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Zusammenfassung

Diese Arbeit untersucht die Relay-Protokolle Decode-and-Forward (DF) und Compress-and-
Forward (CF) mit dem Fokus auf einer praktischen Umsetzung. Es werden zum Einen in der
Theorie vernachlässigte Störeinflüsse wie Kanal- und Phasenschätzfehler betrachtet. Zum An-
deren steht die Frage der Realisierung einzelner Signalverarbeitungsschritte im Vordergrund.
Im Speziellen ist hierbei die Quantisierung für CF von großer Bedeutung, weil diese in der
Informationstheorie lediglich durch Quantisierungsrauschen modelliert wird. Zur Auswertung
der Leistungsfähigkeit der Protokolle werden die jeweiligen erzielbaren Raten entweder nume-
risch mit Hilfe des Max-Flow Min-Cut (MFMC) Theorems bestimmt oder durch Simulation
eines Bit Interleaved Coded Modulation (BICM) Systems, welches eine dem Stand der Technik
entsprechende Turbocodierung sowie Quadraturamplitudenmodulation verwendet.

Für das DF-Protokoll spielt neben der Superpositionscodierung auch verteiltes Beamfor-
ming eine bedeutende Rolle, weshalb der Einfluss von Phasenfehlern mit Hilfe eines statisti-
schen Modells analysiert wird. Sowohl numerische als auch simulative Ergebnisse bestätigen,
dass die Leistungsfähigkeit in Abhängigkeit der Varianz des Phasenfehlers abnimmt. Des Wei-
teren wurde Superpositionsmodulation verwendet, um das klassische informationstheoretische
Prinzip der Superpositionscodierung in einen Mehrstufencode zu verallgemeinern, wodurch ein
“Shaping”-Gewinn inhärent erzielt wird.

Da bezüglich CF gleichförmige und auch die Entropie maximierende Quantisierer aufgrund
von Empfängerrauschen ungeeignet sind, wurde die sogenannte Information Bottleneck (IB)
Methode verwendet, um möglichst optimale Quantisierer zu entwerfen. Da die Komplexität ei-
nes IB-Algorithmus’ unter anderem vom Kanalmodell abhängt, kann es sein, dass der benötigte
Speicher oder die Laufzeit die Kapazitäten aktueller Hardware weit übersteigt. In diesem Fall
ist es notwendig das Problem mit Hilfe von Näherungen zu vereinfachen. Zu diesem Zweck
werden IB-Graphen entwickelt, um verschiedene Ansätze solcher Vereinfachungen herzulei-
ten: Als Übertragungsverfahren wird Orthogonal Frequency Division Multiplexing (OFDM)
angenommen, wobei entsprechende Subträger als Rayleigh-Fading-Kanäle modelliert werden.
Abschließend werden auch Kanalschätzfehler betrachtet, wobei Kanalschätzung und Entzer-
rung entweder implizit durch den Quantisierer erfolgen oder explizit vor der Quantisierung
durchgeführt werden.
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Abstract

In this work, the common relay protocols Decode-and-Forward (DF) and Compress-and-Forward
(CF) are investigated from a practical point of view: This involves on the one hand the impact
of imperfections like channel and carrier phase estimation errors and on the other hand, the
question of how to implement relay protocol specific signal processing like quantization for CF
which is modeled in information theory simply by additive quantizer noise. To evaluate the
performance, achievable rates are determined either numerically with the help of the Max-Flow
Min-Cut (MFMC) theorem or by link level simulations whereby a Bit Interleaved Coded Mod-
ulation (BICM) scheme is set up with state-of-the-art turbo coding and Quadrature Amplitude
Modulation (QAM).

As distributed beamforming plays a major role for DF, the influence of phase deviations
is addressed by means of proper statistical modeling. Both numerical and simulation results
confirm a performance degradation depending on the phase error variance. Moreover, superpo-
sition modulation is used to create a multilevel code which generalizes the original information
theoretic concept of superposition coding to exploit a shaping gain.

For CF, uniform or Maximum Output Entropy (MOE) quantizers are usually not appropri-
ate due to the irrelevant noise in the relay’s receive signal. Hence, the Information Bottleneck
(IB) method is used to determine a suitable quantization scheme which is optimal except for nu-
merical limitations. Corresponding quantizer mappings are determined and integrated into the
simulation environment. Depending on the channel model, storage and also run time complex-
ity of an IB algorithm may grow infeasibly large. In such cases, approximations are necessary
to find a suitable quantizer. Therefore, Information Bottleneck Graphs (IBGs) are used to derive
and evaluate different potentially suboptimal but feasible quantizer designs for an Orthogonal
Frequency Division Multiplexing (OFDM) system with Rayleigh fading subcarriers. Finally,
imperfect channel knowledge is considered whereby channel estimation and equalization is ei-
ther implicitly done during quantization or explicitly before it.



VII

Thesen

1. Decode and Forward approaches capacity for scenarios where the relay is considerably
closer to the source than to the destination.

2. The beamforming gain of Decode and Forward is greater the closer the relay is placed
towards the source.

3. Imperfect carrier phase synchronization degrades the beamforming performance but makes
it not obsolete until phase errors are severe.

4. The beamforming performance decreases with growing variance of a random phase error.

5. Superposition modulation is well suited to implement the cooperative transmission strat-
egy of source and relay as multilevel code.

6. Compress and Forward outperforms Decode and Forward when the source-relay link be-
comes the bottleneck of the system.

7. Maximum output entropy quantization is inappropriate for compression at the relay be-
cause of additive receiver noise.

8. The information bottleneck method delivers optimal quantization schemes for digital
communication.

9. Storage complexity becomes an issue for information bottleneck algorithms when the car-
dinality or dimensionality of the problem is very high as for frequency selective channels.

10. Information bottleneck graphs are suitable to visualize and simplify information bottle-
neck problems to design quantization schemes for multi-carrier transmission.
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Chapter 1

Introduction

1.1 Motivation and Objective

The 3-node relay channel is a well investigated subject in the literature: It was originally intro-
duced as classical relay channel by van der Meulen in [vdM71, vdM77]. Since that time a lot
of work has been done. In [CE79, KGG05] an upper bound on the capacity and the achiev-
able rates of the relaying strategies Decode-and-Forward (DF) and Compress-and-Forward
(CF) are derived for full-duplex relays by means of the Max-Flow Min-Cut (MFMC) theo-
rem [FF56, FF62, CT91, EK12]. In [HMZ05, HM02], the authors consider a more practical
scheme based on a half-duplex relay (cannot receive and transmit at the same time) so that the
length of the arising two time slots has to be optimized [WH10a]. For DF, this optimization
usually implies the use of different codes at source and relay in the two time slots which is
known as DF with incremental redundancy as it generates a concatenated code for the destina-
tion decoder [ACLY00]. In contrast to this information theoretically natural concept, Laneman
introduced a simplified scheme assuming repetition coding in [Lan02, LTW04] which requires
time slots of equal length to apply maximum ratio combining. Throughout this work, the latter
suboptimal scheme is not considered and, thus, DF is always meant to add incremental redun-
dancy at the relay. A very detailed summary of these investigations can be found in [Wei12]
which can be seen as preceding work of this thesis. Information theoretic analysis reveals that
DF performs very close to the upper bound on capacity when the relay is placed consider-
ably closer to the source than to the destination whereby, compared to a direct transmission, a
huge gain can be achieved with the help of distributed beamforming [MBM07].1 As distributed
beamforming requires that the source adjusts the phase of its transmit signal such that it su-
perposes constructively with the relay’s signal at the destination, phase errors will degrade the
performance. So far such phase errors have not been considered but only the extreme cases

1For the degraded relay channel, DF is known to achieve channel capacity [CE79, KGG05].
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of perfect phase knowledge or uniformly distributed phase fading [KGG05]. This work will
analyze the influence of such phase errors, which cannot be avoided in practice.

More precisely, a nonuniformly distributed random variable will be introduced. Further-
more, the influence of practical coding providing only discrete rates due to limited Modula-
tion and Coding Schemes (MCSs) as well as concepts like distributed multilevel coding will
be investigated in combination with superposition modulation [KK15b, KK15c]. Similar as
in [Wei12], general non-orthogonal and pragmatic orthogonal Multiple Access (MAC) will be
distinguished in a two time slot scheme which is required to realize half-duplex relaying.

For scenarios, where the relay is very close to the destination and far from the source, DF
is outperformed by CF because the source-relay link becomes the bottleneck of the system.
Unfortunately, also CF leaves a gap to the upper bound on the capacity except for relay and
destination being at the same position. Still, there is no better relaying strategy known until now
according to the literature. Therefore, CF is investigated from a more practical point of view.
Most importantly, the question of how to implement the compression at the relay is addressed:
One suitable possibility is to apply quantization whereby an optimal quantizer can be designed
with the help of the Information Bottleneck (IB) method [TPB99,Slo02,Zei12]. Again, specific
MCSs are used to investigate the influence of practical coding with only discrete rates [KK17a,
KK17b]. Finally, the quantizer design is extended for transmission over multiple carriers to
tackle frequency selective fading channels [KK17c]. As this cannot be solved feasibly using the
IB method, suboptimal quantizer design approaches are derived using Information Bottleneck
Graphs (IBGs) [LSB16].

1.2 Thesis Outline

The thesis is outlined as follows: Ch. 2 sketches basic concepts of communication theory to
follow the analysis of the main chapters focusing on the 3-node relay channel which is in-
troduced and investigated from an information theoretic perspective in Ch. 3. The following
chapters, Ch. 4 and Ch. 5, investigate DF from a more practical perspective considering mul-
tilevel coding with superposition modulation and Bit Interleaved Coded Modulation (BICM)
with imperfect synchronization. Finally, Ch. 6 and Ch. 7 are concerned with quantizer design
for CF considering different channel models (single carrier with path-loss and multi carrier with
Rayleigh fading) before Ch. 8 concludes the thesis.
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1.3 Notation

Throughout this thesis, lower case letters are used to denote realizations, e.g. x ∈ X, of random
variables denoted with capital letters, e.g. X, whereby calligraphic letters, e.g.X denote gener-
ally sets or alphabets with cardinality |X|. The probability density function (pdf) of a continuous
random variable X is pX(x). Whenever the relation of argument and random variable is clear
from the context, notation will be simplified to p(x) for the sake of clarity. For discrete random
variables, the corresponding distribution is given by a probability mass function (pmf) which is
denoted by Pr{X = x} = Pr{x}. Joint and conditional pdfs or pmfs will be denoted by p(x, y),
p(y|x), Pr{x, y}, and Pr{y|x}. Specific distribution functions like Gaussian, complex Gaussian,
and Rayleigh are denoted by N(µ, σ2), CN(µ, σ2), and R(σ2) whereby µ and σ2 denote re-
spective mean and variance. For complex Gaussians, the variance is divided equally on real
and imaginary part. Transmit and receive signals are usually denoted by x and y with respec-
tive subscripts for indicating affected node and time slot whereby transmit signals usually have
unit variance σ2

X = E
{
|X|2

}
= 1. If not stated otherwise, notation refers to complex baseband

whereby real and imaginary part of a variable, e.g. , x are indicated by primes, e.g. , x′ and x′′.
Usually, variables are scalar while vectors and matrices are highlighted using lower case bold
letters and capital bold letters, respectively. The identity matrix for example is denoted by I.





Chapter 2

Fundamentals - Point to Point
Transmission

As Point-to-Point (P2P) transmissions are part of a relay network, this chapter is concerned
with basic components and principal variables necessary for digital communication. Firstly, the
channel model and its information theoretic capacity will be introduced in Sec. 2.1 and Sec. 2.2.
Afterwards, Sec. 2.3 describes state-of-the-art Modulation and Coding Schemes (MCSs) includ-
ing Quadrature Amplitude Modulation (QAM), multilevel coding, superposition modulation,
turbo coding and Bit Interleaved Coded Modulation (BICM). Sec. 2.4 presents the simula-
tion setup and results for a range of practically relevant (discrete) rates according to different
MCSs. Finally, as multi-carrier transmission is well known to combat frequency selective fad-
ing channels, Orthogonal Frequency Division Multiplexing (OFDM) will be briefly introduced
in Sec. 2.5. Please note that OFDM is only relevant in Ch. 7 for Compress-and-Forward (CF)
where both perfect and imperfect channel estimation (cf. Sec. 2.5.2) are considered.

2.1 Channel Model

This section describes the channel model used throughout this thesis. At first, the Additive
White Gaussian Noise (AWGN) channel model including a path loss is used to keep the anal-
ysis simple. Usually, gained insights can be straightforwardly generalized to a more realistic
channel model considering frequency selective fading. The state-of-the-art technique to com-
bat frequency selectivity is to use multi-carrier systems like OFDM. As it will be illustrated in
Sec. 2.5, a frequency selective wide-band channel is decomposed into narrow-band flat Rayleigh
fading channels. As the quantizer design cannot be easily applied to multi-carrier transmission,
Ch. 7 investigates such quantizer design in detail using the Rayleigh fading channel model
described in Sec. 2.1.2.
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2.1.1 AWGN Channel with Path Loss

The AWGN channel is a very common and simple model for P2P transmissions whereby input
x ∈ X and output y ∈ Y are drawn from random variables X and Y . As its name implies, the
receive signal y is obtained by adding noise n ∼ CN(0, σ2

N) to transmit signal x. The term white
refers to a constant power spectral density. As this work considers a relay network where the

x ×
h

+

n

y

Figure 2.1: Point-to-point transmission channel.

relative link quality plays an important role, the simple AWGN channel model is extended by
an attenuating constant channel coefficient h as illustrated in Fig. 2.1.

y =
√

Phx + n (2.1)

If not stated otherwise, the channel coefficient h = d
−α
2 only represents the path loss depending

on the distance d and the path loss exponent α which is usually in the range [2, 5] (free space
attenuation up to dense urban environments). The variance σ2

x = 1 of transmit signal x is
normalized to unity because the transmit power is denoted by P. Furthermore, the noise power
σ2

N = 1 is also normalized to unity so that the Signal to Noise Ratio (SNR) at the receiver is

SNR = |h|2P. (2.2)

2.1.2 Rayleigh Fading

The above mentioned channel model is usually appropriate for free space propagation without
any obstacles but not suitable for the most terrestrial environments. A more realistic channel
model is the Rayleigh fading channel which depends on a random channel coefficient h instead
of a deterministic one as before. A statistical channel coefficient instead of a deterministic one is
meaningful due to its large number of unpredictable parameters like amplitude, phase, and angle
of arrival arising from multiple reflective propagation paths. For example, a signal transmitted
from a base station may be impaired by multiple reflections and diffractions at buildings or
other obstacles nearby before reaching the receiver. Fortunately, due to a usually large number
of propagation paths, the central limit theorem can be applied. Hence, a complex channel
coefficient h ∈ H can be drawn from a Gaussian distribution, h ∼ CN(0, σ2

H = d−α) where
σ2

H = d−α is the path loss dependent average channel gain. As its name implies, the magnitude
|h| of the channel coefficient follows a Rayleigh distribution R(d−α). The channel model (2.1) is
only used with this random coefficient to model subchannels of the OFDM system in Ch. 7. As
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such subchannels are correlated over frequency, a vector of channel coefficients (denoting the
channel impulse response) is randomly generated in time domain and then Fourier transformed
such that the above statistics are fulfilled in frequency domain. The channel impulse response
is modeled as a tapped delay line with statistical independent taps and a uniform power delay
profile. The length of the channel impulse response, i.e. , the number of taps, coincides with the
length of the guard interval (cf. Sec. 2.5 and Ch. 7).

2.2 Channel Capacity

According to Shannon’s information theory [Sha48, CT91], the channel capacity C is defined
as the maximum mutual information I(X; Y) between input and output with respect to the input
distribution p(x) under an average power limitation.

C = max
p(x):E{|X|2}≤1

I(X; Y) (2.3a)

A definition of mutual information by means of entropy as a statistical measure is given in
App. A. For the Gaussian channel as depicted in Fig. 2.1, the capacity can be derived in closed
form as shown in the following [CT91].

I(X; Y) = h(Y) − h(Y |X)

C = log2

(
πe(|h|2P + 1)

)
− log2

(
πeσ2

N

)
= log2

(
1 + |h|2P

)
(2.3b)

From (2.3b) it becomes clear that the capacity

C(SNR) = log2(1 + SNR) (2.3c)

is a function of SNR = |h|2P as plotted in Fig. 2.2 and serves as an upper bound for all (discrete)
modulation schemes.

