.

1

1 Introduction
“16,384 processors make shmf work“ - MPP projecf moifo CSc851

1.1 History of SISAL

SISAL (Streams, Iteration, in a Single Assignment Language) is a special purpose

functional language intended to be a comfortable, ‘expressive and efficient

alternative to FORTRAN for parallel scientific computing. The language was

developed in a collaborative effort between Lawrence Livermore National

Laboratory (LW), Colorado State University, the University of Manchester, and

Digital Equipment Corporation. SISAL was initially defined in 1983 (vLO),

revised in 1985 (v1.2), and branched into two main development directions

[Mc93]. Version 2.0 of the language was defined by Colorado State University

and LLNL, but was never implemented. SISAL-90 is being developed at LLNL

and will incorporate features from SISAL 2.0, as well as features from

FORTRAN-90 CFe951.

The goals of the SISAL project, given in [FegO], are: to create a general

purpose language that lets scientific programmers concentrate more on solving

problems and less on implementation issues; to invent optimization techniques

for high-performance parallel computing; to provide dataflow computing on

.conventional hardware; and to prove that applicative (functional) computing can

be used for scientific comput‘ation.

In 1995, what can we state about the success of the SISAL project? Has it

met its goals? SISAL is implicitly parallel, so that while a programmer need not

be concerned with the low-level details of parallel machines, his choice of

algorithm will affect how much parallelism the compiler can realize. Still, all

issues such as parallelism management, communication and synchronization are

handled by the compiler and the runtime system, without involving the SISAL

application programmer. This meets the first stated goal quite well.

2

In the areas of functional &page optimization, SISAL implementors

have pioneered in the areas of dataflow optimization for non-dataflow

architectures, copy elimination and modify-in-place analysis (both critical for

applicative languages to perform well), and parallelism detection and utilization

[Ca92]. The current release version of the SISAL compiler supports loop-level

parallelism - earlier versions provided function-level and producer-consumer1

parallelism.

SISAL has proven the viability of functional languages for scientific

computing. Worldwide, there are more than 250 users of SISAL at 75 sites, and

there are yearly conferences and workshops devoted to the language. SISAL is an

efficient alternative to imperative languages even running sequentially. Recent

comparative studies discussed in [Mc93] show SISAL performing only 5 to 20%

slower than FORTRAN when running comparable algorithms on a single

processor, but 10% faster on 8 processors, without any source code changes in the

SISAL program.

SISAL has also proven to be a fruidid tool for research. Several groups

outside of LLNL have used the SISAL language and compiler as starting points

for new languages [Sa95]. One researcher has implemented an APL compiler that

generates SISAL as its target language. There are also implementations of

FORTRAN, C, Ada, Pascal and Id, that generate the same intermediate form as

SISAL, and use SISAL'S back end.

~ A I S O called streams. AII experimental version of the SISAL compiler was recently released that
supports stream parallelism.

1.2 Future of SISAL
Since SISAL is an implicitly parallel functional language, it has been remarkably

versatile in taking advantage of disparate architectures. At present, SISAL runs

on more than seventeen different platforms, from running sequentially on uND(,

DOS, and Macintosh worktations, to running in parallel on shared-memory

multiprocessors such as the Encore Mulfimax, and utilizing vector processing on

the Crays. However, SISAL has not been available for the latest *generation of

parallel computers, distributed-memory, massively parallel processor (MPP)

machines, which require significantly different programming techniques.

MPP computers provide a large number of processing elements (PES)

which contain a memory module and one or more processors, interconnected by

a "scalable" communication network. (CKu941 provides a good survey of

communication networks.) Communication between PES is often explicitly

programmed, rather than being hidden by virtual memory or cache hardwar$.

Since MPPs typically do not provide a global address space, and the current

SISAL compiler only generafes code for shared-memory machines, getting SISAL

programs to run on MPP hardware has required a substantial engineering effort,

as this thesis will show.

1.3 Scope of the Thesis

This thesis describes the modification of the Optimizing SISAL Compiler (OSC)

for distributed-memory, massively parallel processing (Mpp) supercomputers.

Section 2 provides an overview of the SISAL system, presents some of the issues

of compiling for distributed-memory architectures, and describes how these

issues are addressed in the distributed-memory SISAL system.

2The Cray T3D does provide hardware that translates a virtual address into a node and physical
address, but must still be programmed explicitly. Sp1it-C hides this.

4

Section 3 describes the construction of the new distributed-memory SISAL

system. The work proceeded in four phases: (I). identifying the requirements of

compiling for MPP machines, choosing a target language and shared memory

abstraction that would be portable between MPP machines, and studying the

original shared-memory compiler to plan the modifications; (2) rewriting the

run-time system, implementing the necessary changes for MPP machines and

testing it on a real MPP machine (the CM-5); (3) hand-modification of the output

of the SISAL compiler to function with the new run-time system, and using these

results to modify the code generator to emit MPP-compatible code; (4) moving

the compiler to a different MPP architecture to demonstrate the portability of the

implementation.

Finally, section 4 examines the performance of distributed-memory SISAL,

suggests improvements, and discusses related work.

5

2 SISAL Compiler Overview.

Since the Optimizing SISAL Compiler (O X) was originally designed for shared-

memory multiprocessors, it had to be extended to satisfy the requirements

imposed by MPP architectures. This section provides an overview of the SISAL

system, discusses MPP architecture requirements, and how they can be

accommodated by distributed-memory SISAL.

2.1

A large portion of the Optimizing SISAL Compiler is devoted to converting a

SEAL program into data flow graphs, and improving these graphs with a variety

A Tour of the SISAL System

of machineindependent optimizations. These sections of the compiler are

described in detail in [Ca92a]. The discussion here will focus on the lowest level

portions of the SISAL system: the run-time system and d e generator.

21.1 SISAL’S Run-Time System

SISAL‘S Run-Time System (SRTS, pronounce like “certs”) is written in the C

programming language, and provides services used by all SISAL programs.

.SRTS provides a main (1 function for stand-alone SISAL programs (programs

written entirely in SISAL), structured sequential I/O, memory management, task

scheduling, and performance monitoring.

The function main (1, used by stand-alone SISAL programs, processes

command-line arguments, i&ializes SRTS, reads program inputs, and then calls

the user’s SEAL program, which is C code generated by the SISAL badc-end.

After the program executes, main (1 generates performance diagnostics, and

prints the program results.

6

Because SISAL provides a rich set of data.types, representing program

inputs and outputs is difficult. To make this easter, SRTS implements a language

called mBRE for expressing the inputs and outputs of a SISAL program ECa92bl.

FIBRE is used to describe all possible SISAL values, which can be scalar values

(character, integer, floating point), arrays of scalar values, strings (arrays of

characters), arrays of arrays (to support multi-dimensional arrays), unions, and

records. Since user-defined data structures vary from program to program,

mBRE routines provide primitive 1/0 operations for use by compiler generated

routines for user-defined data. Since SISAL is a purely functional, and

deterministic language, all SISAL 1/0 is performed sequentially; inputs are read

at the start of the program, and outputs are written at the end.

When SRTS is initialized, (by default) a large block of memory is allocated

for the exclusive use of the running SISAL program. If the program needs more

memory than is allocated at startup, the run-time system signals an error and

terminates the computation. In response to this, the user can specify that more

memory be allocated with a command line option. Once this memory is

allocated, it is never given back to the operating system, but is instead managed

by the run-time system. Instead of deallocating unused memory, blocks of

unused memory are placed on various free lists, so they can be reused quickly.

This was done to increase the performance of memory management, as general

purpose memory allocators provided by the host operating system were found to

be too slow.

A running SISAL program consists of sequential sections that run on only

one processor (the master), and parallel sections that run on all available

processors (the workers). SISAL is an implicifly parallel language, and parallelism

is realized in the form of loops in which all iterations can be executed

independently. To execute a loop in parallel, SISAL "slices" the loop into sub-

tasks which compute a fraction of the total number of iterations of the loop. The

SISAL compiler specifies how loops are sliced, but the run-time system

distributes loop slices to the workers as independent tasks. At the beginning of

each parallel loop, these tasks are created by SRTS, and placed in a queue for the

workers to execute. To help avoid memory contention (hot-spots), SRTS uses a

separate queue for each worker. When the workers finish the tasks, they notify

the master, which can proceed only after all tasks complete.

