510 research outputs found

    On implementation aspects of decode and forward and compress and forward relay protocols

    Get PDF
    In this work, the common relay protocols Decode-and-Forward and Compress-and-Forward (CF) are investigated from a practical point of view: This involves on the one hand the impact of imperfections like channel and carrier phase stimation errors and on the other hand, the question of how to implement relay protocol specific signal processing like quantization for CF which is modeled in information theory simply by additive quantizer noise. To evaluate the performance, achievable rates are determined either numerically with the help of the Max-Flow Min-Cut theorem or by link level simulations.Diese Arbeit untersucht die Relay-Protokolle Decode-and-Forward und Compress-and-Forward (CF) mit dem Fokus auf einer praktischen Umsetzung. Es werden sowohl StöreinflĂŒsse wie Kanal- und PhasenschĂ€tzfehler betrachtet als auch spezielle Kompressionsverfahren fĂŒr das CF Protokoll implementiert. Von großer Bedeutung ist hier die Kompression in Form der Quantisierung, weil diese in der Informationstheorie lediglich durch Quantisierungsrauschen modelliert wird. Zur Auswertung der LeistungsfĂ€higkeit der Protokolle werden die erzielbaren Raten entweder numerisch oder durch Simulation bestimmt

    Ultra Wideband Communications: from Analog to Digital

    Get PDF
    ï»żUltrabreitband-Signale (Ultra Wideband [UWB]) können einen signifikanten Nutzen im Bereich drahtloser Kommunikationssysteme haben. Es sind jedoch noch einige Probleme offen, die durch Systemdesigner und Wissenschaftler gelöst werden mĂŒssen. Ein Funknetzsystem mit einer derart großen Bandbreite ist normalerweise auch durch eine große Anzahl an Mehrwegekomponenten mit jeweils verschiedenen Pfadamplituden gekennzeichnet. Daher ist es schwierig, die zeitlich verteilte Energie effektiv zu erfassen. Außerdem ist in vielen FĂ€llen der naheliegende Ansatz, ein kohĂ€renter EmpfĂ€nger im Sinne eines signalangepassten Filters oder eines Korrelators, nicht unbedingt die beste Wahl. In der vorliegenden Arbeit wird dabei auf die bestehende Problematik und weitere Lösungsmöglichkeiten eingegangen. Im ersten Abschnitt geht es um „Impulse Radio UWB”-Systeme mit niedriger Datenrate. Bei diesen Systemen kommt ein inkohĂ€renter EmpfĂ€nger zum Einsatz. InkohĂ€rente Signaldetektion stellt insofern einen vielversprechenden Ansatz dar, als das damit aufwandsgĂŒnstige und robuste Implementierungen möglich sind. Dies trifft vor allem in AnwendungsfĂ€llen wie den von drahtlosen Sensornetzen zu, wo preiswerte GerĂ€te mit langer Batterielaufzeit nötigsind. Dies verringert den fĂŒr die KanalschĂ€tzung und die Synchronisation nötigen Aufwand, was jedoch auf Kosten der Leistungseffizienz geht und eine erhöhte Störempfindlichkeit gegenĂŒber Interferenz (z.B. Interferenz durch mehrere Nutzer oder schmalbandige Interferenz) zur Folge hat. Um die Bitfehlerrate der oben genannten Verfahren zu bestimmen, wurde zunĂ€chst ein inkohĂ€renter Combining-Verlust spezifiziert, welcher auftritt im Gegensatz zu kohĂ€renter Detektion mit Maximum Ratio Multipath Combining. Dieser Verlust hĂ€ngt von dem Produkt aus der LĂ€nge des Integrationsfensters und der Signalbandbreite ab. Um den Verlust durch inkohĂ€rentes Combining zu reduzieren und somit die Leistungseffizienz des EmpfĂ€ngers zu steigern, werden verbesserte Combining-Methoden fĂŒr Mehrwegeempfang vorgeschlagen. Ein analoger EmpfĂ€nger, bei dem der Hauptteil des Mehrwege-Combinings durch einen „Integrate and Dump”-Filter implementiert ist, wird fĂŒr UWB-Systeme mit Zeit-Hopping gezeigt. Dabei wurde die Einsatzmöglichkeit von dĂŒnn besetzten Codes in solchen System diskutiert und bewertet. Des Weiteren wird eine Regel fĂŒr die Code-Auswahl vorgestellt, welche die StabilitĂ€t des Systems gegen Mehrnutzer-Störungen sicherstellt und gleichzeitig den Verlust durch inkohĂ€rentes Combining verringert. Danach liegt der Fokus auf digitalen Lösungen