2.3 Modulation and Coding Schemes

In addition to an information theoretic analysis with continuous rates and Gaussian alphabets,
practical Modulation and Coding Schemes (MCSs) supporting only discrete rates will be con-
sidered. Therefore, state-of-the-art coded modulation, involving Quadrature Amplitude Modu-
lation (QAM) and turbo coding, is used, whereby the question arises how coding and modula-
tion shall be combined in order to approach the channel capacity for Gaussian input. On one
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Figure 2.2: Capacity of AWGN channel for complex valued input.
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Figure 2.3: Signal spaces for M-QAM with M ∈ {4, 16}.

hand, multilevel coding and superposition modulation are very suitable but costly to implement.
On the other hand, Bit Interleaved Coded Modulation (BICM) is better suited for practical im-
plementation due to its simple structure while performance is only slightly degraded.

2.3.1 Quadrature Amplitude Modulation

The practically most relevant modulation scheme for wireless communications, especially for
very high data rates, is QAM because it very efficiently uses the complex plain for limited
average and maximum transmit power. The signal spaces of QAM are shown in Fig. 2.3 for
two selected modulation orders.1 Usually, an M-QAM uses M signal points that correspond

1Please note that σ2
X = 1 since the transmit power is denoted by P
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to m = log2 M bit/symbol. As its name implies, it can be made up quadratically from two
Amplitude Shift Keyings (ASKs) in real and imaginary part also known as Inphase (I) and
Quadrature (Q) component. Hence, it can be easily mapped and demapped independently in I
and Q, i.e. , half of the bit/symbol for each component. Throughout this work, gray mapping
is applied to ensure only one bit error for mixing up neighboring symbols. Therefore, Fig. 2.3
shows in addition an exemplary mapping for 4- and 16-QAM. The achievable rates and the
loss to Shannon’s capacity are depicted in Fig. 2.4. The numerical evaluation of the mutual
information terms for different modulation orders is sketched in App. C.1. From Fig. 2.4 it is
obvious that a discrete modulation scheme with finite cardinality cannot achieve the capacity
(cf. (2.3b)). In the low SNR regime however, the gap to capacity is very small. In the high SNR
regime, the final rate (mutual information) is saturated into the entropy of the input alphabet.
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Gaussian input
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16-QAM input
64-QAM input
256-QAM input

Figure 2.4: Capacity of AWGN channel with QAM input.

2.3.2 Turbo Coding

Due to transmission errors introduced by the channel, channel coding is necessary to approach
channel capacity. Turbo codes are very powerful state-of-the-art codes besides others like Low
Density Parity Check (LDPC) codes [Gal63, Sho03] that are implemented in current mobile
communication systems like the Universal Mobile Telecommunications System (UMTS) and
the Long Term Evolution (LTE). The key idea is to create very powerful codes by concatenation
of simple codes [BGT93, NFK07]. As a consequence of this concatenation, optimal maximum
likelihood decoding is usually not feasible and, thus, replaced by an iterative turbo decoding
process exchanging extrinsic information between component decoders. Strictly speaking turbo
codes are known to be parallel concatenated convolutional codes as invented by Berrou et al. in
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1993 [BGT93]. However, the term is also used to emphasize the turbo fashion of the decoding
principle of such codes, i.e. , all kinds of concatenations (component codes, mappers, etc.)
exchanging extrinsic information form a turbo code. In a wide sense even LDPC codes can be
understood as turbo codes due to their complex concatenation of repetition and Single Parity
Check (SPC) codes. The code construction, that is, the choice of component codes and number
of iterations, can be done with the help of Extrinsic-Information-Transfer (EXIT) charts since
the initial work of Stefan ten Brink [tB01a, tB01b].

Encoding Structure

The popularity of turbo codes is principally reasoned in their simple structure as depicted in
Fig. 2.5 which shows two parallel concatenated encoders. Theoretically, this structure could
be extended to arbitrarily many concatenated codes which is however not relevant for practical
implementation. Due to the interleaver in Fig. 2.5 the component encoders C1 and C2 will pro-

u

C1∏
C2

P multiplex c

c1

c2

Figure 2.5: Twofold Parallel Concatenated Turbo Encoder.

duce different parity check bits even when the same encoding structure is used for both. The
component codes are usually Recursive Systematic Convolutional (RSC) codes with a moderate
memory of LC ∈ {3, 4, 5}. Due to the inefficiency of transmitting the systematic part multiple
times, encoders deliver only parity bits while information bits have a separate path. The punc-
turing matrix P can finally puncture bits to adapt the code rate

Rc =
R1

c · R2
c

R1
c + R2

c − R1
c · R2

c
(2.4)

where R1
c and R2

c are the code rates of the component codes.

In this work, the component encoders are chosen as depicted in Fig. 2.6 which leads to the
well known turbo code with Rc = 1

3 specified in UMTS and LTE [NFK07]. Feedforward and
feedback generator of the convolutional code are given in octal notation: (15)8 and (13)8. To
be adaptive to varying channel conditions, 8 different code rates are obtained via puncturing as
described in Table 2.1 [LCG+09].
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+ z−1 z−1 z−1

+

+

+

Figure 2.6: Convolutional encoder with feedforward generator (15)8 and feedback generator
(13)8.

Table 2.1: Puncturing Patterns (octal)

4/5 2/3 4/7 1/2 4/9 2/5 4/11 1/3
100 101 101 121 125 125 335 377
001 021 261 263 363 377 377 377

Turbo Decoding

Turbo decoders exchange information about the bits ul of an information word u, usually in the
form of Log Likelihood Ratios (LLRs). The detailed derivation for the LLR of interest in a
turbo decoder is given in App. D. Assuming a systematic encoding, the final result is

L(ul) = L(yl|ul) + La(ul) + log

∑
c∈Γ(0)

l

n−1∏
i=0,i,l

e−(L(yi |ci))ci
k−1∏

j=0, j,l
e−L(u j)u j

∑
c∈Γ(1)

l

n−1∏
i=0,i,l

e−(L(yi |ci))ci
k−1∏

j=0, j,l
e−L(u j)u j

︸                                          ︷︷                                          ︸
Le(ul)

. (2.5)

Investigating (2.5), one can see that the LLR L(ul) of a specific information bit ul is additively
composed of three shares:

1. L(yl|ul) is directly known due to channel observation (always intrinsic),

2. La(ul) is a priori knowledge which can also arise extrinsically from another decoder (turbo
principle),

3. Le(ul) is extrinsic knowledge which is gained from other code bits (generated by decoder
D) and, thus, can be used as a priori knowledge in another decoder (turbo principle).

The resulting turbo decoding principle is visualized in Fig. 2.7 where the subtraction cancels
the amount that is already known in the respective component decoder. Hence, only extrinsic
information is exchanged. The component decoders D1 and D2 are usually Bahl Cocke Jelinek
Raviv (BCJR) decoders which evaluate (2.5) efficiently based on trellis diagrams [BCJR74].
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demultiplex
&

depuncture
L(y|c)

L(y|c1) + L(y|u)
D1

L1(u) = L(y|u) + L1
e(u) + L2

e(u)

+
− ∏

D2

L2(u)

∏−1 +
−

L(y|c2)

L1
a(u) = L2

e(u)

Figure 2.7: Iterative Turbo Decoding.

2.3.3 Multilevel Coding

The combination of higher order modulation and channel coding is known as coded modula-
tion. Usually, different bit levels are not independent after transmission through the channel.
One exception is 4-QAM, which has m = 2 bit/symbol, however, the two bits are mapped
independently in I and Q. There are different possibilities to implement coded modulation,
e.g. , trellis coded modulation, multilevel coding, or BICM. In this work, the focus is set to
multilevel coding and BICM for the following two reasons. Firstly, multilevel codes are very
useful in combination with superposition modulation to exploit the advantages of Decode-and-
Forward (DF) with non-orthogonal channel access (cf. Ch. 5). Secondly, BICM as introduced in
Sec. 2.3.5, is generally preferable for practical implementation due to only small performance
loss compared to optimal coded modulation while its implementation simplifies tremendously.

The general idea of multilevel coding, originally introduced by Imai in [IH77], is to encode
each bit level independently according to its respective equivalent channel capacity (unequal
error protection) and follows directly from the chain rule of mutual information. For the case
of a bijective mapping, which is lossless from an information theoretic perspective, the mutual
information I(X; Y) between transmit symbol x ∈ X and receive symbol y ∈ Y is equal to the
mutual information I(Y; C1,C2, · · · ,Cm), where c1, · · · , cm are the different (encoded) bit levels
of x. Following the chain rule of mutual information [CT91] directly leads to the decomposition
of I(X; Y) into equivalent channels for each bit level.

I(Y; C1,C2, · · · ,Cm) = I(Y; C1) + I(Y; C2|C1) + · · · + I(Y; Cm|C1,C2, · · · ,Cm−1) (2.6)

Therefore, the transmission of x over a channel delivering y can be interpreted as a successive
transmission of bits cn,∀n ∈ {1, · · · ,m} over m virtual channels whereby the nth channel re-
quires knowledge of previously transmitted bits c1, · · · , cn−1. The equivalent bit level capacities
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according to (2.6) are plotted in Fig. 2.8.2 The arising signal processing chains at transmitter
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Figure 2.8: Bit level capacities of 16-QAM.

and receiver are depicted in Fig. 2.9 and Fig. 2.10. For the encoding, a sequence of information
bits u is split into m different sequences of bits un (respective lengths depend on individual code
rates) which are independently encoded into cn. As induced by (2.6), decoding is implemented
successively as depicted in Fig. 2.10 where the current stage exploits all previous decisions.

u S/P

ENC1

c1u1

...

ENCm

cmum

mapper x

Figure 2.9: Multilevel encoder.

y

DEC1

DEC2

...

DECm ĉm

ĉ1 · · ·

ĉ2

Figure 2.10: Multistage decoder.

The question arising in practice is how to obtain the different bit levels with individual code
rates Rn

c ≤ I(Y; Cn|C1, · · · ,Cn−1). Therefore, the set of all possible signal points (cf. Fig. 2.3)
is separated step by step in dependence of the value of the bit in each level. There are differ-
ent possibilities to do this set partitioning: natural partitioning, gray labeled partitioning, set

2The bit levels are partitioned according to Ungerböck as shown in Fig. 2.11.
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partitioning according to Ungerböck as in Fig. 2.11 [Ung82], and more [WFH99]. Important
to note is that all partitioning schemes are equally good in terms of sum capacity. The type of
the set partitioning plays an important role in practical implementations. The partitioning of
Ungerböck for example increases the minimum euclidean distance within each level as illus-
trated in Fig. 2.11 which leads to an increasing code rate along the levels so that high levels may
be uncoded (cf. Fig. 2.8).

X

X(0)

X(00)

c3 = 0

c3 = 1

X(000)

c2 = 0

c3 = 0

c3 = 1

X(001)

c2 = 1

c1 = 0

X(01)

c3 = 0

c3 = 1

X(010)

c2 = 0

c3 = 0

c3 = 1

X(011)

c2 = 1

c1 = 1

c0 = 0

X(1)

X(10)

c3 = 0

c3 = 1

X(100)

c2 = 0

c3 = 0

c3 = 1

X(101)

c2 = 1

c1 = 0

X(11)

c3 = 0

c3 = 1

X(110)

c2 = 0

c3 = 0

c3 = 1

X(111)

c2 = 1

c1 = 1

c0 = 1

Figure 2.11: Binary Ungerböck Partitioning.

2.3.4 Superposition Modulation

A special case of multilevel coding is superposition modulation which achieves a natural shap-
ing gain without active shaping [DRU97]. In contrast to classical multilevel coding where the
modulation scheme is given and set partitioning applied, superposition modulation simply cre-
ates a weighted sum of m Binary Phase Shift Keying (BPSK) modulated bit levels cn [WH10b]:

x =

m∑
n=1

αne jχn · cn, with cn ∈ {−1,+1} (2.7)
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where amplitude αn and phase χn of each layer may be freely chosen with respect to a power
constraint. This superposition of bit layers can create every possible complex symmetric signal
constellation. Hence, schemes like ASK, Phase Shift Keying (PSK), or hybrids like QAM can
be considered as special cases of superposition modulation [WH10b]. The motivation for the
use of superposition modulation is usually the shaping gain, i.e. , to close the gap to Shannon’s
capacity by creating a Gaussian like distribution. In fact, for an infinite number of levels, this
distribution becomes exact and achieves the capacity. According to this goal, it is sufficient
to consider only real valued superposition modulation (χn = 0) because a complex Gaussian
like distribution can be achieved by quadrature modulation [Wo11]. For the sake of complete-
ness, there are irregular complex signal constellations as shown in [WH10b], however, their
performance is always worse than using two real valued superposition modulations in I and
Q [Wo11]. Figures 2.12 and 2.13 illustrate the encoding in combination with superposition
modulation. The bit levels can be either encoded independently (cf. Fig. 2.12) as in classical

u S/P

ENC1

...

ENCm

BPSK
...

BPSK

×
α1

×
αm

Σ x

Figure 2.12: Superposition modulation with multiple codes.

multilevel coding or jointly using a single code (cf. Fig. 2.13). Adding an interleaver after the
encoders will lead to a BICM scheme (cf. Sec. 2.3.5). At the cost of complexity, an individual
encoding of the layers can improve the decoding convergence of a practical BICM scheme as
shown in [TP10]. In relation to multilevel coding, the authors of [MP04, TP10] use the term
Σ-mapping derived from the sum of individual BPSK mappings.

u ENC S/P
BPSK
...

BPSK

×
α1

×
αm

Σ x

Figure 2.13: Superposition modulation with single code.

As mentioned before, the amplitude of each layer can be chosen arbitrarily, that is, αn is
chosen such that the power α2

n spent for each level n satisfies an average power constraint, e.g. ,∑m
n=1 α

2
n = 1. Although any power allocation scheme is possible, there are some meaningful

schemes to design signal spaces with desirable properties like equidistant symbols or Gaussian
like distributions. According to [Wo11], equal, unequal, and grouped power allocation can be
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distinguished whereby unequal power allocation is structured following the exponential law
through the layers and grouped power allocation is a hybrid of the first two combining their
benefits.

Equal Power Allocation

The goal to create a Gaussian like distribution can be easily achieved by choosing the same
amplitude αn =

√
1
m for each bit level. On one hand, the resulting overlap of symbols creates

a Bernoulli distribution which is indeed Gaussian like if m is not too small (cf. Fig. 2.14), e.g. ,
m = 2 leads to a triangular distribution. On the other hand, this mapping is not bijective due to
the introduced ambiguity which makes uncoded transmission impossible. The mapping itself
can be considered as a compression which is intuitive because a nonuniform distribution cannot
have maximum entropy. Hence, the stream of bits before the mapping must be redundant. For

−5 −4 −3 −2 −1 0 1 2 3 4 5
0
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0.1
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0.2

xEPA →

Pr
{x E

P
A
}→

Figure 2.14: Signal space distribution of superposition modulation for equal power allocation
with m = 12.

equal power allocation, this compression is quite strong which is indeed a drawback because it
limits the achievable spectral efficiency I(X; Y) for a given number of bit levels. More precisely,
the limiting factor is the entropy H(X) which grows only logarithmically with the number of bit
levels m [Wo11].

H(X) ≈ 1
2

log
(
π

2
em

)
(2.8)

For the examples in Fig. 2.14 and Fig. 2.15 with m = 12 and m = 18 layers, the spectral effi-
ciency I(X; Y) cannot exceed H(X) = 2.8385 and H(X) = 3.1321 bits per channel use (cf. (2.8))
whereas a bijective mapping would have the respective maximum entropy of H(X) = 12 and
H(X) = 18 bits, respectively. Entropy depends very much on the cardinality |X| = m + 1 which
grows only linearly in m. In theory, the strong compression (logarithmic growth of entropy
m) is not an issue because the number of bit levels can be increased arbitrarily. In practice
however, a higher number of bit levels corresponds with a higher demapping complexity O(m)
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which grows linear with m for equal power allocation [Wo11,HW11]. Hence, a trade-off arises
between complexity and input entropy which should not be lower than the channel capacity.
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Figure 2.15: Signal space distribution of superposition modulation for equal power allocation
with m = 18.