The simplest strategy for task allocation is that a loop of n iterations is

divided up among p processors into n/p loop slices of contiguous loop indices,

and each worker is given a single slice. If necessary, the user can request strided

(non-contiguously indexed) and variable sized slices (e.g. using guided self-

scheduling), by issuing appropriate command line options to the SISAL compiler

and run-time system. The run-time system also supports multiple levels of loop

slicing, where nested parallel loops are further sub-divided when there is

sufficient parallel work to warrant it.

The above architecture requires that SRTS maintain shared data structures

for memory management (the free lists) and task distribution (the work queues),

as well as shared lock variables for synchronization. MPP architectures do not

provide direct support for such shared data structures, and require that

programs written in a shared-memory style be rewritten using explicit

communications. This would require a major rewrite of SRTS, doing away with

shared data structures, and using messages for all data exchange and

synchronization. Since the data structures used. to represent loop slices use

pointers to the actual data needed to perform the computation, using messages

rather than shared data structures would require copying this data into message

buffers, and could present significant overhead. Moreover, a loop body might

not touch all the elements of input data, thus the cost of communication might be

8

wasted. What is needed is a way €0 support shared data structures on MPl?

machines3 in a way that does not require such .drastic changes and provides a

degree of portability so that SISAL can be used on a wider variety of machines.

2.12 Back-End Code Generator

The Optimizing SISAL Compiler (OSC) translates SISAL source programs into a

data-flow graph intermediate form called IF [Sk85, We%]. Each successive phase

of the compiler reads in the IF representation, applies a series of optimizations

and transformations, and then writes out the results for the next phase. The final

phase of the compiler, known as IEGEN, translates IF into C, which is then

passed to the host operating system's C compiler.

IFZGEN generates a single C source file consisting of several distinct

sections. The important sections are the file prologue, the functions and loop slice

bodies, and the file epilogue. The file prologue contains $include directives, data

type declarations, and array copy functions. The second major section contains

code that implements the user's program, including functions to compute the

loop slices. The file epilogue contains global data declarations and initializations,

the function SisalMain () (if a stand-alone SISAL program), and, finally, FIBRE

functions for reading and writing the user-defined data strucixres (records and

Unions).

The next section examines the requirements of programming for

distributed-memory architectures, and suggests how these requirements can be

met by an enhanced SISAL system.

3Cray has predicated the design of its T3D MPP on providing efficient support for shared data
structures. Hopefully, this will become a trend. Tera's Multithreaded Architecture (MTA) goes
even further.

9

2.2 Distributed-Memory Programming Model

Distributed-memory architectures provide a programming model that is

fundamentally different from shared-memory architectures. In the distributed-

memory model, processors can only communicate by explicitly exchanging

messages and cannot access each other‘s memory directly. This explicit exchange

of messages is programmed using “send/receive” communication primitives,

which are provided in a library by the system manufacturer. A message passing

program is structured so that for every send that occurs on one processor, a

corresponding receive must eventually occur on the processor that is the target of

the send, otherwise the program will never complete. A detailed discussion of

message passing programming is given in CAn911.

In contrast, in the shared-memory programming model, any processor can

read or write arbitrary memory locations, independently of other processors,

with the trade-off that consistency (by mutual exclusion) must be explicitly

programmed using synchronization primitives (semaphores, lock variables, for

atomic operations). Message passing programming does not require explicit

synchronization, as the send/receive operations provide implicit “rendezvous”

synchronization Ih911.

Although the power of the two models is equivalent, it is generally easier

to implement message passing in terms of shared-memory operations (via

message queues and locks), rather than vice-versa However, since distributed-

memory architgctures do not support shared-memory operations in hardware,

programmers are usually required to use message passing on these machines.

Another issue that arises in the message passing model is the’lack of a

standard message passing library that runs on multiple MPP platforms. Each

vendor provides its own iniplementation, designed especially for its platform.

While all message passing systems are similar, the details of each has made

portability difficult. Recently, two standards have been gaining acceptance, the

older PVM, and the newer MPI, but their use is not universally accepted, as they

tend to under-perform the vendor-supplied libraries (performance still matters).

Still, despite the proliferation of libraries for message passing

programming, the shared-memory programming model, if it can provide

reasonable efficiency, tends to be preferred by most programmers (and it is the

model that SISAL was originally designed for). One reason for this is that many

algorithms are easier to write‘(and understand) for shared-memory machines,

espeaally those problems which are most naturally represented using linked

data structures (e.g. graph algorithms). This is important - no matter how fast a

machine is, how easy it is to program is a serious consideration.

Perhaps MPP manufacturers should concentrate on providing

communication architectures on which either programming model can be built.

This was asserted in [Ei93] as the rationale for the design of a new

communications architecture known as “active messages” which supports both

message passing and shared-memory programming models, and is designed

specifically for MPP machines. Active messages has formed the basis of work on

new programming languages that hide the details of interprocessor

communications, and provide programmers with a unified shared-memory

vied.

2.3 Implications for SISAL

Since the SISAL system was originally designed for shared-memory hardware,

the above discussion suggests several approaches for targeting distributed-

memory hardware:

4Active messages are now supported directly by Thinking Machines’ (34-5.

I. Use a standard message passing library (e.g. PVM or MPI) to perform
all interprocessor data movement.

2. Implement and use shared-memory operations on top of message
passing.

3. Retarget the compiler to a higher-level language that provides shared-
memory operations on distributed-memory hardware, based on active
messages.

The first approach would have required drastic changes to the existing

SISAL source code. To use straight message passing, every shared-memory

pointer dereference would have to be replaced with send/receive operations.

This large a change would result in a version of the SISAL system that would

have to be maintained separately from the shared memory versions. The ability

to incorporate the changes for M p p machines into the main sources enhances the

mainfainability of the system.

The second approach, implementing a shared-memory abstraction on top

of a message passing system, has been explored in [Ha93al. Their VISA system

used software address translation to map virtual addresses on to a message

passing system. This technique gave the flexibility of creating replicated and

distributed data structures, but proved to be too costly due to the software

address translation for every memory reference.

We chose the third approach - to retarget the SEAL compiler to a new

dialect of C, Split-C, developed at U. C. Berkeley, that provides shared-memory

operations at the language level [Cu93]. This choice lets us transport SISAL easily

to any platform that supports Split-C. Currently, Split€ lzu~s on the TMC CM-5,

the Meiko CS-2, the Cray T3D, and Networks of Workstations (NOW), and more

platforms are on the way. Since each of these platforms has very different

communications architectures (from the CM-5's custom hardware interconnects

to NOW'S TCP/IP over ATM networks), Split-C provides abstracts the

underlying communications hardware, but provides a powerful programming

model.

The next section describes the Split-C programming language and the

support it provides for distributed shared-memory.

2.4 Distributed Shared-Memory

SISAL'S run-time system (SRTS) manages a variety of shared data structures in

order to coordinate the parallel execution of a SISAL program. Therefore it is

important to provide efficient shared-memory support so that the run-time

system does not become a bottleneck to good performance. The following sub-

sections describe how Split-C supports a shared-memory abstraction on

distributed-memory hardware.

2.4.1 The Split-C Language

Recently a group at U. C. Berkeley, led by Dr. David Culler, created Split-C, a

dialect of the C programming language for distributed computing [Cu93, Lu941.

Split€ maps a shared-memory address space on to the multiple memories of a

distributed-memory computer. This mapping provides a two-dimensional view

of distributed-memory: the first dimension indicates which processor a memory

location resides on, and the second gives the actual address within a given

processing element's memory. Split-C gives the programmer ultimate control

over how memory will be allocated to a program's data structures, so that

parallel algorithms can be tuned to keep memory accesses local as much as

possible. Split-C provides a fairly low-level programming model, but its

powerful primitive operations make it well-suited as a target for compiling high-

level languages such as SISAL.