bei inkohĂ€renter Demodulation. Im Vergleich zum AnalogempfĂ€nger besitzt ein DigitalempfĂ€nger einen Analog-Digital-Wandler im Zeitbereich gefolgt von einem digitalen Optimalfilter. Der digitale Optimalfilter dekodiert den Mehrfachzugriffscode kohĂ€rent und beschrĂ€nkt das inkohĂ€rente Combining auf die empfangenen Mehrwegekomponenten im Digitalbereich. Es kommt ein schneller Analog-Digital-Wandler mit geringer Auflösung zum Einsatz, um einen vertretbaren Energieverbrauch zu gewĂ€hrleisten. Diese Digitaltechnik macht den Einsatz langer Analogverzögerungen bei differentieller Demodulation unnötig und ermöglicht viele Arten der digitalen Signalverarbeitung. Im Vergleich zur Analogtechnik reduziert sie nicht nur den inkohĂ€renten Combining-Verlust, sonder zeigt auch eine stĂ€rkere Resistenz gegenĂŒber Störungen. Dabei werden die Auswirkungen der Auflösung und der Abtastrate der Analog-Digital-Umsetzung analysiert. Die Resultate zeigen, dass die verminderte Effizienz solcher Analog-Digital-Wandler gering ausfĂ€llt. Weiterhin zeigt sich, dass im Falle starker Mehrnutzerinterferenz sogar eine Verbesserung der Ergebnisse zu beobachten ist. Die vorgeschlagenen Design-Regeln spezifizieren die Anwendung der Analog-Digital-Wandler und die Auswahl der Systemparameter in AbhĂ€ngigkeit der verwendeten Mehrfachzugriffscodes und der Modulationsart. Wir zeigen, wie unter Anwendung erweiterter Modulationsverfahren die Leistungseffizienz verbessert werden kann und schlagen ein Verfahren zur UnterdrĂŒckung schmalbandiger Störer vor, welches auf Soft Limiting aufbaut. Durch die Untersuchungen und Ergebnissen zeigt sich, dass inkohĂ€rente EmpfĂ€nger in UWB-Kommunikationssystemen mit niedriger Datenrate ein großes Potential aufweisen. Außerdem wird die Auswahl der benutzbaren Bandbreite untersucht, um einen Kompromiss zwischen inkohĂ€rentem Combining-Verlust und StabilitĂ€t gegenĂŒber langsamen Schwund zu erreichen. Dadurch wurde ein neues Konzept fĂŒr UWB-Systeme erarbeitet: wahlweise kohĂ€rente oder inkohĂ€rente EmpfĂ€nger, welche als UWB-Systeme Frequenz-Hopping nutzen. Der wesentliche Vorteil hiervon liegt darin, dass die Bandbreite im Basisband sich deutlich verringert. Mithin ermöglicht dies einfach zu realisierende digitale Signalverarbeitungstechnik mit kostengĂŒnstigen Analog-Digital-Wandlern. Dies stellt eine neue Epoche in der Forschung im Bereich drahtloser Sensorfunknetze dar. Der Schwerpunkt des zweiten Abschnitts stellt adaptiven Signalverarbeitung fĂŒr hohe Datenraten mit „Direct Sequence”-UWB-Systemen in den Vordergrund. In solchen Systemen entstehen, wegen der großen Anzahl der empfangenen Mehrwegekomponenten, starke Inter- bzw. Intrasymbolinterferenzen. Außerdem kann die FunktionalitĂ€t des Systems durch Mehrnutzerinterferenz und Schmalbandstörungen deutlich beeinflusst werden. Um sie zu eliminieren, wird die „Widely Linear”-Rangreduzierung benutzt. Dabei verbessert die Rangreduzierungsmethode das Konvergenzverhalten, besonders wenn der gegebene Vektor eine sehr große Anzahl an Abtastwerten beinhaltet (in Folge hoher einer Abtastrate). ZusĂ€tzlich kann das System durch die Anwendung der R-linearen Verarbeitung die Statistik zweiter Ordnung des nicht-zirkularen Signals vollstĂ€ndig ausnutzen, was sich in verbesserten SchĂ€tzergebnissen widerspiegelt. Allgemeine kann die Methode der „Widely Linear”-Rangreduzierung auch in andern Bereichen angewendet werden, z.B. in „Direct Sequence”-Codemultiplexverfahren (DS-CDMA), im MIMO-Bereich, im Global System for Mobile Communications (GSM) und beim Beamforming.The aim of this thesis is to investigate key issues encountered in the design of transmission schemes and receiving techniques for Ultra Wideband (UWB) communication systems. Based on different data rate applications, this work is divided into two parts, where energy efficient and robust physical layer solutions are proposed, respectively. Due to a huge bandwidth of UWB signals, a considerable amount of multipath arrivals with various