Unequal Power Allocation

Based on its name, unequal power allocation could be anything which is not equal. Anyhow,
according to [Wo11], αn is meant to decrease exponentially with n:

αn = α1 · ξn−1 0 < ξ < 1 (2.9)

where ξ is the exponential base and α1 is chosen according to an average power constraint. Con-
trary to equal power allocation, which is nonbijective and follows a nonuniform distribution,
unequal power allocation always creates a bijective mapping which follows a uniform distribu-
tion as shown in Fig. 2.16. Hence, unequal power allocation has maximum input entropy (no

−1.5 −1 −0.5 0 0.5 1 1.5
0

5 · 10−2

0.1

xUPA →

Pr
{x U

P
A
}→

Figure 2.16: Signal space distribution of superposition modulation for unequal power allocation
with m = 3.

compression) which allows a higher spectral efficiency I(X; Y) compared to equal power allo-
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cation with the same number of bit levels.3 On the downside, without compression the shaping
gain vanishes too which makes unequal power allocation the other extreme compared to equal
power allocation which has a maximum shaping gain and a strong compression.

As illustrated in Fig. 2.16, ξ = 0.5 will lead to an equispaced signal space and, thus, equals
an ASK with natural labeling. Although, other choices of ξ are possible, a nonequispaced signal
space is mostly not desirable and will therefore not be considered in this work. For details,
the reader is referred to [Wo11]. The demapping complexity for unequal power allocation is
O(2m/m) [Wo11, HW11].4
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Figure 2.17: Signal space distribution of superposition modulation for grouped power allocation
with m = G · L = 2 · 4 = 8 and H(X) = 4.7159.

Grouped Power Allocation

As shown above, both equal and unequal power allocation have opposed benefits and drawbacks
which can be traded off by a hybrid scheme. The goal is to create a Gaussian like distributed
signal constellation which at the same time has high input entropy. The key insights from the
above schemes are that equal power allocation helps to achieve a Gaussian like shape whereas
unequal power allocation helps to increase the cardinality |X| and, thus, entropy H(X).

Hence, a hybrid scheme can be derived by dividing m layers into L groups of size G whereby
levels within a group have the same power while power allocation along the groups is unequal
(exponential) with ξ = 0.5 [Wo11].

xGPA =

L∑
l=1

αl

G∑
g=1

cl,g cl,g ∈ {−1,+1}, αl = α1 · 21−l (2.10)

As the sums are interchangeable, one can think as well of a sum of unequal power alloca-
tion schemes which corresponds to a discrete convolution of uniform (rectangular) distributions

3Contrarily to equal power allocation, the entropy H(X) = m of unequal power allocation grows linearly with
m instead of logarithmically, that is, cardinality |X| = 2m grows exponentially instead of linearly.

4As this scheme is comparable to ASK, one may expect a complexity of O(2m). That is true for Gray labeling
but not for natural labeling inherent in superposition modulation.
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Figure 2.18: Signal space distribution of superposition modulation for grouped power allocation
with m = G · L = 3 · 4 = 12 H(X) = 5.0345.

(cf. Fig. 2.17, Fig. 2.18, Fig. 2.19). Consequently, G = 1 directly leads to unequal power al-
location, G = 2 leads to a triangular distribution (cf. Fig. 2.17), and G = 3 already achieves
a very good Gaussian like shape (cf. Fig. 2.18). Larger values of G > 3 further improve the
shaping as shown in Fig. 2.19 until it is equal to the equal power allocation scheme with G = m.
However, this does not have much impact on the shaping gain which is the gap to Shannon’s
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Figure 2.19: Signal space distribution of superposition modulation for grouped power allocation
with m = G · L = 6 · 4 = 18 and H(X) = 5.0724.

capacity: The achievable rates of different superposition modulation schemes are depicted in in
Fig. 2.20 where different colors indicate different power allocations, different markers belong
to different group sizes G and different line styles correspond to the number of levels L or m. It
is important to note that the saturation level can be increased by increasing either m for equal
power allocation or L for grouped power allocation. Comparing now different grouped power
allocation schemes in the non-saturated ranges, a difference between different group sizes G is
hardly visible which makes G = 2 and G = 3 the most interesting group sizes for practical
implementations. By comparing the spectral efficiency of equal power allocation and grouped
power allocation in terms of mutual information, one can see that all grouped power allocated
schemes outperform the equal power allocated schemes. This is reasoned in the growth rate of



20 CHAPTER 2 FUNDAMENTALS - POINT TO POINT TRANSMISSION

−10 −5 0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

SNR in dB→

C
in

bi
t/s

/H
z
→

Gaussian input
SPM-GPA N = G · L = 2 · 4
SPM-GPA N = G · L = 2 · 5
SPM-GPA N = G · L = 3 · 4
SPM-GPA N = G · L = 4 · 3
SPM-GPA N = G · L = 6 · 3
SPM-GPA N = G · L = 6 · 4
SPM-UPA N = 5
SPM-UPA N = 3
SPM-EPA N = 12
SPM-EPA N = 18
SPM-EPA N = 24

Figure 2.20: Capacity of AWGN channel for superposition modulation with different power
allocation schemes.
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the entropy with respect to the number of bit levels which limits the achievable mutual infor-
maiton. In particular, the entropy

H(X) ≈ 1
2

log
(
π

6
eG

)
+ L (2.11)

for grouped power allocation grows faster than logarithmically (cf. (2.8) for equal power al-
location) in the number of layers m = L · G. This becomes visible as part of the entropy
in (2.11) grows linearly, like for unequal power allocation, while the other part grows log-
arithmically with the number of layers. Likewise this trade-off is obvious in the cardinality
|X| = G

(
2L − 1

)
+ 1 which grows linearly with group size G as for equal power allocation and

exponentially with the number of power levels L as for unequal power allocation. Thus, for the
same number of bit levels m, grouped power allocation delivers higher cardinality than equal
power allocation as illustrated in Figures 2.14 and 2.18. Demapping complexity is traded off as
well to order O(G · 2L/L) [Wo11, HW11].

2.3.5 Bit Interleaved Coded Modulation

In contrary to classical multilevel coding which uses a separate code on each bit level, a single
code over all bit levels can also achieve the sum capacity of all bit levels. As the bit levels are
not independent as the decomposition in (2.6) shows, feedback between demapper and decoder
is required which results in an iterative turbo processing similar to that depicted in Fig. 2.7.
Especially when using turbo coding, such an iterative processing can become very complex. To
avoid the turbo loop between demapper and decoder, one could neglect the conditions in (2.6)
which leads to a truly parallel transmission of bits. On one hand, the performance must be worse
because the available information is not fully exploited. On the other hand, this loss is quite
small over a large range of SNRs when Gray mapping is used which makes this scheme very
attractive for practical applications. Fig. 2.21 shows the blockdiagram of this BICM scheme
with parallel decoding as proposed by Stiersdorfer in [Sti09]. The interleaver is necessary to
split burst errors arising from higher order modulation.

source turbo encoder
∏

QAM mapper

×h

+n

QAM demapper∏−1turbo decodersink

u c x

yL(c)û

Figure 2.21: Blockdiagram of Bit Interleaved Coded Modulation.
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2.4 Simulation Setup and Achievable Rates

For the simulations throughout this work, the BICM scheme (cf. Sec. 2.3.5) is used combining
turbo coding (cf. Sec. 2.3.2) with code rates Rc ∈ {1/3, 4/11, 2/5, 4/9, 1/2, 4/7, 2/3, 4/5} and
QAM (cf. Sec. 2.3.1) with orders m ∈ {2, 4, 6, 8, 10}. The arising 40 MCSs with rates Rb = m ·Rc

cover the practically relevant range and are all simulated over AWGN channels to obtain Bit
Error Rates (BERs) versus SNR. Fig. 2.22 shows achievable rates Rb for a target BER of 10−5

versus the respective threshold SNR where different colors belong to different modulation orders
m (Rc varied within same color). The Monte Carlo simulation was conducted with an interleaver
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Figure 2.22: Achievable rates Rb versus SNR for BER = 10−5 for AWGN channel.

length of 8640, 8 turbo iterations and 4000 statistical realizations whereby feedback between
demapper and decoder was neglected as mentioned in Sec. 2.3.5. The results of Fig. 2.22 will
be used in Ch. 5, Ch. 6, and Ch. 7 to determine rates for P2P transmissions occurring within the
relay network, e.g. , from source to relay, source to destination, or relay to destination.

2.5 Orthogonal Frequency Division Multiplexing

As this work investigates practical issues, OFDM is of great interest since it is the state-of-the-
art scheme to deal with frequency selective channels occuring with the use of high bandwith.
The key idea is to subdivide system bandwidth into a bunch of subcarriers of small bandwidth
so that the channel transfer function in each subband is almost perfectly flat [Kam08]. Orthogo-
nality is achieved by means of rectangular shaping in time domain which corresponds to a sum
of sincs in frequency domain. Hence, with appropriate carrier spacing ∆ f , the 1. Nyquist crite-
rion is fulfilled in both time and frequency domain. Fig. 2.23 shows the overlapping subcarriers
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before summation to visualize that for exact sampling only one subcarrier is visible while all
others have a zero. The mixing of data symbols to the different subcarriers can be easily imple-

f0 − 3∆ f f0 − 2∆ f f0 − ∆ f f0 f0 + ∆ f f0 + 2∆ f f0 + 3∆ f
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Figure 2.23: Sinc spectrum of each subcarrier GT x(·) causes no ICI with appropriate carrier
spacing ∆ f around carrier frequency f0.

mented by means of the Fast Fourier Transform (FFT) which inherently provides the subcarrier
frequencies - one of the reasons why OFDM is very suitable for practical applications. Another
important reason is the low complex channel equalization as later shown in Sec. 2.5.2. Usually,
benefits in implementation come with the cost of low efficiency: The drawbacks of OFDM are
mainly a lower spectral efficiency due to the required guard interval and unused carriers at the
spectrum border to combat out-of-band radiation. Furthermore, the superposition of all subcar-
riers in time domain leads to a high Peak to Average Power Ratio (PAPR) which makes costlier
amplifiers necessary.

2.5.1 OFDM - System Setup

The OFDM system as shown in Fig. 2.24 uses the same BICM as described above. There-
fore, the signal processing at the source and at the receiver are similar to a single-carrier system
except for a Serial-to-Parallel (S/P) converter before the mapper to ensure modulation along dif-
ferent subcarriers . The blocks Inverse Fast Fourier Transform (IFFT) and FFT are then used to
assign the data symbols to the OFDM subcarriers and vice versa whereby usually some subcar-
riers are non-occupied (out-of-band radiation, filter design issues) or used for reference symbols
(synchronization, channel training). Thereafter, a guard interval (GI) is added in form of a cyclic
prefix to combat Inter-Symbol-Interference (ISI) and Inter-Carrier-Interference (ICI) before the
time domain signal is transmitted over the channel. Anyway, for the results in Ch. 7, the sys-
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tem in Fig. 2.24 is simulated completely in frequency domain as indicated by the box which
summarizes parts of the signal processing and the channel impulse response hT D into a channel
transfer function h. In particular, hT D is modeled as a tapped delay line according to sampling at
symbol rate so that h = [h1, h2, · · · , hNFFT ] contains all channel coefficients (cf. Sec. 2.1.2) of the
OFDM subcarriers. In a nutshell, the BICM in Fig. 2.21 is simply extended for all subcarriers.

source encoder
∏

S/P mapper IFFT GI

hT D

+n
GIFFTdemapperP/S∏−1decodersink

h = [h1, h2, · · · , hNFFT ]

u c x2

yT DL(c)û

xT D

y2

x1

.

.

.

xNFFT

y1

yNFFT

.

.

.

Figure 2.24: Blockdiagram of Orthogonal Frequency Division Multiplexing.

2.5.2 Channel Estimation and Equalization

For channel estimation a pilot symbol xp is transmitted on each carrier prior to actual data
transmission. Dropping the subcarrier index, the destination observes

yp = h
√

Pxp + np (2.12)

where np ∼ CN(0, 1) is AWGN as in Sec. 2.1. For the sake of clarity, xp = 1 will be assumed
to simplify the mathematical description of occurring probability mass functions (pmfs) like
Pr{x, ȳ, ĥ} in Ch. 7. Nonetheless, all derived quantization concepts in Ch. 7 will work in general
for arbitrary pilots which is preferable in practice to avoid a high PAPR. Due to the fact that the
channel transfer function can be represented by one channel coefficient per subcarrier, channel
estimation and equalization become simple scalar operations. The following mathematical de-
scription of channel estimation and equalization is written such that the joint pmfs Pr{x, ȳ, ĥ} of
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relevant signal x, equalized observation ȳ, and estimated channel coefficient ĥ can be derived
straightforwardly.5

ĥ =
yp

√
Pxp

= h +
np

√
P

(2.13a)

ȳ = y · ĥ−1

=
√

P
hx

ĥ
+

n

ĥ

(a)
=
√

P ·
h + np√

P
− np√

P

h + np√
P

x +
n

ĥ

=
√

P ·
1 − np√

P

h + np√
P

 x +
n

ĥ

=
√

P · x − np

ĥ
x +

n

ĥ

=
√

P · x − n̄p

|ĥ| x +
n̄

|ĥ| (2.13b)

In (a), noise term np√
P

is added and subtracted to get rid off variable h and keep only ĥ which
is desirable to determine Pr{x, ȳ, ĥ}. In the final step, the channel phases are incorporated into
the noise variables n̄ = n · e−∠ĥ and n̄p = np · e−∠ĥ since a phase rotation does not change the
statistics of circular symmetric AWGN: n, n̄, np, n̄p ∼ CN(0, 1). The channel estimation error is
denoted by the term n̄p

|ĥ| x in (2.13b). Whenever perfect channel knowledge is considered, (2.13b)
simplifies to

ȳ =
√

Px + n̄ · |h|−1. (2.13c)

2.6 Discussion

Basic concepts of communication and information theory have been discussed for a P2P trans-
mission. The introduced channel model is used throughout the work to model partial links
of the relay channel. Furthermore, the channel capacity according to Shannon [Sha48] can
be generalized to a more complex network using the Max-Flow Min-Cut (MFMC) theorem
[FF56, FF62, CT91, EK12] (cf. Ch. 3). The described MCSs will be used to determine achiev-
able rates for different relaying strategies in a more practical context: In Ch. 4 multilevel coding
will be combined with superposition modulation to approach the theoretically achievable rate
of DF. Ch. 5 and Ch. 6 contain simulation results for the described BICM scheme. Frequency
selective Rayleigh Fading channels with OFDM will only be considered for CF in Ch. 7 because

5This classification is used by the Information Bottleneck (IB) method utilized in Ch. 6 and Ch. 7.
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they heavily affect quantizer design. The rest of the work considers only AWGN and path loss
(cf. Sec. 2.1.1).



Chapter 3

Classical Relay Channel - Preliminaries

This chapter introduces the classical 3-node relay channel and the most important relay pro-
tocols: Decode-and-Forward (DF), Compress-and-Forward (CF), and Amplify-and-Forward
(AF). After presentation of the 3-node relay channel in Sec. 3.1, an upper bound on the ca-
pacity [CE79, KGG05, EK12] is derived in Sec. 3.2 using the Max-Flow Min-Cut (MFMC)
theorem of Ford and Fulkerson [FF56, FF62, CT91, EK12]. Sec. 3.3 and Sec. 3.4 introduce
the relay protocols DF, CF, and AF as well as their achievable rates for half duplex relays
whereby the latter section provides closed form solutions for the well known Gaussian relay
channel. Finally, Sec. 3.5 shows and discusses corresponding results for a per node power, a
per node energy, and a sum energy constraint. While most of these results are well known in
literature [KGG05,HMZ05,HM02,Wei12], one further publication considering transmit energy
instead of power per node emerged during the work on this thesis [KK15a].

3.1 System Setup – 3-Node Relay Channel

The system under investigation in this thesis is the memoryless 3-node relay channel as depicted
in Fig. 3.1: A source node S wants to transmit a message to destination node D where relay
node R supports this transmission. The three emerging partial links, S → R, S → D, and
R → D are modeled as described in Sec. 2.1 whereby he f∀e ∈ {S ,R},∀ f ∈ {R,D}, e , f

denotes generally the channel coefficient depending on distance de f . The signals XS and YD with
realizations xS ∈ XS and yD ∈ YD denote in- and output of the channel, respectively, whereby
YR and XR with realizations yR ∈ YR and xR ∈ XR are intermediate receive and transmit signals
at the relay. The channel transition probability is denoted by p(yR, yD|xS , xR). The following
general derivations hold for known channel coefficients and general input distributions p(xS , xR)
with restriction on the average signal power. Sec. 3.4 presents solutions for the Gaussian relay
channel for which a Gaussian input is optimal.
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hS R

hS D

hRD

S

XS

RYR XR

D

YD

Figure 3.1: 3-node relay Channel.