One important benefit Split-C'provides is that it imposes no performance

penalty (over regular C) when a computation accesses only local datas. This is

accomplished by extending C's type system with two new pointer types: global

pointers (deiared as type *global identifier) extend the programmer's reach

by providing a way to access memory locations on any processor; and spread

pointers (declared as type *spread identifier) support data structures that are

distributed across multiple processors. Split€ retains the semantics of regular C

pointers, to address local memory locations.

An important constraint of MPP architectures is that remote memory

operations can take between 10 to 1000 times longer than local memory

operations. Two major techniques have been developed to tolerate these longer

latencies: multiple threads of execution can be used to keep a processor busy

during high-latency operations, suspending the current thread when remote

memory operations initiate and resuming when they complete6; software

pipelining transforms programs by moving non-blocking communications to an

earlier point in a program, so that computations using local data can be

performed concurrently with communications. The limiting factor in multi-

threading is how many threads a program can be divided into, keeping the

,processor sufficiently busy'.

Split-C directly supports the second technique by providing non-blockingf

"split-phase" communications. A new assignment operator, :=? provides

asynchronous put/get operations. If a global pointer is dereferenced on the left-

side of :=, we have a put, otherwise a get. These operations are weakly ordered,

5Starvation is still a problem, however. See 9.4.2 for a discussion of polling.
h s has spawned a variety of new architectures that support fast thread switching in hardware,
such as MIT's Alewife project, and Tera's MTA.
llThis approach has been used in another implementation of distributed memory SISAL [An951 -
see 9.3 for a comparison.

- - , ..

so a new language statement, syncd, is provided to force the completion of all

pending puts and gets.

2.42 The Split-C Programming Model

Split€ provides a Single-Program-Multiple-Data (SPMD) programming model.

This is a hybrid of the Single-Instruction-Multiple-Data (SIMD) and Multiple-

Instruction-Multiple-Data (MIMD) parallel programming models. Although it

can be shown that SIMD machines can emulate MIMD machines, and vice versa

[Hi85], the MIMD model gets better processor utilization when executing non

data-parallel programs. In.the SPMD model, all processors load the same

program image, but, unlike SIMD machines, the instruction streams are not

synchronized across all processors. Moreover, SPMD programs can emulate

MIMD programs, by choosing the instructions to execute as a function of the

processor number.

While Split€ emulates shared-memory on distributed-memory hardware,

the emulation is incomplete in some respects, and goes beyond shared-memory

in others. Split€ is an incomplete emulation of shared-memory on two counts: I)

global objects are not shared, sharing is only done via global pointers to objects

(this is not really a problem, but it must be understood to use Split< effectively);

2) it is possible for processor i to starve processor j if the processor i is involved in

only local computation (no global pointers are in use), and processor j attempts

to dereference a global pointer that refers to processor i's memory. This second

limitation can be alleviated if processor i periodically polls for remote memory

requests.

3 Implementing Distributed-Memory SISAL

The following sections describe in detail the implementation of distributed-

memory SISAL (DMS). Section 3.1 details.the changes made to get SISAL

running correctly on distributed-memory, and section 3.2 describes the

procedures used to verify the run-time system and compiler. Section 3.3

discusses some simple optimizations that were tried to improve distributed-

memory performance. (Section 4 contains an extended discussion of future

work.)

3.1 Getting SISAL Running

The following two subsections illustrate the components of the Optimizing

SISAL Compiler (OK) that were changed for running on distributed-memory

architectures. These are respectively, SISAL'S run-time system, and code

generator.

3.1.1 Run-time System Changes

SISAL'S Run-Time System (SRTS), described in s21.1, provides support for the

'execution of SEAL programs in parallel. It provides sequential formatted I/O,

memory management, synchronization mechanisms, and task management.

Transition to SPMD Execution

The first major change to SRTS was the conversion to an SPMD execution model.

Earlier versions of SRTS were designed to begin execution of a parallel program

on a single processor, which "spawns" the worker processor programs. Split-C's

SPMD execution model requires. that SRTS run on all processors, symmetrically.

SRTS now begins execution at a new main entry point, splitc-main (1, which

16

processes command-line arguments and initializes the run-time system on all

nodes.

The effects of the SPMD programming model change rippled throughout

SRTS, requiring many changes, and permitting a few improvements. In many

cases SRTS maintains arrays of data structures, one element per processor, such

as the work queue. In the old run-time system, these arrays had to be initialized

sequentially, by the master processor. Split-C supports distributed arrays, in

which element i resides on processor (i mod p). In the new run-time system, these

arrays are initialized in parallel, which is not only simpler, but faster. Listing 3.1

shows an example of parallel initialization in which each instance of the runtime

system is responsible for initializing its portion of a distributed data structure.

void InitReadyList (1
{
#ifdef DISTW-MPP

/* initialize in parallel & locally. */
MY INIT LOCK(&ARList [MYPROC] .Mutex) ;
AR%st [iiYPROCl .Head = 0;
ARList [MYPROCI .Tail = 0;
WorkAvailable [MYPROC] = FALSE;

register int Index;
#else

ARList = (ActRecCachePtr) SharedMalloc (
SIZEOF (struct ActRecCache) * NumWorkers) ;

for (Index = 0; Index < NumWorkers; Index++) {
MY-INIT-LOCK((& (ARList [Index] .Mutex) 1 1 ;
ARList [Index] .Head = 0;
ARList[Index] .Tail = 0;

1
#endif
1

listing 3.1: Parallel initialization of the distributed task queue

Global Pointers Everywhere

Split< global pointers support the illusion of shared-memory on distributed-

memory architectures by extending the semantics of C pointer dereferencing to

include interprocessor communication. To explain how global pointers affect

SRTS, we will examine how they are implemented. Global pointers can be

represented in regular C as a struct, as shown in listing 3.2.

struct GlobalPointer {
int proc;
void *addr; /* local address */

/* processor number */
I ;

listing 3.2: C representation of a global pointer

When a global pointer is dereferenced, the Split-C compiler implicitly generates a

test to determine if the pointer represents an on-processor location, and if not, a

call to an appropriate communication primitive. To illustrate, listings 3.3 and 3.4

show code for post-incrementing an integer referenced to by global pointer, in

Split-C and in the equivalent C code.

int post-increment(int "global x)
{

int old-x = *x;
int new-x = old-x + 1;
*X = new-x;
return old-x;

I

listing 3.3: Split-C post-Increment code

int post-increment(Globa1Pointer x)
{

int old-x = (x.proc = MYPROC ?

int new-x = old-x + 1;
if (x.proc == MYPROC)

else

returnyld-x;

* (int*)x,addr : i-read(x.proc, x.addr) ; -

* (int*)x.addr = new-x;

i-write (x .proc, x. addr, new-x) ;

1

listing 3.4: Equivalent C post-increment code

SISAL-generated code is well-suited to use global pointers, because it

makes extensive use of dynamically allocated data structures. Getting the SISAL

run-time system running under Split-C required converting pointer variables to

global pointer variables. To simplify this task, C typedefs were used whenever

.possible to change the meaning of pointer types from local to global. Many of the

-1-

18

type names used by the run-time system were defined with C typedefs

(originally macros) that defined the pointer to the type, such as the type defined

for SISAL arrays shown in listing 3.5.

typedef s t r u c t Array *ARRAYP;

listing 3.5: Typedef for SISAL array data type

Listing 3.6 shows the change to the pointer type to use global pointers.

typedef s t r u c t Array *global ARRAYP;

listing 3.6: Typedef for global pointer to SISAL array

This change seems simple, but it exposed portability problems in the

original run-time system. The pervasive assumption that pointers are the same

size as integers, and the lack of ANSI C prototypes8 for functions that accept

pointers became a problem in the new run-time system, because global pointers

are in general larger than local pointers (see listing 3.1), and hence global pointers

are larger than integers. Since there were no function prototypes in the original

sources, global pointers would be implicitly truncated to integer size, essentially

corrupting their values. Creating prototypes for all exported functions solved this

problem. However, there were also numerous instances of pointers to built-in C

data types &e. char*), that had to be converted by hand to (char *global).