path gains is resolvable at the receiver. For low data rate impulse radio UWB systems, suboptimal non-coherent detection is a simple way to effectively capture the multipath energy. Feasible techniques that increase the power efficiency and the interference robustness of non-coherent detection need to be investigated. For high data rate direct sequence UWB systems, a large number of multipath arrivals results in severe inter-/intra-symbol interference. Additionally, the system performance may also be deteriorated by multi-user interference and narrowband interference. It is necessary to develop advanced signal processing techniques at the receiver to suppress these interferences. Part I of this thesis deals with the co-design of signaling schemes and receiver architectures in low data rate impulse radio UWB systems based on non-coherent detection.● We analyze the bit error rate performance of non-coherent detection and characterize a non-coherent combining loss, i.e., a performance penalty with respect to coherent detection with maximum ratio multipath combining. The thorough analysis of this loss is very helpful for the design of transmission schemes and receive techniques innon-coherent UWB communication systems.● We propose to use optical orthogonal codes in a time hopping impulse radio UWB system based on an analog non-coherent receiver. The “analog” means that the major part of the multipath combining is implemented by an integrate and dump filter. The introduced semi-analytical method can help us to easily select the time hopping codes to ensure the robustness against the multi-user interference and meanwhile to alleviate the non-coherent combining loss.● The main contribution of Part I is the proposal of applying fully digital solutions in non-coherent detection. The proposed digital non-coherent receiver is based on a time domain analog-to-digital converter, which has a high speed but a very low resolution to maintain a reasonable power consumption. Compared to its analog counterpart, itnot only significantly reduces the non-coherent combining loss but also offers a higher interference robustness. In particular, the one-bit receiver can effectively suppress strong multi-user interference and is thus advantageous in separating simultaneously operating piconets.The fully digital solutions overcome the difficulty of implementing long analog delay lines and make differential UWB detection possible. They also facilitate the development of various digital signal processing techniques such as multi-user detection and non-coherent multipath combining methods as well as the use of advanced modulationschemes (e.g., M-ary Walsh modulation).● Furthermore, we present a novel impulse radio UWB system based on frequency hopping, where both coherent and non-coherent receivers can be adopted. The key advantage is that the baseband bandwidth can be considerably reduced (e.g., lower than 500 MHz), which enables low-complexity implementation of the fully digital solutions. It opens up various research activities in the application field of wireless sensor networks. Part II of this thesis proposes adaptive widely linear reduced-rank techniques to suppress interferences for high data rate direct sequence UWB systems, where second-order non-circular signals are used. The reduced-rank techniques are designed to improve the convergence performance and the interference robustness especially when the received vector contains a large number of samples (due to a high sampling rate in UWB systems). The widely linear processing takes full advantage of the second-order statistics of the non-circular signals and enhances the estimation performance. The generic widely linear reduced-rank concept also has a great potential in the applications of other systems such as Direct Sequence Code Division Multiple Access (DS-CDMA), Multiple Input Multiple Output (MIMO) system, and Global System for Mobile Communications (GSM), or in other areas such as beamforming