3.2 Capacity Upper Bound

For a general network with T nodes comprised in set T and a joint probability density function
(pdf) p(x1, x2, · · · , xT ), the capacity is upper bounded by [EK12, CT91, FF56, FF62]

max
p(x1,··· ,xT )

min
S⊆T

I(XS; YS̄|XS̄) (3.1)

where T is divided in two complementary sets S and S̄ containing transmitting and receiving
nodes, respectively. The minimum is taken over the mutual information terms of all possible
combinations of transmitting nodes S to the respective receiving nodes S̄.

3.2.1 Full-Duplex Relays

Applying (3.1) to the 3-node relay channel, as depicted in Fig. 3.2, delivers [EK12, CE79,
KGG05]

CFD ≤ max
p(xS ,xR)

min{I(XS ; YR,YD|XR), I(XS , XR; YD)} (3.2)

where p(xS , xR) is the joint probability distribution of source’s and relay’s transmit signals. The
two cut-sets can be interpreted as cooperative broadcast and Multiple Access (MAC) bound,
i.e. , an upper bound is obtained if all transmitting nodes and all receiving nodes cooperate.

I(XS ; YR,YD|XR) I(XS , XR; YD)

S

XS

RYR XR

D

YD

Figure 3.2: Cuts for 3-node relay channel.
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3.2.2 Half-Duplex Relays

In the half-duplex case, cooperative MAC and broadcast bounds need to be adapted to two time
slots whereby the first time slot will be denoted as broadcast phase and the second as MAC
phase. As the relay can either receive or transmit, the respective transmit or receive signals are
set to zero. The cooperative broadcast bound simplifies to

I(XS ; YR,YD|XR) =

I(XS 1; YR,YD1|XR = 0) for T1

I(XS 2; YR = 0,YD2|XR) for T2

(3.3)

and the cooperative MAC bound to

I(XS , XR; YD) =

I(XS 1, XR = 0; YD1) for T1

I(XS 2, XR; YD2) for T2

(3.4)

where subscript numbers denote the corresponding time slots with lengths T1 and T2.1 The
mutual information for each time slot has to be summed for each respective subset whereby the
fractional length of the time slots is considered by parameter τ ∈ [0, 1] such that T1 = τT and
T2 = (1 − τ)T [HMZ05].

Cnon
HD ≤ max

pXS 1 ,XS 2 ,XR (XS ,XR)
0≤τ≤1

min

 τI(XS 1; YR,YD1) + (1 − τ)I(XS 2; YD2|XR)
τI(XS 1; YD1) + (1 − τ)I(XS 2, XR; YD2)

 (3.5)

This capacity bound holds for non-orthogonal channel access since both source and relay are
transmitting in the second time slot. Additionally, orthogonal channel access, where the source
is quiet in the second time slot, that is, XS 2 = 0, will be considered as well. In this case, (3.5)
simplifies to

Corth
HD ≤ max

pXS 1 ,XS 2 ,XR (XS ,XR)
0≤τ≤1

min

 τI(XS 1; YR,YD1)
τI(XS 1; YD1) + (1 − τ)I(XR; YD2)

 . (3.6)

3.3 Relaying Strategies and Achievable Rates

The most common relay protocols in the literature are

• Amplify-and-Forward (AF) where the relay simply amplifies its received signal before
forwarding it to the destination (time slots of equal length are required),

1Relay signals are not distinguished because it is obvious that yR is received in the first and xR transmitted in
the second time slot due to the half-duplex constraint.
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• Decode-and-Forward (DF) where the relay must fully decode its received signal and for-
wards a re-encoded signal (time slot length can be optimized),

• Compress-and-Forward (CF) where the relay cannot decode the message and, thus, for-
wards only a compressed version of its observed signal (time slot length can be opti-
mized).

Please note that DF refers to exploiting incremental redundancy. For details on DF with repe-
tition coding, the reader is referred to [Lan02, LTW04, Wei12]. For the rest of this work, only
half-duplex relays are considered due to their higher practical relevance. Details on full-duplex
relays can be found in [CE79, KGG05, EK12] whereby the results therein can be adapted to
half-duplex relays the same way as in Sec. 3.2.2.

3.3.1 Amplify and Forward

The AF relay protocol is the simplest known since the relay has very low complexity and does
not need any digital processing at all [Lan02, LTW04, EK12, Wei12]. The source encodes a
message u1 into xS 1 and broadcasts it in the first time slot. The relay simply takes its received
signal

yR = hS R

√
PS 1xS 1 + nR (3.7a)

and retransmits

xR = η · yR = η ·
√

PS 1hS RxS 1 + η · nR (3.7b)

where

η ≤
√

PR

PS 1h2
S R + 1

(3.7c)

denotes the amplification which is restricted by source’s and relay’s transmit power PS 1 and PR

in first and second time slot, respectively. The respective received signals at the destination in
first and second time slot are

yD1 = hS D

√
PS 1xS 1 + nD1 (3.7d)

ynon
D2 = hS D

√
PS 2xS 2 + hRDxR + nD2

= hS D

√
PS 2xS 2 + hRDηhS R

√
PS 1xS 1 + hRDηnR + nD2 (3.7e)

yorth
D2 = hRDηhS R

√
PS 1xS 1 + hRDηnR + nD2 (3.7f)
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where yD2 is distinguished with respect to orthogonal and non-orthogonal MAC. The signal
xS 2 is transmitted additionally (superposition coding) by the source in the second time slot and
corresponds to an independently low rate encoded message u2. Hence, ynon

D2 is a superposition
of the transmit signals xS 2 and xR.

By inspection of yD1 and yD2 it becomes obvious that both observations contain the indirect
transmit signal xS 1. Hence, the SNR can be optimally increased via maximum ratio combining
requiring equally long time slots. In the case of non-orthogonal channel access, successive
interference cancellation is applied to first decode xS 1 from ynon

D2 by treating interference from xS 2

as noise and subsequently decode xS 2 after subtracting the influence of xS 1. From information
theory, the achievable rate with time sharing parameter τ = 0.5 is [Wei12]

Rnon
AF = 0.5 · I(XS 1; YD1,Ynon

D2 ) + 0.5 · I(XS 2; Ynon
D2 |XS 1), (3.8)

where the first term denotes the transmission of xS 1 and the second term the additional direct
transmission of xS 2. The condition in I(XS 2; Ynon

D2 |XS 1) is due to the fact that xS 1 has been de-
tected and canceled before xS 2 is decoded. From an information theoretic point of view, one
could consider the total information 0.5 · I(XS 1, XS 2; YD1,Ynon

D2 ) that flows from source to destina-
tion. Then (3.8) follows directly from the chain rule of mutual information and the fact that YD1

shares no information with XS 2. For orthogonal channel access, the second information term in
(3.8) vanishes and the first will increase (I(XS 1; Yorth

D2 ) ≥ I(XS 1; Ynon
D2 )) due to the disappearing

interference .

Rorth
AF = 0.5 · I(XS 1; YD1,Yorth

D2 ) (3.9)

3.3.2 Decode and Forward

The DF relaying protocol is a good choice when the S → R link is not the bottleneck of
the system because the relay R must be able to decode the source’s transmit signal [Wei12,
CE79, EK12, KGG05]. Hence, DF is usually applied when the relay is placed closer to the
source than to the destination. Similar as before, the source has two messages u1 and u2 which
are encoded into xS 1 and x̃S 2 whereby the latter signal differs from prior notation due to a
different transmission strategy in the MAC phase. Firstly, the source will broadcast xS 1 which
is overheard by relay and destination.

yR = hS R ·
√

PS 1 · xS 1 + nR (3.10a)

yD1 = hS D ·
√

PS 1 · xS 1 + nD1 (3.10b)
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The relay decodes u1 from yR and re-encodes it to xR which is forwarded to the destination in
the MAC phase. Again it will be distinguished between orthogonal MAC, where the source is
quiet, and general non-orthogonal MAC where the source transmits

xS 2 =
√

1 − ρ2 · x̃S 2 + ρ · xR (3.11)

which is a superposition of xR and x̃S 2 containing u2. The parameter

ρ = E
{
XS 2 · X∗R

}
denotes the correlation of source’s and relay’s transmit signals xS 2 and xR and determines the
amount ρ2 of transmit power PS 1 that is used to transmit the same signal xR as the relay. The
residual power (1−ρ2)PS 1 is used to transmit the low rate encoded u2 via x̃S 2. Hence, the source
applies a mixed strategy of distributed beamforming and superposition coding with the extreme
cases ρ = 1 (only beamforming) and ρ = 0 (only superposition coding). Source and relay can
be interpreted as a virtual transmitter with two antennas that are either used for beamforming
to increase the array gain or for spatial multiplexing. As beamforming means to adjust the
carrier phases of the transmit signals such that a constructive superposition is achieved at the
destination, the source needs knowledge of its own and the relay’s channel to the destination.
The optimal strategy, i.e. , the optimal value of ρ depends on the setup. Usually, distributed
beamforming (large ρ) is preferable when source and relay are very close compared to the
destination because the array gain is maximal for equal channel gains. The respective receive
signals at the destination for non-orthogonal and orthogonal channel access in the MAC phase
are

ynon
D2 = hS D

√
PS 2 · xS 2 + hRD

√
PR · xR + nD2

= hS D ·
√

PS 2 ·
( √

1 − ρ2 · x̃S 2 + ρ · xR

)
+ hRD ·

√
PR · xR + nD2

= hS D

√
PS 2

√
1 − ρ2 · x̃S 2 +

(
hS D

√
PS 2 · ρ + hRD

√
PR

)
· xR + nD2 (3.12a)

yorth
D2 = hRD

√
PR · xR + nD2. (3.12b)

In the case of non-orthogonal channel access, the destination applies successive interference
cancellation. Firstly, xR will be decoded jointly from yD1 and ynon

D2 whereby x̃S 2 is treated as
noise. Then, after subtracting the influence of xR in (3.12a), x̃S 2 will be decoded. Likewise as
in Sec. 3.2.2, the achievable rate becomes [CE79, KGG05, EK12]

Rnon
DF ≤ max

p(xS 1,xS 2,xR)
0≤τ≤1

min

 τI(XS 1; YR) + (1 − τ)I(XS 2; Ynon
D2 |XR)

τI(XS 1; YD1) + (1 − τ)I(XS 2, XR; Ynon
D2 )

 (3.13)
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for non-orthogonal MAC and

Rorth
DF ≤ max

p(xS 1,xR)
0≤τ≤1

min

 τI(XS 1; YR)
τI(XS 1; YD1) + (1 − τ)I(XR; Yorth

D2 )

 . (3.14)

for orthogonal MAC. Both are similar to (3.5) and (3.6) except the restriction I(XS 1; YR,YD1)→
I(XS 1; YR) since the relay must be able to decode u1 from yR.

3.3.3 Compress and Forward

The relay strategy CF is useful when the relay is not able to successfully decode the messages
from the source, e.g. , in scenarios where the relay is placed considerably closer to the desti-
nation than to the source. In such a scenario, the relay can still cooperate by forwarding not
the full message but a compressed version ŷR of its observation which is usually a quantized
version of the received signal yR. As this compression is correlated to the signal the destination
received in the first time slot, the relay applies Wyner-Ziv coding [WZ76, Wyn78] to decrease
the necessary rate to forward ŷR. Similar as for DF, the source broadcasts xS 1 containing u1 in
the first time slot. In the second time slot, the relay transmits xR which contains only part of
the message u1. In particular, the relay compresses, e.g. , via quantization, its received signal
yR to an index ŷR which is Wyner-Ziv source encoded via random binning (cf. App. B) into bin
index b ∈ B [EK12, Zei12, SW73]. Bin index b is channel encoded and mapped to xR. Again,
depending on channel access being orthogonal or non-orthogonal, the source may transmit xS 2

additionally in the second time slot which contains, contrary to DF, only message u2 because
it cannot know signal xR the relay will transmit – index ŷR is noise dependent. The received
signals at relay and destination in first and second time slot are

yR = hS R ·
√

PS 1 · xS 1 + nR, (3.15a)

yD1 = hS D ·
√

PS 1 · xS 1 + nD1, (3.15b)

ynon
D2 = hS D

√
PS 2 · xS 2 + hRD

√
PR · xR + nD2, (3.15c)

yorth
D2 = hRD

√
PR · xR + nD2. (3.15d)

To detect the messages u1 and u2, the destination needs to firstly recover the bin index b via
successive interference cancellation, that is, decoding of ynon

D2 with respect to xR treating xS 2 as
noise. Then, u2 can be detected after subtracting hRD

√
PR · xR from ynon

D2 . For orthogonal channel
access, b is detected from yorth

D2 . The uncertainty (about ŷR due to Wyner-Ziv coding) in b is
resolved with the help of yD1 (cf. App. B) which serves as side information: Finally, ŷR and yD1
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are jointly decoded to obtain u1.2 The achievable rates according to the MFMC theorem for
non-orthogonal and orthogonal channel access are [EK12]

Rnon
CF ≤ max

p(xS 1)p(xS 2)p(xR)p(ŷR |yR)
min

 τ · I(XS 1; ŶR,YD1) + (1 − τ) · I(XS 2; Ynon
D2 |XR)

τ ·
(
I(XS 1; YD1) − I(YR; ŶR|XS 1,YD1)

)
+ (1 − τ) · I(XR, XS 2; Ynon

D2 )


(3.16)

and

Rorth
CF ≤ max

p(xS 1)p(xR)p(ŷR |yR)
min

 τ · I(XS 1; ŶR,YD1)
τ ·

(
I(XS 1; YD1) − I(YR; ŶR|XS 1,YD1)

)
+ (1 − τ) · I(XR; Yorth

D2 )

 ,
(3.17)

respectively. Similar as in (3.5) and (3.6), the upper cut-set denotes the broadcast bound with YR

replaced by ŶR due to the compression loss while the lower cut-set denotes the MAC bound with
subtracted term τ · I(YR; ŶR|XS 1,YD1) representing the irrelevance remaining in ŶR (and thus in
XR) due to noisy YR. In particular, τ · I(YR; ŶR|XS 1,YD1) is a penalty term with respect to (1− τ) ·
I(XR, XS 2; Ynon

D2 ) in (3.16) or (1−τ)·I(XR; Yorth
D2 ) in (3.17) which contain this irrelevant information

about the noise at the relay. According to [EK12], (3.16) can be equivalently described as

Rnon
CF ≤ max

p(xS 1)p(xS 2)p(xR)p(ŷR |yR)
τ · I(XS 1; ŶR,YD1) + (1 − τ) · I(XS 2; Ynon

D2 |XR) (3.18)

such that

τ · I(YR; ŶR|YD1) ≤ (1 − τ) · I(XR; Ynon
D2 ) (3.19)

which is the well known result from [CE79, KGG05], solely adapted to a half-duplex relay.3

Similarly, for orthogonal channel access, (3.17) simplifies to

Rorth
CF ≤ max

p(xS 1)p(xR)p(ŷR |yR)
τ · I(XS 1; ŶR,YD1) (3.20)

such that

τ · I(YR; ŶR|YD1) ≤ (1 − τ) · I(XR; Yorth
D2 ). (3.21)

2Actually, this fact is outdated such that both ŷR and u1 can be decoded jointly from b and yD1 instead of
one after another [EK12]. The generalization of this concept to a bigger network is known as noisy network
coding [EK12] whose performance is generally superior. For the 3-node relay channel however, both strategies
achieve the same rate as shown in (3.16) and (3.18).

3The equivalent characterization in (3.16) and (3.17) is a recent result following the idea of noisy network
coding [EK12].



3.4 THE GAUSSIAN RELAY CHANNEL 35

3.4 The Gaussian Relay Channel

In the Gaussian Relay Channel, AWGN is assumed at all relay nodes. As a Gaussian maximizes
entropy (cf. Sec. 2.2 and [CT91]) under a given average power constraint, all inputs X are chosen
to be Gaussian as well. In this case, the beforehand presented bounds and achievable rates have
a closed form solution as shown in the following. For details on the derivation, the reader is
referred to [Wei12, EK12, KGG05, HMZ05].