Memory Management

The original run-time system was written for systems with a single shared

address space. This assumption permitted the use of a simple memory

management algorithm: preallocate a large block of memory, allocate memory

by incrementhg a pointer into this block, and deallocate by placing free blocks

into “free lists,” which are searched using a best-fit or first-fit criteria for

8Prototypes are generally placed in C header files, and provide a way to ensure consistent calliig
conventions between the caller of a function and the function itself.

19

subsequent allocations. Unfortunately, this type of memory management

algorithm is not well-suited to distributed-memory machines, because it assumes

all memory can come from a central pool. This centralized pool is impractical due

to the limited amount of memory available in each node. By allocating memory

on all nodes larger problems can be solved by using more nodes. A central pool

would also be a performancebottleneck

The first version of the distributed run-time system used a simple

adaptation of this algorithm, except that a block of memory was allocated. on

each processor, and an independent local pointer was used by each processor to

keep track of allocations. This initial design did not support deallocation, so it

was limited in the size of problems that could be solved. (53.2 discusses simple

improvements in the design of the memory allocation that removed this

res tiction.)

Distributed Synchronization

Split-C provides barriers and atomic operations (tes t-and-set, and

fetch-and-add) for performing synchronization. While these mechanisms are

required by SRTS, they are much more expensive to use in a distributed-memory

system, and in many cases their use can be minimized. (See s3.2 for a discussion

of why their use should be minimized and how this was accomplished.)

3.1.2 Code Generation Changes

The Optimizing SISAL Compiler (OX) is a multiple pass compiler that performs

a wide variety of optimizations for producing &iaent code. The final pass of the

compiler, IFILGEN, generates code in the C programming language. This section

describes how IF2GEN was modified to generate Split€ compatible code.

Global Pointer Conversion

The same pointer conversions that took place in the run-time system were

required in the compiler generated code, so typedefs were used to create pointer

types that encapsulate the use of global pointers. IF2GEN generates C stmctures

to represent the parameter lists of every function in a SISAL program. Since

pointers to these parameter structures are used extensively in the generated C

code, these had to be converted to global pointers. Rather than changing

instances of (s t r u c t Params *) to (s t ruc t Params *global) everywhere in the

compiler, typedefs were generated so that (Paramsptr) could be used instead.

Another vital piece of code used by every SISAL program was the C

header file " s i sa l . h? IF2GEN relies on C macros contained in this file, which

define a simple abstract machine code. A benefit of this design is that changes

can be made to the operation of the generated code by editing this header file

without modifying the compilerg. This header file also had to be modified to be

Split-C compatible. Many macros were of the form shown in listing 3.7.

#define AddOp(type, dest , opl, 0p2) \
* (type*) dest = * (type*) opl + * (type*) 0p2

listing 3.7: Macro for addition of any types

Giventhismacrodefinition,thestatementAddop(float, & x [i] , & y [j] , & z [k l) ;

results in the floating-point' addition of the j-th element of array y to the k-th

element of Z, and stores the results in x Ci1 . When the statement is compiled by

Split-C, the operands can come from anywhere in distributed-memory, so the

(type*) cast is not correct in general. Thus, for every macro of this form, all

instances of (type*) had to be converted to (type *global). This code is perhaps

overly general, because it imposes some additional tests for every pointer

operation (see listing 3.31, but it is correct.

9A drawback is that the resulting C code is often impenetrable, and hard to debug.

21

Structure Copying

A problem with Split-C occurs when using global pointers on both sides of an

assignment statement, as in listing 3.8.

struct stype { int x, y; 1;
struct stype sl, s2, *global gpl, *global -2;
gpl = Csl;
gp2 = &s2;
*gpl = “-2;

listing 3.8: Typedef for global pointer to SISAL array

In any given statement, Split-C only supports either one or more global pointer

reads from, or a single global pointer write. Many macros in “s isa l . h” confahed

this type of structure copying code. To produce correct code under Split-C, a

local variable must be used’to read from the first global location, and then the

local copy is written to the second global location. This transformation is so

straightforward, that the Split-C compiler could be easily modified to do this

automatically.

Rumtime Global Initialization

IFlzGEN creates complex global data initialization statements in which elements

of structures are initialized to addresses of other global variables. Split-C does

not support the compile-time initialization of global pointers, and so this

initialization had to be moved to run-time. Fortunately, a routine that initializes

global data (InitGlobalData o) was already being generated - additional code to

perform the global pointer ixiitializations was added to this routine.

22

3.2 Compiler Verification

The correctness of the new compiler implementation was verified empirically by

running a set of standard test programs. The simplest parallel program used is

shown in listing 3.9.

define main

function ArrayOfN(n : in teger re turns a r ray l in teger])
f o r i i n 1,n
re turns a r ray of i
end f o r

end function

function main(n : in teger returns a r ray[in teger])
ArrayOfN (n)

end function .

listing 3.9: Simple SISAL program to build an array in parallel

This program was chosen for its extreme simplicity and for the ease of

understanding the resulting C program generated by the compiler. This

permitted the hand modification of the compiler output in order to verify the

correctness of the run-time system, and to guide the modifications to the code

generator.

Once the run-time system was working, the compiler was modified to

generate code identical to the hand-modified C code. The next step was to choose

a more ambitious test program, which uncovered latent bugs in the run-time

system and code generator. This iterative process of choosing more and more

complicated test programs worked well and progress was steadily made toward

a fully functional system.

Another way to ensure the correctness of the compiler was to get it

running on a completely different platform. As soon a s the compiler was stable

enough, it was ported from the CM-5 to the Meiko (3-2, which helped to

uncover additional bugs.

3.3 Optimizations for Distributed-Memory

This section examines a few simple optimizations to the distributed-memory

SISAL run-time system, after it was running correctly. g . 1 analyzes the benefits

of these optimizations and suggests future work.

3.3.1 SISAL Run-Time System Optimizations

SISAL'S run-time system contains several shared data structures that were

considered for simple optimizations. These are shared signal variables, the work

queue, and the memory manager.

Replicated Condition Variables

The run-time system uses shared variables to control the execution of a SISAL

. program. The master processor uses shared boolean variables to signal the

workers when work is available, and when to exit the program. The initial

version of the distributed run-time system allocated these condition variables on

the master processor, requiring all other processors to read them from across the

network. This generated network traffic, but produced no useful work.

This type of traffic, caused by continual polling, can be reduced to nothing

, by taking advantage of the fact that this is one-way communication only, from

the master to the workers. If these condition variables are replicated, and made

local to each worker processor, all polling traffic can be eliminated, until the

master sends the signal. This optimization was implemented by replacing each

signal variable with a distributed array, and having each processor poll its local

element. The master processor now signals a particular condition by looping

over all the elements of the distributed array, and writing the appropriate value.

24

Distributed Task Queue

The first version of distributed-memory SISAL'S run-time system (DM-SRTS)

used a central work queue, located in the master processor's memory. Worker

processors would periodically inspect this queue to see if any work is available.

Before any worker could safely inspect the queue, it would first have to lock the

queue by performing an atomic update of a shared lock variable (a global pointer

initialized at startup of the rm-time system). After obtaining the lock, the worker

would then examine the contents of the queue, and take an item of work (if

available), and then unlock the queue by clearing the lock variable.

This design had several deficiencies, which are compounded by a

distributed-memory architemre. First, having a centrally located queue means

that the master processor has to service every request (via polling) to permit the

worker processors to examine the lock variable and queue. Second, a large

amount of network traffic is generated even when there is no work to do! Two

enhancements were made to this design.

The first enhancement was to transform the central work queue into a

distributed array of queues, one per processor. Each worker then examines its

own work queue for work to do, and generates no network traffic when no work

is available. The master processor puts work into the workers' queues, rather

than a worker getting work from the master. The second enhancement was to

add a replicated signal variable to indicate the availability of work, to save the

workers' having to examine .their queues when no work is available. This allows

the workers to avoid having to lock their queues until there is something in them

To ensure consistency, the master only asserts the condition while it holds the

worker's queue lock, and the workers only clear the condition while they hold

the lock.