    Boosting Fronthaul Capacity: Global Optimization of Power Sharing for Centralized Radio Access Network

    Full text link
    The limited fronthaul capacity imposes a challenge on the uplink of centralized radio access network (C-RAN). We propose to boost the fronthaul capacity of massive multiple-input multiple-output (MIMO) aided C-RAN by globally optimizing the power sharing between channel estimation and data transmission both for the user devices (UDs) and the remote radio units (RRUs). Intuitively, allocating more power to the channel estimation will result in more accurate channel estimates, which increases the achievable throughput. However, increasing the power allocated to the pilot training will reduce the power assigned to data transmission, which reduces the achievable throughput. In order to optimize the powers allocated to the pilot training and to the data transmission of both the UDs and the RRUs, we assign an individual power sharing factor to each of them and derive an asymptotic closed-form expression of the signal-to-interference-plus-noise for the massive MIMO aided C-RAN consisting of both the UD-to-RRU links and the RRU-to-baseband unit (BBU) links. We then exploit the C-RAN architecture's central computing and control capability for jointly optimizing the UDs' power sharing factors and the RRUs' power sharing factors aiming for maximizing the fronthaul capacity. Our simulation results show that the fronthaul capacity is significantly boosted by the proposed global optimization of the power allocation between channel estimation and data transmission both for the UDs and for their host RRUs. As a specific example of 32 receive antennas (RAs) deployed by RRU and 128 RAs deployed by BBU, the sum-rate of 10 UDs achieved with the optimal power sharing factors improves 33\% compared with the one attained without optimizing power sharing factors