3.4.1 Capacity Upper Bound

For the Gaussian relay channel, (3.5) and (3.6) simplify to [HMZ05, Wei12]

Chd ≤ max
0≤ρ≤1
0≤τ≤1

min

 τ log2

(
1 + (|hS R|2 + |hS D|2)PS 1

)
+ (1 − τ) log2

(
1 + (1 − ρ2)|hS D|2PS 2

)
τ log2

(
1 + |hS D|2PS 1

)
+ (1 − τ) log2

(
1 + |hS D|2PS 2 + |hRD|2PR + 2ρhS DhRD

√
PS 2PR

)  ,
(3.22)

and

Chd ≤ max
0≤ρ≤1
0≤τ≤1

min

 τ log2

(
1 + (|hS R|2 + |hS D|2)PS 1

)
τ log2

(
1 + |hS D|2PS 1

)
+ (1 − τ) log2

(
1 + |hRD|2PR,

)  , (3.23)

respectively.

3.4.2 Amplify and Forward

Due to maximum ratio combining, the first term in (3.8) can easily determined by (2.3c)
whereby the combined SNR is the sum of SNR according to (3.7d) and Signal to Interference
plus Noise Ratio (SINR) according to (3.7e).

I(XS 1; YD1,Ynon
D2 ) = log2

(
1 + PS 1|hS D|2 +

PS 1|hRD|2|hS R|2η2

PS 2|hS D|2 + η2|hRD|2 + 1

)
(3.24)

The second term in (3.8) corresponds to a P2P transmission from S to D after successive inter-
ference cancellation, that is, subtracting hRDηhS R

√
PS 1xS 1 from (3.7e).

I(XS 2; Ynon
D2 |XS 1) = log2

(
1 +

PS 2|hS D|2|
η2|hRD|2 + 1

)
(3.25)
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Hence, (3.8) becomes [Wei12, Lan02, LTW04]

Rnon
AF = 0.5 · log2

(
1 + PS 1|hS D|2 +

PS 1|hRD|2|hS R|2η2

PS 2|hS D|2 + η2|hRD|2 + 1

)
+ 0.5 · log2

(
1 +

PS 2|hS D|2|
η2|hRD|2 + 1

)
.

(3.26)

For orthogonal channel access, (3.9) simplifies to

Rorth
AF = 0.5 · log2

(
1 + PS 1|hS D|2 +

PS 1|hRD|2|hS R|2η2

η2|hRD|2 + 1

)
(3.27)

which is very similar to (3.24) but without the interference term PS 2|hS D|2 in the denominator
of the last term, that is, the SINR in (3.24) becomes an SNR due to orthogonal channel access.

3.4.3 Decode and Forward

The general achievable rate for DF (3.13) simplifies to [HMZ05, Wei12]

Rnon
DF ≤ max

0≤ρ≤1
0≤τ≤1

min

 τ log2

(
1 + |hS R|2PS 1

)
+ (1 − τ) log2

(
1 + (1 − ρ2)|hS D|2PS 2

)
τ log2

(
1 + |hS D|2PS 1

)
+ (1 − τ) log2

(
1 + |hS D|2PS 2 + |hRD|2PR + 2ρhS DhRD

√
PS 2PR

) 
(3.28)

for non-orthogonal channel access, and (3.14) to

Rorth
DF ≤ max

0≤ρ≤1
0≤τ≤1

min

 τ log2

(
1 + |hS R|2PS 1

)
τ log2

(
1 + |hS D|2PS 1

)
+ (1 − τ) log2

(
1 + |hRD|2PR,

)  (3.29)

for orthogonal channel access.

3.4.4 Compress and Forward

The achievable rate for non-orthogonal channel access (3.16) becomes [Wei12, HMZ05]

Rnon
CF = max

0≤τ≤1

{
τ log2

(
1 + PS 1|hS D|2 +

PS 1|hS R|2
1 + σ2

q

)
+ (1 − τ) log2

(
1 + PS 2|hS D|2

)}
(3.30)

with

σ2
q =

1 + PS 1|hS D|2 + PS 1|hS R|2

(1 + PS 1|hS D|2)
((

1 + PR |hRD |2
1+PS 2 |hS D |2

) 1−τ
τ − 1

) (3.31)
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denoting the variance of the quantizer noise which depends on τ. For orthogonal channel access,
(3.17) becomes

Rorth
CF = max

0≤τ≤1
τ log2

(
1 + PS 1|hS D|2 +

PS 1|hS R|2
1 + σ2

q

)
(3.32)

with

σ2
q =

1 + PS 1|hS D|2 + PS 1|hS R|2

(1 + PS 1|hS D|2)
((

1 + PR|hRD|2) 1−τ
τ − 1

) . (3.33)

3.5 Achievable Rates for the Gaussian Relay Channel

For the results in this section, the upper bound and achievable rates for different protocols have
been evaluated for the Gaussian relay channel as stated in Sec. 3.4. Therefore, the nodes S , R,
and D are assumed to be set up on a line with S at position 0, D at position 1, and R somewhere
in between at position d ∈ [0, 1].4 For each of the possible relay positions d, the optimal time
sharing parameter τ has to be found. As this cannot be determined analytically, it will be done
numerically via an exhaustive search over a finite equidistant grid with a resolution of 1000. For
the upper bound and DF, optimal correlation ρ can be determined by equating the respective two
cut sets in (3.22) and (3.28). An important question is how to set transmit powers PS 1, PS 2 and
PR at the different nodes in different time slots. A very common way in the literature is to use
a power constraint per node which may be further simplified such that each node transmits the
same power PS 1 = PS 2 = PR = P. Corresponding results are shown in Sec. 3.5.1 and in more
detail in [Wei12].

On one hand, a per node power constraint is very pragmatic (suitable for practical imple-
mentation) and can be straightforward investigated and analyzed. On the other hand, such a
power constraint does not ensure a fair comparison with respect to the transmit energy con-
sumption which is especially of interest for battery-powered nodes. Depending on τ, which is
optimized for a specific d, the total but also the individually per node consumed energy varies
as shown in the following.

Enon
sum = ES 1 + ES 2 + ER (3.34a)

= τnon · T · PS 1 + (1 − τnon) · T · (PS 2 + PR) (3.34b)

= τnon · T · P + (1 − τnon) · T · 2P (3.34c)

= (2 − τnon) · T · P (3.34d)

4One could extend the range such that R may be left of S or right of D [Wei12], however, this will not deliver
deeper insights for the purpose of this thesis.
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Eorth
sum = ES 1 + ER (3.34e)

= τorth · T PS 1 + (1 − τorth) · T · PR (3.34f)

= T · P (3.34g)

Furthermore, (3.34) shows that both the individual (per node) as well as the sum transmit energy
vary differently for non-orthogonal and orthogonal MAC while sum energy for orthogonal MAC
is constant (independent of τorth). To account for a fair comparison with respect to transmit
energy, two additional sharing parameters β and δ are introduced as follows:

1. β ∈ [0, 1] is the fraction of the totally available energy that is used by the source, and

2. δ ∈ [0, 1] is the fraction of the source’s energy βEsum it can use in the first time slot.

Optimizing τ, β, and δ jointly for each d will lead to an individual power allocation for each
node and time slot.

PS 1 =
β · δ
τ · T · E

non
sum PS 2 =

β · (1 − δ)
(1 − τ) · T · E

non
sum PR =

(1 − β)
(1 − τ) · T · E

non
sum (3.35)

This optimal power allocation corresponds to a scenario, where source and relay share a com-
mon power supply, e.g. , in the downlink of a cellular network. To consider a scenario, e.g. ,
the uplink of a cellular network, where source and relay have local batteries, β has to be fixed,
e.g. , β = 0.5. Despite this optimal power allocation, uniform power allocation is considered in
the results in Sec. 3.5.2. Given the same total energy consumption, the power allocated to each
node is as follows.

P =
Enon

sum

(2 − τnon) · T (3.36)

Throughout this thesis, T = 1 due to normalization of the noise power to σ2
N = N0

T = 1 with
N0 = 1.

3.5.1 Individual Per Node Power Constraint

Following the above stated line setup, Fig. 3.3 shows the achievable rates for AF, DF, CF and
the upper bound on capacity versus relay position d for α = 4 and P = 1. The same results can
be found in [Wei12], including different path-loss exponents α, restrictions like fixing τ, and
full duplex relaying [KGG05]. The adaption of τ is quite important as one can see in Fig. 3.3.
Thereby it is very meaningful that τ follows somehow d since a short distance implies a low
path loss and vice versa, i.e. , when the relay R is closer to the source S than to the destination
D, one should use more time for the transmission R→ D than for S → R.
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Figure 3.3: Achievable rates, upper capacity bound and optimal parameters ρ and τ versus
source relay distance d for individual power constraint with path loss exponent α = 4 and
transmit power P = 1.
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Achievable Rates versus Capacity Bound

Let us firstly compare the achievable rates to the upper bound on capacity in Fig. 3.3: For
both orthogonal and non-orthogonal channel access, DF operates very close to the capacity for
d < 0.5, i.e. , when the relay is close to the source. For the extreme case d = 0, it even reaches
the capacity. The more the relay is moved to the destination, the worse DF performs especially
for d > 0.8 where it gets worse than CF. This is reasoned by the decoding condition at the relay
which makes the source-relay link the bottleneck of the system. Moreover, it is also indicated by
τ since the DF protocol needs more time than CF in the first time slot especially when the relay
is far away from the source. Anyhow, CF cannot close the gap to the capacity bound except for
d = 1 where it is optimal. Hence, especially for relay positions, where the relay is neither close
to the source nor very close to the destination, there is no capacity achieving strategy known
so far. The AF relay protocol is always inferior and can even be worse than the direct link due
to restriction τ = 0.5. These statements hold for both orthogonal and non-orthogonal MAC
whereby even the orthogonal upper bound cannot be reached by non-orthogonal relay protocols
in the range about 0.7 < d < 1.

Non-orthogonal versus Orthogonal Channel Access

Comparing secondly non-orthogonal and orthogonal channel access in Fig. 3.3 reveals huge
gains especially for the upper bound and DF in the range d < 0.4 where the relay is very
close to the source. There are two reasons for this gain: Firstly, owing the individual power
constraint per node, the non-orthogonal scheme uses more energy in total and, hence, must be
at least as good as the orthogonal scheme plus the gain due to the additional transmit energy.
Alternatively, one could think of the virtual direct transmission of x̃S 2 in the MAC phase due to
superposition coding which gives these additional rate. The power spent for this transmission
is determined by the correlation coefficient ρ, precisely the factor (1 − ρ2), i.e. , when ρ = 0, all
power of the source in the second time slot is used for transmission of x̃S 2. Please note that for
CF and AF ρ = 0 is mandatory since beamforming is not applicable. This is the reason why the
performance gain due to non-orthogonal channel access for CF and AF will (almost) vanish for
the sum energy constraint as shown in Sec. 3.5.2. For DF however, there is an additional array
gain due to the amount of distributed beamforming for ρ > 0 which is maximum in the range
0 ≤ d ≤ 0.2, where ρ = 1, but also present for higher values of d where 0 < ρ < 1.

3.5.2 Sum Energy Constraint

The results in this section have been published during the work on this thesis in [KK15a]. Very
interesting is the fact that, in contrary to an individual power constraint, the performance gain
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due to non-orthogonal relaying is almost fully originated in the virtual array gain of distributed
beamforming. The gain due to superposition coding is almost negligible. Firstly, it will be
shown how the results of the previous section change when all nodes transmit with the same
power P but restricted by sum energy as in (3.36). Secondly, results for optimal power allocation
will be shown whereby individual transmit energies per node are not restricted.

Uniform Power Allocation
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Figure 3.4: Achievable rates, upper capacity bound and optimal parameters ρ and τ versus
source relay distance d for uniform power allocation with pathloss exponent α = 4 and sum
energy Enon

sum = 1.

Fig. 3.4 shows as before the upper bound and achievable rates versus d for a given sum
energy with a uniform power allocation. Comparing Fig. 3.4 with Fig. 3.3 reveals that non-
orthogonal channel access does not always pay off when considering sum energy instead of
individual power. Furthermore, it becomes obvious that the gain of non-orthogonal versus
orthogonal MAC is indeed twofold in Fig. 3.3. In Fig. 3.4, there is only a huge gain for DF
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due to distributed beamforming when the relay is close to the source. The beforehand gain due
to superposition coding in Fig. 3.3 however, vanishes for all DF, CF, and in Fig. 3.4 due to
normalization to the sum energy and even becomes a loss since uniform power allocation is not
optimal. In the following, this tendency will be confirmed such that the general non-orthogonal
scheme is only superior for DF when ρ = 1. For ρ = 0, DF (AF and CF behave almost in the
same manner) breaks down to orthogonal transmission and for 0 < ρ < 1, the gain is negligible.
All other insights from Sec. 3.5.1 still hold in a relative manner.

Optimal Power Allocation

Fig. 3.5 depicts the respective results for AF, DF and CF as well as the upper bound on capacity
for an optimal power allocation. Hence, parameters β and δ are plotted too. The comparison of
the bound and the protocols with each other leads to the same insights as drawn from Fig. 3.3.
However, the respective comparison of non-orthogonal and orthogonal channel access is differ-
ent: For the upper bound and DF, it becomes obvious that the only gain due to non-orthogonal
access is caused by the array gain of distributed beamforming as indicated by ρ which is equal
or almost equal to 1 for d ≤ 0.5. For d > 0.5, ρ is distinctly smaller than 1 or equal to 0 while
no noticeable gain in the achievable DF rate is visible.5 For the first case (ρ = 1), the maximum
gain is achieved the closer the relay is placed to the source because then most of the source’s
energy (shared half with relay due to β ≈ 0.5) can be used in the second time slot to apply dis-
tributed beamforming, i.e. , δ is small and increases with d due to the growing path loss between
source and relay. For the latter case (ρ < 1), non-orthogonal and orthogonal scheme are almost
equal as indicated by δ ≈ 1 and a similar transition of τ. Hence, non-orthogonal channel access
does only pay off when the relay is close to the source where distributed beamforming is mean-
ingful. A similar behavior is visible when considering CF and AF. For CF, the optimization of
the non-orthogonal scheme ends up in the orthogonal except for d > 0.5, where a small gain
due to superposition in the second time slot (δ < 1) is visible. For AF, optimization delivers the
direct transmission scheme for d < 0.1 or the orthogonal otherwise. Considering β for all shown
rates (for non-orthogonal DF and AF from d > 0.5 and d > 0.1, respectively), more energy is
used by the source with increasing d due to the decreasing path loss on the source-relay link.
The behavior of τ is similar to Fig. 3.3.

5The slight oscillating of ρ (and also the other parameters) is due to numerical reasons: As the gain is negligibly
small, any ρwill lead to almost the same rate as for the orthogonal scheme. Hence, due to limited machine accuracy,
the maximum function becomes ambiguous.
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Figure 3.5: Achievable rates, upper capacity bound and optimal parameters ρ and τ versus
source relay distance d with pathloss exponent α = 4 and sum energy Enon

sum = 1.
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Figure 3.6: Achievable rates, upper capacity bound and optimal parameters ρ and τ versus
source relay distance d with pathloss exponent α = 4, sum energy Enon
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3.5.3 Individual Per Node Energy Constraint

By fixing β in the power allocation used in the previous section, the sum energy constraint
becomes additionally an individual energy constraint. Fig. 3.6 shows results for β = 0.5, that
is, source and relay have the same amount of energy available. The insights are very similar as
in Fig. 3.5 but due to β = 0.5, the absolute values of the respective rates are lower in Fig. 3.6
for d > 0.5. For the relay being very close to the destination all relay protocols are worse than
the direct transmission (except the upper bound). Comparing Fig. 3.5 and Fig. 3.6 in the range
d < 0.5, DF and upper bound with non-orthogonal access behave very similar since β ≈ 0.5
has turned out to be optimal. However, the behavior of orthogonal counterparts and CF changes
such that the absolute values decrease. Hence, the gap between orthogonal and non-orthogonal
DF increases while CF and orthogonal DF (and also the bound) perform very equal for d < 0.2.
The beforehand small gain of non-orthogonal CF to orthogonal CF vanishes completely, i.e. ,
non-orthogonal MAC does not pay off for an individual energy constraint per node. The same
is true for DF when distributed beamforming is not reasonable. Finally, as β = 1 is not possible,
non-orthogonal AF gets even worse than the direct link for d < 0.1.