Distributed Memory Management

To correct the memory management limitations of the first versi.on of DM-SRTS,

a new algorithm was developed. This algorithm, designed for Split-C, uses the

standard C library routines rnalloc (1 and free o to perform memory

management on each node. When one processor (the allocator) allocates a block

of memory on behalf of another processor, the pointer is converted10 to a global

pointer. When a processor is finished with remotely allocated memory, it places

the pointer in a free list located in the allocator's memory. The next time the

allocator needs more memory, it first checks the free list to see if any blocks have

been placed there, and calls free (1 .on them before trying to perform new

allocations. This should give acceptable performance as reasonable

implementations of malloc (1 and free o will coalesce adjacent free blocks to

minimize heap fragmentation. This is also beneficial in that it takes platform-

specific knowledge out of SRTS, which enhances portability.

loSplit€ pointers can be converted from local to global by type casting.

4 Results & Discussion
This section will provide a preliminary examination of the performance of

distributed-memory SEAL, on a small set of parallel programs from the SISAL

literature. The programs have been mn with versions of the run-time system

with the simple optimizations discussed above, to measure their effectiveness.

The section closes with a comparison to related work, suggestions for future

work, and conclusions.

4.1 Performance Studies

The greatest difficulty in producing meaningful performance measurements is

choosing problems that are simple enough to fully analyze, and yet

representative of real problems. For this reason, problems were chosen from the

SISAL literature that are readily understandable, and yet are similar to more

complex problems. The first problem is an implementation of John Conway’s

famous cellular automaton, Life, which simulates an abstract biological system.

The second problem, an iterative Laplace heat equation solver, was used in

[Ha93b] to study the performance of another implementation of distributed-

memory SISAL. The final problem studied was matrix multiplication, which

exhibits a large amount of parallel work, but has pessimal communication

patterns.

27

0 0 0

1 1 0

1 0 0

0 1 0

1 1 0

1 0 0

0 1 0

1 1 0

1 1 1

0 1 0

0 1 1

0 0 0

4.1.1 Performance Studies of Life

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

1 0 0

1 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

The SISAL program for Life is included in the appendix, §AS. The high-level

algorithm used in the Life program is as follows:

0 1

1 1

1 1

0 1

I. Create a random starting configuration of R rows and C columns. This
consists of 1's and 0's placed randomly in an RxC grid. 1 means a cell is
alive, and 0 means a cell is dead (or absent). Pad the grid with 0's all
arouhd the perimeter (thus grid is actually (R+2)x(C+2).
II. Compute the next generation according to the following rules:

A. if a cell is alive, and >5 of its neighbors are alive, the cell dies
from overcrowding.
B. if a cell is absent, but has >=3 neighbors, a cell is born.
C. otherwise, nothing happens.

III. Repeat for N iterations.

0 0

1 0

1 0

1 0

1 0

1 0

1 0

0 0

If R = C = 10, and N = 2, and we have the initial random Configuration shown in

the left half of figure 4.1, the final configuration will be that shown in the right

1 1

0 1

1 1

0 1

1 1

0 1

half.

0 0

0 0

0 0

0 0

0 0

D O

0 r 0 0 0

0 1 0

1 1 1

1 1 1

1 0 1

1 1 0

1 0 0

0 0 0

0 0 1

1 1 0

0 0 0

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

1 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 0

' 0 0

0

0

0

0

~ 0

~ 0 0

figure 4.1: Life evolution, Y OXY 0 Initially, and after 2 iterations

If we study the Generate function in section A.1, we see that it implements

step I of the algorithm. Although each row is built sequentially (for i n i t i a l

loops are sequential), the outer loop, ranging over the number of rows, gathers

28

PES
1
4
8

1 6
32
64

the results of each inner loop (which is a single row) into an array of arrays,

allowing the rows to be built in parallel. On a system with W workers, the SISAL

run-time system will give each worker R/ W rows to create. Since SISAL

represents two-dimensional arrays as "arrays of arrays", the resulting grid will

be built as a distributed data structure, with the rows created by a given worker

residing in that worker's memory.

The DoWork function implements step 11 of the algorithm. As in the

Generate function, the outer loop traverses over a l l the rows, and the inner loop

computes new rows. Here the inner loop is not constrained to be sequential, if

there were enough processors, we would assign a single processor to compute

each new cell, and compute successive generations in constant time. By default,

though, the compiler only slices outer parallel loops, thus the rows will be

traversed in DoWork by the processor that created them in Generate11.

Tables 4.1 and 4.2 shoG the running times and speedups for Life running

on a &node CM-5, for various problems sizes from 100x100 up to 1000x1000.

The speedups are based on the single-node performance of the Split€ runtime

system on the CM-5, as no sequential SISAL implementation was available.

Problem S i z e : 100x100 Problem S i z e : 2 5 0x25 0
T i m e (sec) Speedup T i m e (sec) Speedup

5.33596 1 . 0 32.9267 1.0
2.01455 2.6487 11 - 5079 2.8612
1.00511 5.3088 5,22836 6.2977
0.581456 9.1769 2 - 73545 12.037

11.9185 1 - 85134 17.785 0.447704
0.349898 15.250 1.16183 28.3404

table 4.1: CM-5 Life performance for 100x100 & 250x250 grid size

llThis is not completely correct, as each processor will access a single row above and below their
slice boundaries, but this is unavoidable.

-
Problem Size: 50 Ox50 0 I Problem Size: 1000x1000

Time (sec) Speedup PES Time (sec) Speedup
1 145.592 1.0 574.0 1.0
4 49.639 2.93 196.114 2.93
8 22.2091 6.5555 85.1081 6.74

16 10.8963 13 I 3616 40.8928 14.037
32 6.56673
64 3.9476 36.881 14.4458 39.74

.22.1712 24.9315 23.02 .

table 4.2: CM-5 Life performance for 500x500 & 1OOOx1OOO grid size

This problem has good locality, and reasonable speedups. Figure 4.2

shows the speedups curves for the data given in tables 4.1 and 4.2.

3

figure 4.2: Life speedups for 64 processor CM-5

This machine could not run the 1000 square problem size on a single node, so

that result is extrapolated from an average of 2.93 speedup for 4 processors.

The plot shows a slightly super-linear speedup between 4 and 8

processors for the lOOOxl000 grid size. This can be explained by belfer cache

29

performance as the amount of data per node is reduced. Efficiency goes up as

problem size increases, not surprisingly, as there is more work for each processor

to do that is local.

PES
1
4
8
16
32

The same program w2s run cn a hl-iko CS-2 for the same problem sizes,

on 32 processors. Tables 4.3 and 4.4 give the results. While the Meiko gives better

absolute performance (approximately 3-5 times faster) for the same program and

run-time system (no source code changes to either), the speedup curve in figure

4.3 shows much lower efficiency.

Problem Size : 10 ox lo 0 Problem Size: 25 0x250
Time (sec) Speedup T i m e (sec) Speedup

1 - 57881 1.0 9 - 75142 1.0
1 - 50254 1.050761 7 * 12026 1.369531
0.868915 1.816990 3.88358 2.510936
0.699814 2.256042 2.38497 4.088697
0.598727 2.636945 1.73075 5.634216

PES
1
4
8
16
32

Problem Size: 500x500 I Problem Size: 1000x1000
Time (sec) Speedup I T i m e (sec) Speedup

70.0468 1 . 0 153 - 821 1.0
29.1789 2.400598 111.18 1.383531
14.2844 4.903727 54.0704 2.844828
8.33382 8.405125 28.1333 5.467578
4.86964 8.405125 16.2469 9.467714

table 4.4: Meiko Life performance for 500x500 & 1000x1000 grid size

.

figure 4.3: '32 processor Meiko CS-2,2 iterations

4.1.2 Performance Studies of Laplace

The Laplace program (given in the appendix SA.2) was used to study the

performance of another implementation of distributed-memory SISAL in

[Ha93b]. An interesting puzzle came up while studying this program. If we

compare Laplace with Life, they have very similar structure. However, the

performance of the original program as given in [Ha93b] is very different from

Life. Simply put, Life goes faster with more processors, whereas Laplace actually

slows down.