    Linear Transmit-Receive Strategies for Multi-user MIMO Wireless Communications

    Get PDF
    Die Notwendigkeit zur Unterdrueckung von Interferenzen auf der einen Seite und zur Ausnutzung der durch Mehrfachzugriffsverfahren erzielbaren Gewinne auf der anderen Seite rueckte die raeumlichen Mehrfachzugriffsverfahren (Space Division Multiple Access, SDMA) in den Fokus der Forschung. Ein Vertreter der raeumlichen Mehrfachzugriffsverfahren, die lineare Vorkodierung, fand aufgrund steigender Anzahl an Nutzern und Antennen in heutigen und zukuenftigen Mobilkommunikationssystemen besondere Beachtung, da diese Verfahren das Design von Algorithmen zur Vorcodierung vereinfachen. Aus diesem Grund leistet diese Dissertation einen Beitrag zur Entwicklung linearer Sende- und Empfangstechniken fuer MIMO-Technologie mit mehreren Nutzern. Zunaechst stellen wir ein Framework zur Approximation des Datendurchsatzes in Broadcast-MIMO-Kanaelen mit mehreren Nutzern vor. In diesem Framework nehmen wir das lineare Vorkodierverfahren regularisierte Blockdiagonalisierung (RBD) an. Durch den Vergleich von Dirty Paper Coding (DPC) und linearen Vorkodieralgorithmen (z.B. Zero Forcing (ZF) und Blockdiagonalisierung (BD)) ist es uns moeglich, untere und obere Schranken fuer den Unterschied bezueglich Datenraten und bezueglich Leistung zwischen beiden anzugeben. Im Weiteren entwickeln wir einen Algorithmus fuer koordiniertes Beamforming (Coordinated Beamforming, CBF), dessen Loesung sich in geschlossener Form angeben laesst. Dieser CBF-Algorithmus basiert auf der SeDJoCo-Transformation und loest bisher vorhandene Probleme im Bereich CBF. Im Anschluss schlagen wir einen iterativen CBF-Algorithmus namens FlexCoBF (flexible coordinated beamforming) fuer MIMO-Broadcast-Kanaele mit mehreren Nutzern vor. Im Vergleich mit bis dato existierenden iterativen CBF-Algorithmen kann als vielversprechendster Vorteil die freie Wahl der linearen Sende- und Empfangsstrategie herausgestellt werden. Das heisst, jede existierende Methode der linearen Vorkodierung kann als Sendestrategie genutzt werden, waehrend die Strategie zum Empfangsbeamforming frei aus MRC oder MMSE gewaehlt werden darf. Im Hinblick auf Szenarien, in denen Mobilfunkzellen in Clustern zusammengefasst sind, erweitern wir FlexCoBF noch weiter. Hier wurde das Konzept der koordinierten Mehrpunktverbindung (Coordinated Multipoint (CoMP) transmission) integriert. Zuletzt stellen wir drei Moeglichkeiten vor, Kanalzustandsinformationen (Channel State Information, CSI) unter verschiedenen Kanalumstaenden zu erlangen. Die Qualitaet der Kanalzustandsinformationen hat einen starken Einfluss auf die Guete des Uebertragungssystems. Die durch unsere neuen Algorithmen erzielten Verbesserungen haben wir mittels numerischer Simulationen von Summenraten und Bitfehlerraten belegt.In order to combat interference and exploit large multiplexing gains of the multi-antenna systems, a particular interest in spatial division multiple access (SDMA) techniques has emerged. Linear precoding techniques, as one of the SDMA strategies, have obtained more attention due to the fact that an increasing number of users and antennas involved into the existing and future mobile communication systems requires a simplification of the precoding design. Therefore, this thesis contributes to the design of linear transmit and receive strategies for multi-user MIMO broadcast channels in a single cell and clustered multiple cells. First, we present a throughput approximation framework for multi-user MIMO broadcast channels employing regularized block diagonalization (RBD) linear precoding. Comparing dirty paper coding (DPC) and linear precoding algorithms (e.g., zero forcing (ZF) and block diagonalization (BD)), we further quantify lower and upper bounds of the rate and power offset between them as a function of the system parameters such as the number of users and antennas. Next, we develop a novel closed-form coordinated beamforming (CBF) algorithm (i.e., SeDJoCo based closed-form CBF) to solve the existing open problem of CBF. Our new algorithm can support a MIMO system with an arbitrary number of users and transmit antennas. Moreover, the application of our new algorithm is not only for CBF, but also for blind source separation (BSS), since the same mathematical model has been used in BSS application.Then, we further propose a new iterative CBF algorithm (i.e., flexible coordinated beamforming (FlexCoBF)) for multi-user MIMO broadcast channels. Compared to the existing iterative CBF algorithms, the most promising advantage of our new algorithm is that it provides freedom in the choice of the linear transmit and receive beamforming strategies, i.e., any existing linear precoding method can be chosen as the transmit strategy and the receive beamforming strategy can be flexibly chosen from MRC or MMSE receivers. Considering clustered multiple cell scenarios, we extend the FlexCoBF algorithm further and introduce the concept of the coordinated multipoint (CoMP) transmission. Finally, we present three strategies for channel state information (CSI) acquisition regarding various channel conditions and channel estimation strategies. The CSI knowledge is required at the base station in order to implement SDMA techniques. The quality of the obtained CSI heavily affects the system performance. The performance enhancement achieved by our new strategies has been demonstrated by numerical simulation results in terms of the system sum rate and the bit error rate
    • 

    corecore