3.6 Discussion

The 3-node relay channel, its capacity and achievable rates of specific relaying strategies (AF,
DF, CF) have been studied from an information theoretic point of view for half-duplex relays
whereby non-orthogonal and orthogonal MAC have been distinguished. Results reveal that all
strategies are usually beneficial compared to a direct P2P transmission when the relay is placed
between source and destination whereby AF is always outperformed by DF and CF. DF achieves
the capacity bound when source and relay are at the same position while CF achieves the bound
when relay and destination have the same position. For all other cases, the upper bound is
not achieved. However, DF performs very close to this bound when the relay is placed close
to the source. In such a scenario, the source applies distributed beamforming which achieves
a high array gain. As beamforming requires phase knowledge at the source which cannot be
guaranteed in practice, phase errors can degrade the achievable rate and, thus, lower the gain
of non-orthogonal versus orthogonal MAC (cf. Ch. 5). For other relay positions, beamforming
is no longer optimal and the source will either do a mixture of beamforming and superposition
coding or only superposition coding (depending on ρ) whereby the latter can also be applied for
CF which is usually only superior when the relay is very close to the destination. As the source’s
strategy for DF is the superposition of two independently encoded messages, one could think
of a multilevel code with two levels where ρ denotes the power allocation between these levels.
Therefore, the next chapter generalizes this perspective into a superposition multilevel code
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which combines this classic strategy with superposition modulation to achieve an additional
shaping gain as well as a low complex joint destination demapper. Finally, it turned out that
non-orthogonal channel access (excluding array gain due to beamforming) does only pay off

for a per node power constraint but not with respect to transmit energy.



Chapter 4

Superposition Multilevel Coding for
Decode and Forward

From the previous chapter it is known that, for DF in the MAC phase, the source has the degree
of freedom to choose the amount ρ2 of power PS 2 used for distributed beamforming whereby
the residual power (1 − ρ2)PS 2 is used to superpose an additional signal with independent in-
formation (superposition coding). Hence, ρ determines the correlation of source’s and relay’s
signal in the second time slot. This superposition may be alternatively interpreted as two levels
of a multilevel code where ρ determines the power allocation between the two layers of that
code. Due to the inherent superposition of the source and the relay signal at the destination, it
is natural to use superposition modulation to design such a multilevel code (instead of set parti-
tioning as in Sec. 2.3.3). The generalization to more than two levels allows to make use of the
inherent shaping gain of superposition modulation as explained in Sec. 2.3.4. During the work
on this thesis, this concept has been published in [KK15b] as superposition multilevel coding
and will be explained in the following: Sec. 4.1 will sketch the idea how a general superposition
multilevel code arises from the original information theoretic concept. In Sec. 4.2, the general
superposition multilevel code will be modified such that both messages can be jointly decoded
at the destination.1 Finally, Sec. 4.3 will show results with respect to the Max-Flow Min-Cut
(MFMC) theorem.

4.1 General Distributed Superposition Multilevel Code

Considering the MAC phase of DF, the relay has already decoded the source’s message and
will transmit the re-encoded signal xR (cf. Sec. 3.3.2), the source will transmit a superposition
of xR and new information x̃S 2, and the destination receives a superposition of all those signals

1With complexity comparable to a single decoder while avoiding successive interference cancellation.
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as described in (3.12a). Graphically this procedure is illustrated in Fig. 4.1 where source and
relay processing are separated by the blue shaded boxes. The red shaded area can be interpreted
as a joint mapper of a multilevel code with two levels where each of the levels belongs to either
messages u1 or u2.

Relay Processing

Source Processing

xR

xR

x̃S 2

xS 2

u1 ENC-1 MAP-1

ENC-1 MAP-1

×

√
PR

×
ρ · √PS 2

+

×√
1 − ρ2 · √PS 2

MAP-2ENC-2u2

×
hRD

×
hS D

+nD2 ynon
D2

Figure 4.1: Conventional processing at source and relay for the MAC phase. Due to error free
decoding, the relay has complete knowledge about u1.

Using superposition modulation, both messages may be multiplexed into more levels to cre-
ate any desirable symmetric mapping for xR, xS 2 or the joint mapping of both after physical
superposition at the destination. Doing so, transforms the structure in Fig. 4.1 into a superpo-

u1 ENC-1 S/P

BPSK
...

BPSK

×
α′1 = α1hRD + β1hS D

×
α′K

S/PENC-2u2

BPSK
...

BPSK

×
α′K+1 = γ1hS D

×
α′N = γN−KhS D

Σ
+

nD2

ynon
D2

Figure 4.2: Concept of Distributed Superposition Multilevel Coding for the classical relay chan-
nel.

sition multilevel code (cf. Fig. 4.2) whose N levels have virtual amplitudes α′n whereby the first
K layers belong to message u1 and the residual N − K to u2. These virtual amplitudes α′n have
to be understand from the perspective of the superposition at the destination, that is, α′n depends
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on physically allocated level amplitudes αn, βn, and γn as well as the path loss coefficients hS R

and hS D which have to be known at the source anyway to apply distributed beamforming.

α′n = αnhRD + βnhS D, 1 ≤ n ≤ K, (4.1a)

α′n = γn−KhS D, K + 1 ≤ n ≤ N, (4.1b)

The physical amplitudes have to be allocated according to a specific power allocation scheme
as described in Sec. 2.3.4 whereby

• αn belongs to u1 at the relay restricted by PR,

• βn belongs to u1 at the source restricted by ρ2PS 2, and

• γn belongs to u2 at the source restricted by (1 − ρ2)PS 2.

K∑
n=1

α2
n = PR

K∑
n=1

β2
n = ρ2PS 2

N∑
n=K+1

γ2
n−K = (1 − ρ2)PS 2 (4.2)

Depending on the power allocation scheme, αn, βn and γn are used to create the signals xR

and x̃S 2 at source and relay. Thereby, the upper branch in Fig. 4.2 represents the distributed
beamforming to transmit u1 via xR from S and R jointly to D while the lower branch illustrates
the direct transmission of u2 via x̃S 2 from R to D. For the results in Sec. 4.3, grouped power
allocation is assumed, that is, N layers are divided into L groups of size G whereby K must
be chosen to be a multiple of G. Then L1 = K

G and L2 = N−K
G denote the number of groups

belonging to u1 and u2, respectively.2 According to (2.10), αn, βn, and γn are chosen to meet the
power restrictions in (4.2). For this purpose, it is usually not necessary to calculate explicitly
initial values α1, β1, and γ1. Instead, one could start with any value in (2.10) and normalize all
αn according to (4.2) afterwards. For a better understanding of Sec. 4.2 however, these initial
values are given in the following by plugging the exponential law of (2.10) in each of the power
constraints of (4.2).

α1 =
√

PR

(
4
3

G
(
1 − 1

4L1

))−1/2

(4.3a)

β1 = ρ
√

PS 2

(
4
3

G
(
1 − 1

4L1

))−1/2

(4.3b)

γ1 =
√

(1 − ρ2)PS 2

(
4
3

G
(
1 − 1

4L2

))−1/2

(4.3c)

Design parameters G, L1 and L2 have to be chosen appropriately as stated in Sec. 4.3 while ρ
is chosen in accordance with Fig. 3.3. Given that the mappers in Fig. 4.1 are QAM-mappers,

2Obviously, different group sizes G1 and G2 are possible but not meaningful (cf. Sec. 2.3.4).
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the superposition multilevel code in Fig. 4.2 can be considered as generalization since QAM-
mappings can be created with superposition modulation as shown in Sec. 2.3.4. Furthermore,
the additional degrees of freedom of the new scheme in Fig. 4.2 provide several advantages:
Firstly, the inherent shaping gain allows to approach the theoretical DF rate for the AWGN
channel presented in Sec. 3.5. Secondly, each level may be encoded with different codes which
can improve the convergence behavior of practical schemes like BICM [TP10]. Finally, the
demapping complexity at the destination can be reduced to that of a single data stream if power
allocation can be done jointly given additional side constraints as introduced in the following
section. In particular, u1 and u2 will be detected in parallel without applying successive inter-
ference cancellation.

4.2 Distributed Superposition Multilevel Code with Parallel
Detection

In contrary to the previous section, where αn, βn, and γn are determined independently, parallel
detection with low complexity requires that power allocation is done jointly for αn, βn, and
γn. The aim is to create virtual amplitude levels α′ fulfilling a specific power allocation which
is assumed to be grouped power allocation as in (2.10) for the rest of the chapter. Therefore,
α′n must fulfill both (2.10) and (4.1) which creates an additional side condition to the power
allocation of the physical amplitudes αn, βn, and γn. To visualize this condition, let us consider
the transition from the last layer belonging to u1 to the first layer of u2. According to (4.1b), the
K + 1th layer is

α′K+1 = γ1hS D. (4.4a)

Assuming for the sake of simplicity a group size of G = 1, (2.10) delivers

α′K+1 = α′1 · 2−K (4.4b)

whereby α′1 = α1hRD + β1hS D can be plugged in according to (4.1a). Subsequent equating of
(4.4a) and (4.4b) yields

γ1 =

(
α1

hRD

hS D
+ β1

)
· 2−K (4.4c)

which may be contrasting to the condition in (4.2). Hence, there is no guaranteed solution for
all combinations of K, N, and ρ given a specific setup according to hS R and hS D. Anyway, if
(4.4c) can be fulfilled together with (4.2), u1 and u2 can be detected in parallel as if they are one
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multiplexed data stream.3 To derive an adapted joint power allocation, a couple of new variables
need to be introduced. So far, the number of all layers N is divided into L groups of size G,
whereby K layers are dedicated to u1 and N − K to u2. In contrary to the previous section, it
is not necessary that K is a multiple of G which means that one group may be split, that is, a
couple of layers may belong to u1 and the remaining to u2. Hence,

• L1 =
⌊

K
G

⌋
is the number of full groups related to u1,

• G1 = mod (K,G) is the size of the split group related to u1,

• G2 = G −G1 is the size of the split group related to u2,

• L2 = L − L1 − 1 is the number of full groups related to u2.4

According to these definitions, (4.2) can be rewritten as follows.

G
L1∑
l=1

α2
l + G1α

2
L1+1 = PR (4.5a)

G
L1∑
l=1

β2
l + G1β

2
L1+1 = ρ2PS 2 (4.5b)

G2γ
2
1 + G

L2∑
l=1

γ2
l+1 = (1 − ρ2)PS 2 (4.5c)

As before, plugging the exponential law of (2.10) in (4.5), the following system of equations
arises for the initial physical amplitudes of the power allocation.

α1 =
√

PR

(
4
3

G
(
1 − 1

4L1

)
+ G14−L1

)−1/2

(4.6a)

β1 = ρ
√

PS 2

(
4
3

G
(
1 − 1

4L1

)
+ G14−L1

)−1/2

(4.6b)

γ1 =
√

(1 − ρ2)PS 2

(
G2 +

G
3

(
1 − 1

4L2

))−1/2

(4.6c)

Generalizing (4.4c) to greater group sizes, adds a fourth equation.

γ1 =

(
α1

hRD

hS D
+ β1

)
· 2−L′ (4.7)

Due to the additional condition (4.7) on γ1, (4.6) cannot be independently solved as (4.3) in the
previous section. Instead, (4.7) and (4.6) form a system of equations with four equations and

3Obviously, every superposition can be detected in parallel without successive interference cancellation. The
demapping complexity for superposition modulation however, is much lower than that of conventional schemes
like the superposition of two QAMs with comparable performance [Wo11].

4The subtraction of 1 is dedicated to the split group. For the case that K is a multiple of G, there will still be
one “split” group related to u2.
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four unknowns α1, β1, γ1, and ρ. Actually (if ρ is chosen as before), this system of equations is
over-determined due to (4.7) such that the solution space is narrowed tremendously. Especially
due to the dependence on path loss coefficients hS R and hS D, there is almost no solution of (4.6)
for a specific ρ. As a slight (or even a huge, cf. Fig. 4.3) deviation from the optimal ρ however
might cause only a small degradation of the final transmission rate, ρ ∈ [0, 1] is declared as
unknown to obtain a meaningful solution space for a couple of relevant parameter choices.
Subject to Sec. 2.3.4, meaningful parameter choices are G ∈ {4, 6} (group size doubled to create
complex signal space) and L ≤ 5 with K ≤ G · L in order that demapping complexity does not
explode.5 Due to the restricted domain of ρ ∈ [0, 1], there are still a lot of cases according to
hS R and hS D without a solution. Nonetheless, especially for larger bit loads, it is possible to find
reasonable values close to the theoretically optimal ρ as shown in Table 4.1.

Table 4.1: Values of ρ for different combinations of K and L for G = 6 (respectively 3 layers in
I and Q), d = 0.4, and PS 1 = PS 2 = PR = P = 1.

L = 2 L = 3 L = 4 L = 5 L = 6 L = 7
K = 9 0.176 - - - - -
K = 10 0.488 0.047 - - - -
K = 11 0.755 0.377 0.275 0.249 0.242 0.241
K = 12 1.000 0.644 0.554 0.531 0.525 0.524
K = 13 - 0.706 0.617 0.595 0.589 0.588
K = 14 - 0.767 0.679 0.657 0.652 0.650
K = 15 - 0.827 0.740 0.718 0.713 0.711
K = 16 - 0.885 0.799 0.778 0.772 0.771
K = 17 - 0.943 0.858 0.836 0.831 0.830
K = 18 - 1.000 0.915 0.894 0.889 0.887
K = 19 - - 0.929 0.908 0.903 0.902
K = 20 - - 0.944 0.923 0.917 0.916
K = 21 - - 0.958 0.937 0.932 0.930
K = 22 - - 0.972 0.951 0.946 0.944
K = 23 - - 0.986 0.965 0.960 0.958
K = 24 - - 1.000 0.979 0.974 0.972
K = 25 - - - 0.983 0.977 0.976
K = 26 - - - 0.986 0.981 0.979
K = 27 - - - 0.990 0.984 0.983
K = 28 - - - 0.993 0.988 0.986
K = 29 - - - 0.997 0.991 0.990
K = 30 - - - 1.000 0.995 0.993

5From Sec. 2.3.4 it is known that G ∈ {2, 3} are sufficiently large to achieve an almost optimal shaping gain for
a real signal space. For complex signal spaces this holds for each dimension so that group size is doubled whereby
half of the layers belongs to the I and the other half to the Q component.
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4.3 Achievable Rates for Superposition Multilevel Coding

The following results are obtained similar as in Sec. 3.5 by means of the MFMC theorem for
the same line setup (S and D fixed at 0 and 1 with varying R∀d ∈ [0, 1]) and transmit powers
(PS 1 = PS 2 = PR = P). Unfortunately, lacking a closed form solution, the cut-sets have
to be solved numerically as explained in App. C.2. Despite the above presented superposition
multilevel code, QAM inputs are considered for comparison. Modulation orders and the number
of bit levels, i.e. , the cardinality of the input alphabet, are chosen such that respective link
capacities are not saturated. Anyway, due to complexity issues of the numerical evaluation as
well as for practical relevance the maximum modulation order is limited to m ≤ 10 for QAM and
to L1, L2 ≤ 4 and L1, L2 ≤ 5 for superposition modulation with G = 6 and G = 4, respectively.
This limitation will cause a loss whenever the capacity is beyond the input entropy (saturation)
which is surely the case for relay positions very close to the source or to the destination. Hence,
the range of d is restricted to {0.1, · · · , 0.9}.6
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Non-Orth. SPM G = 6
Non-Orth. SPM G = 4
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Orth. SPM G = 4
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d →

ρ
→

Figure 4.3: Achievable rates and optimal correlation coefficient ρ versus source relay distance
d for DF for superposition modulation and QAM with α = 4 and transmit power P = 1.

6The coarse resolution is owed to the high complexity of the numerical evaluation of the cut-sets.
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Fig. 4.3 shows the achievable rates for DF versus relay position d for P = 1. Similar as
in Fig. 3.3, solid and dashed lines belong to a Gaussian input. Additional plots correspond to
discrete inputs, either state-of-the-art QAM or the above introduced superposition multilevel
code. Firstly, the general superposition multilevel code closely reaches the achievable rate of
the Gaussian input except for non-orthogonal channel access at d = 0.1 and clearly outperforms
classical QAM in the total range. As expected, a group size of G = 6 leads to a slightly
better performance than G = 4 except for d = 0.1. The distinct gap at d = 0.1 is caused
by saturation (cf. Fig. 2.20) on the source-relay link due to restriction on L which limits input
entropy: As G = 4 allows higher L = 5 compared to L = 4 for G = 6, it is beneficial at this
point. Comparing the general superposition modulated input to the one with parallel detection
for G = 6 reveals that the deviation from the optimal ρ causes only minor performance losses
for 0.1 ≤ d ≤ 0.7. Unfortunately, there are no results for d > 0.7 (d > 0.8) due to construction
impossibility according to Table E.7 and Table E.8 which supports only very high values for ρ
or an infeasibly high number L > 4 of differing power levels. A similar behavior is visible for
G = 4 even for d = 0.7 and d = 0.8 where the deviation of ρ is quite huge.