The original Laplace program from [Ha93b] is provided in SA.2.1. This

version of the program does not exhibit parallel speedup, even when compared

to its sequential running time with the distributed run-time system. Table 4.5

shows this program's dismal performance on a 256x256 grid.

PES
1
4
8

1 6
32

table 4.5: Original Laplace performance for 256x256 grid size

Matrix Size : 2 5 6x256
T i m e (sec) Speedup

21.406 1 .0
107.771 0.198625
105.969 0.20200
108.416 0.19744
106.702 0.20062

Several simple transformations to the program were attempted, with little

success. However, when the program was changed to take advantage of the

constant boundary conditions of the problem, we find that the first and last rows

and first and last columns are in fact loop invariants. This observation lets us

remove the test

if (I=l I I = N I J=1 1 J=N) t h e n

from the inner loop of the Laplace function. This simple optimization was

enough to make the difference between no parallel speedup and actual speedups.

The results are shown in tables 4.6 and 4.7.

PES
1
4
8

1 6
32

Matrix Size : 25 6x25 6 Matrix Size : 512x512
Speedup Time (sec) Speedup Time (sec)

13.9495 1 .0 64.7404 1 . 0
9.15779 1.523239 29.8246 2.170705
6.05997 2.301909 19.6748 3.290524
4 - 33537 3.217603 12.237 5.290545
3.69366 3.776606 9.38018 6.901829

table 4.6: Modified Laplace performance for 256x256 & 512x512 grid size

PES
1
4
8

1 6
32

Matrix Size : 1024x1024
T i m e (sec) Speedup

223.66 1 .0
112.216 1 - 993120

61.8501 3.616162
41.4315 5.398308
25.1166 8.904868

table 4.7: Modified Laplace performance for 1024x1024 grid size

Comparison to Single Node SISAL

The Laplace program was also compiled with a single node version of SISAL on

the Meiko, and the distributed version was able to outperform the single node

version using more than 16 processors. A 1024x1024 grid (10 iterations) took 19.3

seconds on 64 processors, 25.6 seconds on 32 processors, 38.4 seconds on 16

processors, and 38.4 seconds on single node SISAL.

PES
1
4
8

4.1.3 Performance Studies of Matrix Multiplication

- Matrix multiplication is a very important parallel application that does not

always perform well on distributed-memory machines. A simple formulation of

the algorithm in SISAL appears in SA.3.1. This is a naive way to perform this

algorithm in SISAL, because traversing a single column is much slower than

traversing a row, because of the representation of two-dimensional arrays in

SISAL. A very simple change, pre-transposing the right hand matrix (§A.3.2),

allows the elements of the matrices to be traversed row-wise, and gives much

better performance, as the results in tables 4.8 and 4.9 show (kmax = 1).

1 0 x 1 0 5 Ox5 0 I 100x100
T h e (sec) T h e (sec) Time (sec)

0.0165464 1.6049 12.6117
0.131157 15.3429 115.951
0.105396 12.221 97.2437

PES
1
4

- 8

table 4.8: Matrix Multiplication without pretmnsposition

Time (sec) Time (sec) T h e (sec)
0.0063352 0.0602764 0.222308
0.0167822 0.341258 1.24258
0.017565 0.289028 0.963906

II I I 5 0x5 0 I 100x100 10x10 II

table 4.9: Matrix Multiplicatlon with pre-transposition

Although running the algorithm sequentially gives better performance in both

4 7.815245 44.959825 93.314716
8 6.000342 42.283101 100.885045 I

cases, the speedups of the pretranspose algorithm are striking. These are

summarized in table 4.10.

;

II 1 10x1 0 I 50x50 I 100x100 11
Speedup 1 Speedup I Speedup II It pEls I 2.61182 26.625678 I 56.730752

table 4.10: Relative speedups using pre-transposition

Other algorithms exist that perform better than this naive matrix multiply.

These algorithms divide each matrix into sub-matrices, which are distributed

among more processors (up to n2 processors can work on the matrix rather than

n processors) [Ku94]. These algorithms can and should be adapted to SISAL,

becaw they should perfom better on distributed-memory machines.

4.2 Related Work

There have been several distributed-memory SEAL projects. [Ha93a] describes

an implementation of SEAL for the nCube, which uses a softwarebased virtual

addressing scheme on top of message passing, to provide a global shared address

space for O X . They also extend the run-time system with multi-threading and

hierarchical task distribution, techniques which allow the run-time system to

adapt itself to the characteristics of a particular machine, or application.

[Pa931 describes retargeting SISAL to Intel Touchstone i860 systems

(Gamma, Delta and Paragon). They argue that loop-level parallelism is

insufficient to employ the high degree of parallelism available on distributed-

memory machines, and concentrate on scheduling algorithms for functional

parallelism. Their work involved modifying the phase of the compiler

responsible for parallelizing SEAL programs, and adding scheduling of

functional parallelism. They also adapted the run-time system to use message

passing to perform interprocessor data exchange.^

In [An95], a more recent effort is discussed which uses a combination of

fine-grained parallelism (stackless threads called "filaments"), with virtual

memory hardware initiated communication (i.e. when a page fault occurs, if the

page is "remote" it is requested from the "owner" of the page). The latency of a

page fault is tolerated by providing lots of fine-grained threads to do work

during communication. This approach is limited by the inherent parallelism of a

problem. Also, the use of virtual memory "protected" pages is not as portable as

using Split-C to provide a global address space. In fact, an implementation of

Split-C uses this scheme to provide global addressing on networks of

workstations WOW).

We are not aware of other work that enjoys the same portability as our

distributed-memory SEAL built upon Split-C. The use of Split-C as an abstract

machine insulates our compiler from the multitude of incompatibilities between

different distributed-memory architectures.

,4.3 Conclusions & Future Work

This project has laid the foundation for the development of potentially higher

performance MPP SEAL implementations. The work has concentrated on the

restructuring of the run-time system, because these improvements benefit all

programs.

The portability of distributed-memory SISAL has been demonstrated.

SISAL now m on the Thinking Machines CM-5 and the Meiko CS.2 Once the

CM-5 version was working and fully debugged, the Meiko version was up and

running within two days. As soon as Split-C compilers appear on other

platforms, distributed-memory SISAL will soon follow.

More improvements to the run-time system can and should be made. An

important enhancement will be the dynamic allocation of onedimensional arrays

as distributed spread arrays. This will help to reduce communications when an

array is created by multiple workers; each worker will perform only local-

memory writes. Spread arrays will also help to reduce memory contention that

occurs when an array is read'by multiple processors12. Since arrays of greater

than one-dimension are implemented as arrays of pointers, a similar

optimization can be performed for these arrays, by distributing outer dimension

arrays, which contain pointers to the inner dimension arrays.

Another run-time system improvement will involve the mechanism for

distributing work to the workers. Loop slices are represented in a data structure

called the "activation record" (listing 4.1).

struct A c t R e c {
GLOBAL-POINTER A r g P o i n t e r ;
i n t AuxArgumen t ; /* AUXILIARY TASK ARGUMENT */
void (* C h i l d C o d e) 0 ; /* TASK ADDRESS */
i n t S l i c e B o u n d s [31 ; /* LOOP SLICE CONTROL INFO */
A c t R e c P t r NextAR; /* FORWARD QUEUE LINK */
i n t Done; /* I S THIS TASK DONE YET? */
i n t pid;
i n t Flush;

/* TASK ARGUMENT */

1;

listing 4.1: Data type for activation records

The C data type s t r u c t A c t R e c contains all of the information necessary to

execute a loop slice: the field A r g P o i n t e r contains a global pointer to an

application-specific record containing the inputs to the slice, and the outputs

produced by the slice; C h i l d c o d e holds a pointer to the C function representing

the slice body; S l i c e B o u n d s provides the lower and upper bounds of the loop,

12SISAL's single-assignment semantics also allows another optimization: data replication.
However, the cost of the extra communication to do the replication might be too prohibitive.

and the loop stride. A simple improvement to the &-time system would be to

preallocate activation records on the processor they will be used on. Then, when

the master processor creates loop slices, the run-time system can use puf

operatioh to broadcast the activation records, asynchronously.