4.4 Discussion

In this chapter, a superposition multilevel code, distributed between source and relay, has been
designed which generalizes the classical information theoretic principle of superposition cod-
ing. This multilevel code provides a shaping gain which allows performance close to the theo-
retically achievable rate of DF (cf. Fig. 4.3). Following additionally a more restrictive design,
the joint mapping of this superposition modulation, can be demapped in parallel with low com-
plexity at the destination whereby the performance loss is only marginal. Both schemes clearly
outperform classical QAM while having lower complexity as gray-labeled QAM especially for
the advanced design. The results for QAM are reused in the next chapter which analyzes the
influence of imperfect carrier phase synchronization on distributed beamforming.



Chapter 5

Decode and Forward for Perfect and
Imperfect Carrier Synchronization

This chapter investigates the Decode-and-Forward (DF) relay protocol taking into account prac-
tical aspects like the influence of imperfect carrier synchronization on distributed beamforming
(cf. Sec. 3.5). In particular, phase deviations from a perfectly constructive superposition are in-
vestigated while all other effects are assumed to be perfectly estimated and compensated at the
receiver. Firstly, an appropriate phase error model will be introduced in terms of a random vari-
able in Sec. 5.1 and Sec. 5.2. Secondly, the influence of this random variable will be investigated
with respect to the achievable rates according to the MFMC theorem whereby results for QAM
are given in Sec. 5.5.1. Finally, similar results are obtained for the BICM scheme presented in
Sec. 2.3.5 whereby rate allocation for partial link transmissions is done based on Fig. 2.22. The
derivation of the phase error and respective results have been published in [KK15c].

5.1 Distributed Beamforming with Phase Errors

Distributed beamforming is only meaningful for DF and in scenarios where R is closer to S

than to D (cf. Fig. 3.3). For the extreme case, where R is very close to S , all available transmit
power will be used for beamforming which is very prone to phase differences between S and R.
Such phase differences occur due to two reasons: Firstly, the oscillators used at S and R exhibit
production tolerances, and, thus cannot produce exactly the same carrier frequency. Secondly,
due to different channels hRD and hS D, the source needs knowledge about the channel phases
to adapt its transmit signal such that the superposition at the destination is constructive. One
option would be an estimation at the destination with subsequent feedback to the source. As the
estimation is erroneous in the presence of noise, phase errors occur and maybe even outdated
due to the caused delay. The latter effect may be compensated by an extrapolation based on
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previous observations. To analyze the influence of such phase errors, a random variable Φ with
realization φ is introduced into (3.12a) as follows.

ynon
D2 = hS D

√
PS 2

√
1 − ρ2 · x̃S 2 +

(
hS D

√
PS 2 · ρ · e jφ + hRD

√
PR

)
· xR + nD2 (5.1)

The phase rotation e jφ models the erroneous phase difference between the source’s and the
relay’s component xR and leads to a non-coherent superposition at the destination D. Despite a
rotation of the signal space, this phase rotation will decrease the SNR at D which in worst case
corresponds to a complete cancellation of the signal.

5.2 Random Phase Error Model

A very common way for carrier phase synchronization is to use a Phase Locked Loop (PLL).
Let the input signal with amplitude A, carrier frequency fc, and phase θ to this PLL be [JBS00]

yPLL(t) =
√

A cos(2π fct + θ) + n(t) (5.2)

where n(t) is the AWGN at time instance t with power spectral density N0 [Vit63]. The loop is
assumed to be in tune and both transmitter and receiver oscillator are assumed to be perfectly
stable. Then, the pdf of the modulo 2π reduced phase error φ = θ − θ̂ with estimate θ̂ can be
determined analytically for a first order loop. The derivation can be found in detail in [Vit63]:
Viterbi solved the problem using continuous random walk or Fokker-Planck techniques. The
final result for the pdf of phase error φ is [JBS00, p. 662]

pΦ(φ) =
exp (γ cos φ)

2πI0 (γ)
|φ| ≤ π (5.3)

where I0(·) is the zeroth-order modified Bessel function of the first kind and γ = A2

N0BL
the SNR

of the PLL with loop bandwith BL. This loop SNR turns out to be the parameter which steers
the impact of the phase error as illustrated in Fig. 5.1:

• For γ approaching zero, (5.3) becomes a uniform distribution.

• For γ being large, (5.3) becomes approximately Gaussian (dashed in Fig. 5.1) as shown
in the following [Vit63].

• For γ approaching infinity, (5.3) yields a Dirac impulse at φ = 0.

When the loop SNR γ is sufficiently high, I0(γ) is approximately [Vit63]

exp(γ)√
2πγ

(5.4)
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Figure 5.1: Exact (cf. (5.3)) and approximated (cf. (5.6)) pΦ(φ) for different loop SNRs γ.

which delivers

pΦ(φ) =

(
2π
γ

)−1/2

exp (γ cos φ − 1) |φ| ≤ π. (5.5)

Expanding cos φ into a Taylor series and cutting after the second order term since higher order
terms have only little effect, delivers [Vit63, JBS00]

pΦ(φ) ≈
(
2πσ2

Φ

)−1/2 · exp (−φ2/2σ2
Φ) (5.6)

which is indeed a Gaussian φ ∼ N(0, σ2
Φ

) with σ2
Φ

= γ−1.

5.3 Max Flow Min Cut Theorem with Phase Errors

According to (5.1) only terms I(XS 2, XR; Ynon
D2 ) and I(XS 2; Ynon

D2 |XR) in (3.13) are influenced by
phase error φ. From (C.21) it becomes obvious that pdf pYnon

D2 |XRX̃S 2
(ynon

D2 |xR, x̃S 2) is of interest.
Therefore, (5.1) can be rewritten as

ynon
D2 = hS D

√
PS 2

√
1 − ρ2 · x̃S 2 + hRD

√
PRxR + hS D

√
PS 2 · ρ · e jφxR + nD2 (5.7a)

(a)
= hS D

√
PS 2

√
1 − ρ2 · x̃S 2 + hRD

√
PRxR︸                                          ︷︷                                          ︸

x̃=r0·e jϕ0

+e jφ
(
hS D

√
PS 2ρ · xR + e− jφ · nD2

)︸                               ︷︷                               ︸
ỹD2=|ỹD2 |·e j(∠ỹD2)

(5.7b)

(b)
= x̃ + |ỹD2| · e j(φ+∠ỹD2) (5.7c)
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where steps (a) and (b) are meaningful for the derivation of pYnon
D2 |XRX̃S 2

(ynon
D2 |xR, x̃S 2). In (a), e jφ is

placed outside the brackets to introduce the auxiliary variable ỹD2 = hS D
√

PS 2ρ · xR + e− jφ · nD2

with pdf pỸD2 |XR
(ỹD2|xR) which is a complex Gaussian CN(hS D

√
PS 2 ·ρ · xR, 1) since the statistics

of noise nD2 are rotationally invariant. Furthermore, x̃ = hS D
√

PS 2

√
1 − ρ2 · x̃S 2 + hRD

√
PRxR is

substituted for the sake of clarity since it depends only on non-random or given variables. Step
(b) uses polar coordinates to highlight that e jφ only changes the phase ϕỹD2 = ∠ỹD2 of ỹD2 but
not its magnitude rỹD2 = |ỹD2|. Most importantly, the sum of angles corresponds to a convolution
of the corresponding phases of the pdfs pΦ(φ) ∗ϕ pỸD2 |XR

(rỹD2 , ϕỹD2 |xR). The summation with
x̃ = r0 · e jϕ0 corresponds to a convolution with a Dirac impulse which is

δ(r − r0, ϕ − ϕ0)
r

with
r0 =

∣∣∣∣hS D
√

PS 2

√
1 − ρ2 · x̃S 2 + hRD

√
PRxR

∣∣∣∣
ϕ0 = ∠

(
hS D
√

PS 2

√
1 − ρ2 · x̃S 2 + hRD

√
PRxR

) (5.8)

in polar coordinates. The final pdf in polar coordinates (r = |yD2|, ϕ = ∠yD2) is then

pYnon
D2 |XRX̃S 2

(r, ϕ|xR, x̃S 2) =
δ(r − r0, ϕ − ϕ0)

r
∗ pΦ(φ) ∗ϕ pỸD2 |XR

(r, ϕ|xR), (5.9)

which can be solved numerically by means of the FFT, that is, a convolution of pdfs becomes
the product of the corresponding characteristic functions. Let us firstly assume that there are
no phase errors, that is, loop SNR γ = ∞ dB, i.e. , pΦ(φ) becomes a Dirac impulse at zero
which has no influence in (5.9). Then, pYnon

D2 |XRX̃S 2
(r, ϕ|xR, x̃S 2) is simply a complex Gaussian with

CN(hS D
√

PS 2

√
1 − ρ2 · x̃S 2 +

(
hS D
√

PS 2 · ρ + hRD
√

PR

)
· xR, 1) at the position of the superposed

transmit signals. For φ , 0 however, e jφ causes a smearing of the usually bell shaped Gaussian
in the phase dimension (due to convolution with pΦ(φ), cf. Fig. 5.1) as shown in Fig. 5.2 where
the constant transition caused by the Dirac impulse δ(r−r0,ϕ−ϕ0)

r is omitted (r0 = 0, ϕ0 = 0) for the
sake of clarity.1 For a high loop SNR γ = 5 dB (cf. Fig. 5.2(a)), that is, low variance σ2

Φ
, the

effect is quite low. Furthermore, both the exact (cf. (5.3)) and the approximated (cf. (5.6)) pdf
pΦ(φ) deliver a very similar result. For moderate and low loop SNRs of γ = 0 dB (cf. Fig. 5.2(b))
and γ = −5 dB (cf. Fig. 5.2(c)) however, the effect of this phase smearing, caused by the
convolution in the phase dimension, is much stronger. Especially in Fig. 5.2(c) the distribution
equals more and more a uniform circle because pΦ(φ) develops into a uniform distribution for
γ → ∞. Comparing again exact and approximated pΦ(φ) in Fig. 5.2(b) and Fig. 5.2(c), a
reasonable difference becomes visible whereby the approximation is to optimistic.

1In Fig. 5.2, there is rotation around zero (with radius hS D
√

PS 2ρ · |xR|) which would be usually around x̃ =

hS D
√

PS 2
√

1 − ρ2 · x̃S 2 + hRD
√

PRxR (cf. (5.7b)).
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(a) Exact (left) and approximated (right) distribution for loop SNRs γ = 5 dB.
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(b) Exact (left) and approximated (right) distribution for loop SNRs γ = 0 dB.
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(c) Exact (left) and approximated (right) distribution for loop SNRs γ = −5 dB.

Figure 5.2: pYnon
D2 |XRX̃S 2

(r, ϕ) with hS D
√

PS 2ρ · |xR| = 5 · e j π4 , r0 = 0, ϕ0 = 0 (cf. (5.9)) for exact
(cf. (5.3)) and approximated (cf. (5.6)) pΦ(φ) and different loop SNRs γ.
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5.4 Rate Allocation for Practical System with Phase Errors

In Ch. 2, Bit Interleaved Coded Modulation (BICM) is introduced with 40 Modulation and
Coding Schemes (MCSs) for Point-to-Point (P2P) transmission whereby, for each MCS, the
achievable rate Rb and the corresponding threshold SNRs have been determined via Monte
Carlo simulation for the AWGN channel. Here, these results are used to assign such a rate
Rb to each partial transmission in the 3-node relay channel for DF. Briefly summarizing the
partial transmissions, there is a broadcast of xS 1 according to (3.10), a forwarding of xR from
R to D according to (3.12b) or (3.12a) depending on the channel access being orthogonal or
non-orthogonal, and maybe a virtual transmission of x̃S 2 for non-orthogonal MAC with ρ < 1.
The partial transmission rates RxS 1

b , RxR
b , and Rx̃S 2

b can then be determined straightforward with
the corresponding SNRs and the help of the results from Sec. 2.4. Finally, the totally achievable
rate RDF for DF and also τ can be calculated from this partial rates. For the sake of comparison,
orthogonal channel access will be considered as well since it does not require phase knowledge
at all.

5.4.1 Orthogonal Channel Access

The overall goal is to encode xS 1 with a rate RxS 1
b of a specific MCS such that the destination

can decode successfully. Usually, the destination decodes yD1 and yorth
D2 jointly to detect xS 1 but

due to the restriction of DF, xS 1 must be encoded such that the relay can successfully decode
the original message from yR. This is indeed a P2P transmission from S to R with

SNR = |hS R|2 · PS 1 (5.10)

at the relay according to (3.10a). Given this SNR, the rate RxS 1
b can be found from Fig. 2.22.

For the MAC phase where xR is encoded with rate RxR
b (orth), the situation is different since the

detection of the message u1 encoded in xS 1 and xR does not only rely on yorth
D2 but also on yD1

which has been received in the broadcast phase. Due to this additional information, RxR
b (orth)

can be higher than a comparable rate of a P2P transmission. Unfortunately, the determination
of such a rate is quite tedious because, on one hand, this would require a concatenated turbo
decoder with 4 component decoders which jointly decode yD1 and yorth

D2 at the destination. On the
other hand, all 1600 combinations of the available 40 MCSs used to encode xS 1 and xR would
have to be considered. Therefore, yD1 is omitted so that the rate RxR

b (orth) for transmission of xR

can be determined with the help of the link level simulations of Sec. 2.4 using the following
SNR according to (3.12b).

SNR = |hRD|2 · PR (5.11)
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Despite the high complexity, some exemplary simulations considering the whole transmission
chain with a joint decoder at D have been conducted to check how big the loss of neglecting
yD1 really is: Especially for scenarios where the relay is close to the source, the decoding gain
that yD1 offers in the joint decoder is really negligible. This is reasonable because in that case
xS 1 can be transmitted with high rate in short time due to the short distance of S and R. Hence,
there is only a tiny information flow to D due to the much longer distance between S and D.
In other scenarios however, e.g. , when the relay is roughly in the middle between S and D, yD1

can provide a coding gain of about 2 dB.

After determining RxS 1
b and RxR

b (orth) via Fig. 2.22, the final rate for DF with orthogonal
channel access is given by proper weighting of the just determined rates with the corresponding
time slot length

Rorth
DF = τorth · RxS 1

b = (1 − τorth) · RxR
b (orth) (5.12)

where τorth has to be chosen such that the information transmitted in first and second time slot
is equal.

τorth =
1

1 +
R

xS 1
b

RxR
b (orth)

, (5.13)

This is directly indicated by (3.14) substituting the information terms by RxS 1
b and RxR

b (orth) as
well as neglecting YD1.

5.4.2 Non-Orthogonal Channel Access

The transmission of xS 1 in the first time slot does not differ from the orthogonal scheme and,
thus, RxS 1

b can be determined as described above.2 Furthermore, as beamforming can be applied
due to the additional transmission of the source S in the second time slot, phase errors have to
be taken into account. In a practical system as considered here, channel estimation is usually
mandatory before signal detection. Hence, a signal rotation caused by constant phase errors
will be compensated at the receiver. However, as the receiver oberserves only the superposition
of two signals which cannot be separated, a phase difference between these two links cannot
be corrected. This phase difference is then equivalent to a degraded SNR which is indeed an

2The time slot length of the broadcast phase will change for sure. The rate however does only depend on the
SNR of the link from S to R.
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SINR for ρ < 1. By inspection of (5.1), the SINR to determine the rate RxR
b (non) to transmit xR

for non-orthogonal MAC is

SINR =
E

{
|hS D
√

PS 2ρ · e jφ + hRD
√

PR|2
}

h2
RD(1 − ρ2)PS 2 + 1

=
ρ2h2

S DPS 2 + h2
RDPR + 2ρ · hS DhRD

√
PS 2PRE{cos φ}

h2
RD(1 − ρ2)PS 2 + 1

(5.14)

with

E{cos φ} =

∫ ∞

−∞

cos φ
2πσ2

Φ

· exp (−φ2/2σ2
Φ)dφ

= exp (−σ2
Φ/2) (5.15)

which follows from E{g(x)} =
∫ ∞
−∞ g(x)p(x)dx [BSM05] with approximated pdf of Φ in (5.6).