*

All of the improvements suggested above require the capability to allocate

memory on all processors simultaneously. The Split-C library provides a

function, all-spread-malloc (1, which allocates spread arrays dynamically, but

must be called by all processors, like a barrier. To utilize this, an additional phase

will have to be added to the sequential-parallel execute cycle. This phase will be

an "allocate" phase in which the master processor instmcts the other processors

in how many calls to all-spread-malloc o should OCCUT, and with what

parameters. In a sense, this is just another type of parallel task, but these tasks

must be perfonned strictly sequentially and in synchrony.

Additional performance gains will be obtained by performing distributed-

memory specific optimizations on the compiler generated code. Here are some

possibilities:

Cache/replicate read-only data structures, such as the ArgPointer field
of slice activation records, to avoid repeated remote references. This has to
be done in the compiler generated code because its layout is not known to
the run-time system.

Reorder communications and unroll loops so that communication and
computation can be overlapped. This can be done by using optimization
techniques being developed for the Tera MTA [Mi95].

Improve local memory access performance by converting pointers to
local addresses when possible. This is important because every global
pointer reference imposes a test (as shown in listing 3.1) which results in
branch pipeline stall. Several techniques can be used to address this
problem: setting branch prediction bits; compiling different loops for local
and remote memory accesses, hoisting the tests outside of the loops;
generating optimal code at run-time, using dynamic code generation.

38

Bibliography

David H. Schaefer. "History of the MPP." In The Massively Parallel
Processor. J. L. Potter, (Ed.), The MlT Press, Cambridge, Massachusetts,
1985, pp. 1-5. .

Stephen Skedzielewski and John Glauert. IFI: An Intermediate Form
for Applicative Languages. Manual M-170, Lawrence Livermore
National Laboratory, Livemore, CA, July 1985.

W. Daniel Hillis. 1985. The Connecfion Machine. The MIT Press,
Cambridge, Massachusetts. p. 24.

Michael Welcome, Stephen Skedzielewski, Robert Kim Yates, and John
Ranelletti. I F 2 An Applicative Language Intermediate Form with
Explicit Memory Management. Manual M-195, Lawrence Livermore
National Laboratory, Livermore,.CA, December 1986.

D. C. Cann. The Optimizing SEAL Compiler: Version 12.0. Technical
Report UCRL-MA-110080, Lawrence Livermore National Laboratory,
Livermore, CA, April 1992

D. C. Cann. SISAL 1.2 A Brief Introduction and Tutorial. Technical
Report UCRL-MA-110620, Lawrence Tivennore National Laboratory,
Livennore, CA, May 1992.

David E. Culler. Introduction to Split-C. Computer Science Division,
University of California, Berkeley, CA, December 1993.

John T. Feo, David C. Cann, and Rodney R Oldehoeft. A Report oh the
Sisal Language Project. Journal of Parallel and Disfribufed Computing 10,
(1990), 349-366.

Gregory R Andrews. 1991. Concurrent Programming - Principles and
Pracf ice. The Benjamin/Cummings Publishing Company, Inc.
Redwood City, California.

T. H. von Eicken. Acfive Messages: an Efficienf Communication
Architecfure for Mulf iprocessors. Ph.D. thesis, Computer Science,
Graduate Division, University of California, Berkeley, CA, 1993.

Matthew Haines and Wim Bohm. On the Design of distributed-
memory Sisal. Technical Report CS-92-144, Computer Science
Department, Colorado State University, Fort Collins, CO, January 1993.

39

[Ha93b] Matthew Haines and W& Bohm. A Virtual Shared Addressing System
for Dis'tributed Memory Sisal. In Proceedings Sisal '93 , pp. 151-163,
October 1993.

[Mc93] J.R. McGraw. Parallel Functional Programming in Sisal: Ficfions, Facts,
and Future. Technical Report Urn-JC-114360, Lawrence Livennore
National Laboratory, Livennore, CA, July I, 1993.

[Lug41

[Fe95]

[Mi951

[Sa951

Santosh S. Pande, Dharma P. Agrawal, and Jon Mauney. Sisal on
Distributed Memory Machines. In Proceedings Sisal '93 , pp. 134-150,
October 1993.

Steve Luna. Implementing an Efficient Portable Global Memory Layer on
distributed-memory Multiprocessors. Master's thesis, Computer Science
Graduate Division, University of California, Berkeley, CA, May 1994.

Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis.
Introduction to Parallel Computing. The Benjamin/Cummings Publishing
Company, Inc Redwood City, California.

Gregory R. Andrews and Vincent W. Freeh. Fsc: A Sisal Compiler for
Both Distributed and Shared-Memory Machines. In Proceedings of High
Performance Functional Computing, pp. 164-172, April 1995.

John T. Feo, Patrick J. Miller, Stephen Skedzielewski, Scott M. Denton
and Cindy J. Solomon. Sisal 90. In Proceedings of High Performance
Functional Computing, pp. 35-47, April 1995.

Srdjan Mitrovic. Personal communication, 1995.

J. Sargent, S. J. Hooton and C. C. Kirkham. UFO: Language Evolution
and Consequences of State. In Proceedings of High Performance
Functional Computing, pp. 48-62, April 1995.

Appendix

A.1 SISALProgram: Life

This program is derived from an example given in [Ca92b], with minor

corrections. The original version only functioned with square grids. The program

given here does not include the random number package used to create the

initial grid.

define Main, rans, ranf

%
% John Conways Game of Life. Values of the Grid are Os or Is. A given
% cell has 8 neighbors. On each iteration, the cells are updated as
% follows:
% -- If a cell contains a 1 and more than five of its neighbors contain
% Is, then it should become a 0.
% -- If a cell contains a 0 and fromthree to five of its neighbors
% contain Is, then it should become a 1
% -- otherwise the value of a cell remains unchanged.
% The simulation of life iterates Iterations times. The boarder of the
grid
% is always zeros.
%
% Main (Iterations,Rows, Columns)
%

function Convert(Seed:OneDim returns integer, OneDim)
let
Number, NewSeed := ranf (Seed) ;
V := if N u m b e r < 0.5DO then 1 else 0 end if;

in
V, NewSeed

end let
end function

function Generate(Rows,Columns:integer returns Grid)
let
Seed-Stream := rans (Columns,l) ;
First := array fill (O,Columns+l, 0);
Last : = arraySfill(0, Columnsil, 01 ;
Core := for i in 1,Rows

Row := for initial
j := 1;
V,Seed := Convert(Seed-Streamlil 1;

j := old j i 1;
V, Seed := Convert (old Seed 1 ;

returns array of V
end for;

while (j < Columns .repeat

returns array of array-addl (array-addh(Row,O) I 0) 8 10, Row,
01

end for
in

end let-
end function

array addl (array-addh (Core, Last) ,First)

function Compute(G : Grid; I : integer; J : integer returns integer)
let
Total := G[I-l,J-ll + GCI-l,Jl + GCI-l,J+ll +

G[I, J-11 + G[I,J+l] +
G[I+l, J-11 + G[I+l, J] + G[I+l, J+1] ;

in
if (Total > 5) then 0
elseif (Total >= 3) then 1
else 0 end if

end let
end function

function Dowork(G:Grid; Rows,Columns:integer returns Grid)
let
First := for i in O,Columns+l returns array of G[O,i] end for;
Last := for i in O,Columns+l returns array of G[Rows+l,i] end for;

Core := for I in 1, Rows
Mid := for J in 1, Columns

returhs array of Compute (G, I, J)
end for;

Row := array addl (Mid, 0) ;
returns array'of array-addh(Row, 0)
end for;

in

end let-
array addl (array-addh (Core, Last) ,First)

.end function

function Main(Iterations,Rows,Columns:integer returns Grid,Grid)
let .
Gin := Generate(Rows,Columns);

Gin, for initial
Count := Iterations;
G := Gin;

while (Count > 0) repeat
Count := old Count - 1;
G := DoWork (old G, Rows, Columns) ;

. in

returns value of G
end for

end let
end function

A2 SISAL Program: Laplace

This program was used in [Ha93b] to measure the performance of another

distributed-memory SISAL implementation. SA.2.1 contains the original

program. SA.22 is a slightly modified version that exhibits parallel speedup.

A.2.1 Original Laplace

This version of Laplace fails'to exhibit parallel speedup in a distributed-memory

setting. The next d o n provides a version that does.

% laplace0.sis
define main

type OneD = arrayCdouble-real];
type TwoD = array [OneD] ;

function TwoD-fill (N : integer returns TwoD)
for I in l,N cross J in l,N
el :=
if (mod(1 + J, 2) = 0) then

else

end if

double-real (1.0)

double - real (N)
returns array of el

end for
end function % TwoD-fill

function Laplace (Init-M : TwoD; N, KMax : integer returns TwoD)
for initial
K := 1;
M := Init-M;

repeat
K := old K + 1;
M :=

f o r I in l , N cross J in l,N
nM :=
if (I=l I I = N 1 J=1 I J=N) then

else
old MC1,Jl

old MU, 51 / double-real (2.0) +
(old M[I-l,J] + old M[I+l,J] + old M[I,J-l] + old M[I,J+l])

/
double-real (8.0)

returns array of n M
end if

end for
until K >= K M a x
returns value of M

end function % laplace
end for

43

function main (N, KMax : integer returns TwoD)
let

in

end let

M := TwoD-fill (N)

Laplace(M, N, KMax)

end function Z main

A.2.2 Modified Laplace

This version of Laplace optimizes the original slightly - the conditional

statements are removed from the inner loop of the Laplace function. This version

gives parallel speedups. See s.1.2 for a discussion of this result.

% laplace4.si-s
define main

type
type

OneD = array [double-real] ;
TwoD = array [OneD] ;

function TwoD-fill (N : integer returns TwoD)
for I in l,N cross J in l,N
el :=
if (mod(1 + J, 2) = 0) then

else

end if

double-real (1.0)

double-real (N)

returns array of el
end for

end function % TwoD-fill

function Laplace (MIn : TwoD; N, KMax : integer returns TwoD)
for initial
K := 1;
M := MIn;

K := old K + 1;
MFirst := for J in l,N returns array of old M [l , J] end for;
mast := for J in 1, N. returns array of old M[N, Jl end for;

while (K < KMax) repeat

MInner :=
for I in 2,N-1
Row :=
for J in 2,N-1
el := old M[I, J] / double-real (2.0) +

(old M[I-l,J] + old M[I+l,J] +
old MII, J-11 + old M[I, J+1]) / double-real (8.0)

returns array of el
end for;

returns array of -
array-addh(array-add1 (Row, old MCI, 11 1 , old MCI, Nl)

--i.

end fo r ;

M := array-addh(array-addl(MInner, ME'irst), MLast);
re turns va lue of M
end f o r

end function Z Laplace

function main (N, KMax : i n t ege r re turns TwoD)
let

i n

end let

M := TwoD-fill (N)

Laplace(M, N, KMax)

end function % main

A3 SISAL Program: Matrix Multiply

Two versions of the matrix multiply algorithm are given. The second is a simple

modification of the first which pre-transposes the right hand matrix.

A.3.1 Simple Matrix Multiply

% nnnult0,sis
def ine main

function Gen(n : in teger re turns TwoDim, Twodim)
f o r i i n 1, n cross j i n 1, n
re turns a r r a y of double-real (5.1 /double-real (j)

end f o r
a r r a y of double-real (i) *double-real (j)

end function Z Gen

function Mmult(n : integer; A, B : TwoDim re turns TwoDhn)
f o r i i n 1, n c ross j i n 1, n

c := f o r k i n 1, n
t := A[i,kl

r e t u r n s value
end f o r

re turns a r r a y of c
end f o r

end function % Mmult

function main (n, kmax
f o r i n i t i a l
k := 1
A, B := Gen(n)

: i n t ege r re turns TwoDim)

w h i l e (k < kmax) repeat
k := old k + 1;
A := Mmult (n, o ld A, B)

end f o r

45

end function % main

A.3.2 Pre-Transposed Matrix Multiply

% mmult l .s is
def ine main

type TwoDim = a r ray [array [double-real I I ;

function Gen (n : in teger . re turns TwoDim, Twodim)

f o r i i n l , n c ros s j i n l , n
re turns a r ray of double-real (i) /double-real (j

end f o r
a r ray of double-real (i) *double-real (j 1

end function % Gen

function Mmult (n : integer; A, BT : TwoDim returns TwoDkn)
% assumes t h a t BT i s already transposed.
f o r i i n l , n c ros s j i n l , n

c := f o r k i n l , n
t := A[i,kl * BT[j,kl

re turns value of sum t
end for

re turns a r ray of c
end f o r

end function % Mmult

function Transpose (n : integer; M : T w o D h re turns TwoDkn)
f o r i i n 1,n c ros s j i n l , n
re turns a r ray of M[j,il
end f o r

end function % Transpose ,

function main (n, kmax : i n t ege r r e tu rns TwoDkn)
f o r i n i t i a l

k := 1;
A, B := Gen(n);
BT := Transpose (n, B) ;

k := o l d k + 1;
A := Mmult(n, o l d A, BT);

re turns value of A
end f o r

w h i l e (k < kmax) repeat

end function % main

	List of Listings
	List of Figures
	1 Introduction
	Future of SISAL
	Scope of the Thesis

	SISAL Compiler Overview
	A Tour of the SISAL System
	SISAL'S Run-Time System
	Back-End Code Generator

	Distributed-Memory Programming Model
	Implications for SISAL
	The Split-C Language
	The Split-C Programming Model

	Implementing Distributed-Memory SIS
	Getting SISAL Running
	Run-time System Changes
	Code Generation Changes

	3.2 Compiler Verification
	Optimizations for Distributed-Memory
	SISAL Run-Time System 0ptimiza.tiOnS

	Results & Discussion
	4.1 Performance Studies
	Performance Studies of Life
	Performance Studies of Laplace
	Performance Studies of Matrix Multiplication

	4.2 Related Work
	Conclusions & Future Work

	Bibliography
	Appendix
	SEAL Program: Life
	SEAL Program: Laplace
	A.21 Original Laplace
	A.22 Modified Laplace

	SISAL Program: Matrix Multiply
	A.3.1 Simple Matrix Multiply
	A.3.2 Re-Transposed Matrix Multiply

	listing 3.1 Parallel initialization of the distributed task queue
	listing 3.2 C representation of a global pointer
	listing 3.3 Split-C post-increment code
	listing 3.4 Equivalent C post-increment code
	listing 3.5 Typedef for SISAL array data type
	listing 3.6 Typedef for global pointer to SEAL array
	listing 3.7 Macro for addition of any types
	listing 3.8 Typedef for global pointer to SISAL array
	listing 3.9 Simple SISAL program to build an array in parallel
	listing 4.1 Data type for activation records
	figure 4.1 Life evolution 10x10 initially and after 2 iterations
	figure 4.2 Life speedups for 64 processorCM-5
	table 4.1 CM-5 Life perfomiance for 100x100 & 250x250 grid size
	table 4.2 CM-5 Life performance for 500x500 & lOOOxl000 grid size
	table 4.3 Meiko Life performance for 100x100 & 250x250 grid size
	table 4.4 Meiko Life performance for 500x500 & 1000x1000 grid size
	table 4.5 Original Laplace performance for 256x256 grid size
	table 4.6 Modified Laplace performance for 256x256 & 512x512 grid size
	table 4.7 Modified Laplace performance for 1024x1024 grid size
	table 4.8 Matrix Multiplication without pre-transposition
	table 4.9 Matrix Multiplication with pre-transposition
	table 4.10 Relative speedups using.pre-transposition