Please note that the intuitive way of taking the expectation of the totally achievable rate is not
applied for the same reasons of neglecting the decoding gain of yD1. For the cases with ρ < 1,
successive interference cancellation has to be applied by the destination which means that the
message in x̃S 2 will be detected after subtracting the influence of xR. Hence, the transmission
of x̃S 2 from S to D is virtually a simple P2P transmission and the transmission rate Rx̃S 2

b can be
determined with

SNR = h2
S D(1 − ρ2) · PS 2. (5.16)

Similar as in (5.12), the total rate can be determined by weighting of the just determined indi-
vidual rates, whereby τnon is chosen such that τnon · RxS 1

b = (1 − τnon) · RxR
b (non).

τnon =
1

1 +
R

xS 1
b

RxR
b (non)

(5.17)

In addition, x̃S 2 is transmitted independently with Rx̃S 2
b in the second time slot of length (1−τnon).

Hence, (1 − τnon) · Rx̃S 2
b has to be added either to τnon · RxS 1

b or to (1 − τnon) · RxR
b (non).

Rnon
DF = (1 − τnon) · (RxR

b (non) + Rx̃S 2
b ) (5.18)
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5.5 Achievable Rates for Decode and Forward with Phase
Errors

As in Ch. 3, results are obtained for a line setup with dS = 0, dR = d ∈ [0, 1] and dD = 1.
Transmit powers are set to PS 1 = PS 2 = PR = P according to the individual power constraint
per node. Firstly, the results of the MFMC theorem for QAM inputs (cf. Sec. 4.3 and App. C.2)
are extended by the influence of the introduced phase error. Secondly, Monte Carlo simulations
have been conducted to obtain results for the BICM scheme presented in Sec. 2.3.5.
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Figure 5.3: Achievable rates and optimal correlation coefficient ρ versus source relay distance
d for DF with QAM input in the presence of phase errors with pathloss exponent α = 4 and
transmit power P = 1.

5.5.1 Results for Max Flow Min Cut Theorem

Fig. 5.3 shows the achievable rates RDF vs. d for P = 1. Blue lines without markers correspond
to Gaussian input as in Fig. 3.3 and blue lines with markers to QAM input as in Fig. 4.3. Ad-
ditionally depicted rates suffer by the presence of phase errors according to the above specified
model depending on loop SNR γ (cf. Fig. 5.2). As (5.9) has to be evaluated numerically in any
case, the exact pdf (5.3) is used to model phase errors (cf. Fig. 5.1). Comparing the different
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curves in Fig. 5.3 in the range of 0.1 ≤ d ≤ 0.4, a severe degradation due to phase errors
becomes visible. Nevertheless, the optimal value of ρ is still very high for small phase errors
(γ = 6 dB). Even for moderate phase errors with γ = 0 dB, a small amount of beamforming is
meaningful, however, the amount superposing new information becomes dominant because it
leads to a higher sum rate. Finally, for severe phase errors with γ = −10 dB, beamforming does
not pay off anymore and should be switched off completely (ρ = 0). Increasing d decreases the
impact of phase errors due to the decreasing ρ. In particular, even without phase errors, it is
superior to use more power for transmission of x̃S 2 and thus, the amount used for beamforming
(prone to phase error) becomes less. For d > 0.5, phase errors have almost no impact on the
performance since a high amount of beamforming is not reasonable even without phase errors.
As a conclusion, it becomes clear that non-orthogonal MAC is still in the presence of phase
errors superior to orthogonal MAC: Small phase errors cause already a significant loss in the
achievable rate whereby a substantial amount of the residual gain versus orthogonal channel
access is still originated in the array gain due to beamforming. For severe phase errors however,
non-orthogonal channel access does only pay off due to the additional virtual transmission from
source to relay which is accompanied by additional power in the system (cf. Sec. 3.5.2).3

5.5.2 Simulation Results for Bit Interleaved Coded Modulation Scheme

In contrary to Sec. 5.5.1, the results in this section consider practical coding according to the
BICM scheme introduced in Ch. 2. The following subsections show achievable rates as de-
scribed in Sec. 5.4 versus the SNR on the direct link for different relay positions d and loop
SNRs γ. Please note that although 40 MCSs can be exploited, the range of rates is still limited.
Hence, feasible solutions for a practical system are only obtained for a limited range of relay
distances d and SNRs. Especially d < 0.2 would require much higher rates on the source-relay
link than available. In order to compare non-orthogonal and orthogonal MAC fairly, results are
normalized with respect to the sum transmit energy as in (3.34d) and (3.34g). Hence, the SNR
on the direct link is defined as the ratio of received signal energy at destination D to the power
spectral noise density N0 which is normalized to unity.

SNRnon = (2 − τnon) · P (5.19a)

SNRorth = P (5.19b)

3There are no results for the sum energy constraint because this would require an exhaustive search with respect
to parameters δ, β, and τ (cf. (3.35)) which is too complex due to numerical evaluation of the MFMC theorem
(cf. App. C.2).
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Relay Very Close to Source

Based on the rate allocation in Sec. 5.4, Fig. 5.4 shows the achievable rates for a scenario where
R is quite close to D (d = 0.2). Hence, distributed beamforming is optimal, that is, ρ = 1 for
the complete depicted range. The achievable rates obtained according to the MFMC theorem
for QAM input and perfect synchronization are plotted additionally as a reference. Obviously,
these rates cannot be achieved by a practical code with finite length and only discrete rates. By
comparison of the non-orthogonal (solid blue) and the orthogonal (dashed blue) scheme without
phase errors, a gain of about 2 dB and more becomes visible. Taking the differently strong
impacts of phase errors into account reveals that small phase errors (γ = 10, 5 dB, cf. Fig. 5.2(a))
barely degrade the performance of the non-orthogonal scheme. Even for moderate phase errors
(γ = 0 dB, cf. Fig. 5.2(b)), the non-orthogonal scheme is still profitable. So far the results of
Fig. 5.4 very well confirm the insights of Fig. 5.3. Only for very severe phase errors (γ =

−5,−10 dB, cf. Fig. 5.2(c)) the rate falls below the rate of the orthogonal scheme.4 The reason
is that ρ = 1 is not optimal anymore but the only choice because the SNR on the direct link is
too low to allocate even the smallest MCS for a transmission of x̃S 2. Given that, beamforming
remains the only choice for the non-orthogonal scheme. As sum energy is considered, the
orthogonal scheme would be the better alternative in the presence of severe phase errors.
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Figure 5.4: Achievable DF rates versus SNR (sum energy) at d = 0.2 with α = 4 including
imperfect phase knowledge dependent on γ. Distributed beamforming with ρ = 1 is optimal in
the whole range.

4It should be emphasized that the Gaussian approximation for the pdf of the phase error is less tight for small
values of γ (cf. Fig. 5.2(b) and Fig. 5.2(c)). In particular, the impact of these phase errors should be even more
severe.
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Relay Moderately Close to Source
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Figure 5.5: Achievable DF rates versus SNR (sum energy) at d = 0.4 with α = 4 including
imperfect phase knowledge dependent on γ.

Fig. 5.5 shows similar results as before except that the relay is moved a little away from the
source to d = 0.4. Hence, one could expect generally higher rates which is indeed the case and
that the source should superimpose new information (ρ < 1) which is only the case in the high
SNR regime. The reason is again the limited range of availale MCSs to transmit x̃S 2. Hence, not
until SNR = 1 dB the non-orthogonal (solid blue) scheme becomes superior than the orthogonal
(dashed blue). Before that point, both schemes perform very similar because beamforming is
less profitable due to the decreased array gain which is highest for equally strong links.5 The
oscillating ρ is reasoned by the discreteness of the rates Rb due to the limited number of MCSs:
In fact, there are ranges of ρ leading to the same RDF . Anyhow, as ρ is mainly much bigger
than zero, applying partly distributed beamforming is still meaningful. Taking phase errors into
account, an already very severe case is plotted since the amount of distributed beamforming is
much less. Obviously, in the range where ρ = 1, the performance is bad. Anyhow, for high
SNR, a small amount of beamforming is still applied whereby the performance is better than
that of the orthogonal scheme. 6

5Comparing with respect to average power per node instead of sum energy, the non-orthogonal scheme would
always be superior.

6Due to the fact that some range of ρ delivers the same RDF and only the highest value of that range is plotted,
beamforming may be totally switched off for some SNRs.
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5.6 Discussion

The influence of phase errors on distributed beamforming for DF has been investigated. There-
fore, a random variable is modeled by a first order PLL for which an analytic expression for the
respective pdf is known. In a statistical sense, the impact of phase errors is determined by the
variance which depends directly on the SNR of the PLL. In particular, if this loop SNR tends
to infinity, the probability of the presence of such phase errors goes to zero, and vice versa,
for an infinitely low loop SNR, phase errors are uniformly distributed. Using the pdf of the
phase error, information theoretic results according to the MFMC have been appropriately ex-
tended as shown in Fig. 5.3. Furthermore, simulation results for a BICM system, as described
in Sec. 2.3.5 and Sec. 2.4, are obtained for different scenarios. In both cases, it is shown how
phase errors degrade the achievable rate of DF for non-orthogonal channel access. Although,
small phase errors have a significant impact, there is still a high array gain due to distributed
beamforming for which most of the transmit power at the source is still used. Even for moderate
phase errors, a small amount of the transmit power is used for beamforming. Only for severe
phase errors, beamforming should be switched off completely. In addition to the information
theoretic results, simulation results show that superposition coding, is only meaningful when
there is a suitable MCS to meet the SNR of the direct link. Unlike in Ch. 6 and Ch. 7 where
quantizer design for CF gets more complicated when considering frequency selective channels,
DF can be easily applied to an OFDM system with Rayleigh Fading subcarriers. The insights
of this chapter will still hold in a relative manner, except that huge phase errors will destroy
carrier orthogonality.





Chapter 6

Compress and Forward with Optimized
Quantization

In this chapter, practical implementation issues of Compress-and-Forward (CF) are analyzed,
more precisely, how to design quantization and evaluation of its performance together with a
practical coded modulation scheme like BICM (cf. Sec. 2.3.5). Results have been partly pub-
lished in [KK16] and are fully shown in Sec. 6.3. Similar results for the multiple access relay
channel can be found in [ZKBW08,ZKBW09a,ZKBW09b,ZBW12] where a more sophisticated
signal processing is assumed at the relay. The question how to realize and optimize quantization
is not straightforward since entropy maximizing quantizers are unrewarding due to dispensable
noise which is added at the relay. A suitable answer is given by the IB method [TPB99, Slo02]
which maximizes the mutual information (relevant information) between the transmit signal
and the quantizer output while compressing the received signal such that its mutual information
shared with the transmit signal matches the capacity of the R→ D link. This concept is further-
more adapted such that the information, conveyed via S → D, is exploited as side information
during compression [Zei12, ZBBW10]. Fig. 6.1 sketches the digital signal processing chain
at the relay, where ỹR denotes the analog signal. For mathematical description and conducted
simulations, yR is directly addressed with an Analog to Digital (A/D) resolution lad according to
alphabet YR with cardinality |YR| = 2lad .

ỹR A/D Quant. Wyn.-Ziv Turbo Enc.
∏

QAM Map. xR
yR ŷR s

Figure 6.1: Relay Processing for CF.

Sec. 6.1 firstly introduces the IB method and its application to the 3-node relay channel.
Afterwards, Sec. 6.2 shows the modified simulation setup including the processing of compres-
sion indices in a joint turbo decoder as well as the rate allocation to determine the achievable CF
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rate. At the end, Sec. 6.3 shows results in terms of achievable CF rate before Sec. 6.4 concludes
this chapter.

6.1 Information Bottleneck Method

The IB method was firstly introduced by Tishby [TPB99, Slo02] and is briefly reviewed in the
following subsection. Afterwards, it is adopted to the relay channel as in [ZKBW09a, ZBW12,
Zei12] to consider side information which is available at the destination via the direct link in
the first time slot.

6.1.1 Information Rate Function

According to Tishby, the quantization of an observation y ∈ Y of x ∈ X to a compression index
z ∈ Z can be straightforwardly described by a stochastic mapping Pr{z|y} whereby the random
variables X → Y → Z form a Markov chain. The arising optimization problem is to find Pr{z|y}
such that the so called relevant information I(X; Z) is maximized while the source coding rate
I(Y; Z) is bounded by r.1 Mathematically this problem can be defined as an information-rate
function [TPB99, Zei12]

I(r) , max
Pr{z|y}

I(X; Z) s.t. I(Y; Z) ≤ r (6.1)

for 0 < r ≤ H(Y) or as rate-information function

r(I) , min
Pr{z|y}

I(Y; Z) s.t. I(X; Z) ≥ I (6.2)

whereby (6.2) is the inverse function, i.e. , minimizing the compression rate while a minimum
of relevant information is preserved. By the help of Lagrangian multiplier β ≥ 0, which steers
the trade-off, the problem may be rewritten as [TPB99, Zei12]

r(I(β)) − βI(β) = min
Pr{z|y}

I(Y; Z) − βI(X; Z). (6.3)

An exemplary information-rate curve with slope 1/β is given in Fig. 6.2. Please note although
the information-rate curve is concave, solving (6.3) for each β is a non-convex problem. There
are several iterative algorithms [TPB99, Slo02, Zei12] very similar to the Blahut-Arimoto al-
gorithm [Bla72] yielding a local optimum of (6.3). Important to note is that the implementa-

1The term ’source coding rate’ is always used in the context of compression at the relay. Therefore, also the
term ’compression rate’ will be used meaning the resulting rate I(Y; Z) and not the factor by which has been
compressed.
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Figure 6.2: Exemplary information-rate curve for x ∈ X = {−1, 1}, y = x + n, n ∈ N(0, 1),
|Z| = 64 and ε = 10−4.

tion of these algorithms generally requires discrete random variables described by probability
mass functions (pmfs). Hence, for continuous random variables, probability density functions
(pdfs) need to be sampled with a sufficiently high resolution into a pmf which yields a quasi-
continuous distribution.2

Iterative Information Bottleneck Algorithm

The original algorithm of Tishby, also known as iterative IB algorithm, is depicted in Algo-
rithm 1 [TPB99, Zei12]. As input it takes the joint pmf Pr{x, y}, the alphabet Z, and trade-off

parameter β. In addition to Pr{z|y}, the algorithm outputs both the a posteriori probability Pr{x|z}
and the pair of relevant information I(β) and source coding rate r(β). More precisely, a specific
information-rate pair cannot be directly chosen but is implicitly obtained by choosing a partic-
ular value for β. Hence, to calculate the whole information-rate curve as in Fig. 6.2, β has to
be varied in the range 0 ≤ β ≤ ∞. Usually, the aim is not to determine the whole information-
rate curve but only one point (I(r), r). Considering (6.1), the rate r of a specific point (I(r), r)
is given while I(r), Pr{z|y}, and Pr{x|z} are wanted. As (I(r(β)), r(β)) depends on β, a bisec-
tion search has to be applied to meet, e.g. , a given rate r. The initialization of Pr{z|y} is usually
random [TPB99,Zei12]. However, due to the non-convex nature of the problem, random initial-
ization cannot guarantee to find a global optimum. Hence, typically several runs are necessary
to find a close to optimum value for (I(r(β)), r(β)). To avoid several runs, Maximum Output En-
tropy (MOE) instead of random initialization is used throughout this work [Win14]. As shown

2This happens inherently in the digital system under investigation due to A/D conversion which acts as a
uniform pre-quantization.



72 CHAPTER 6 COMPRESS AND FORWARD WITH OPTIMIZED QUANTIZATION

Input: Pr{x, y}, X, Y,Z, β > 0, ε > 0
Output: Pr {z|y}, Pr{x|z}, (I(r(β)), r(β))

1 initialize Pr {z|y}(0)

2 Pr{z}(0) ← ∑
y Pr{y}Pr {z|y}(0)

3 Pr{x|z}(0) ← 1
Pr{z}(0)

∑
y Pr{x, y}Pr {z|y}(0)

4 d(0)(z, y)← DKL

(
Pr{x|y}||Pr{x|z}(0)

)
5 Pr {z|y}(1) ← Pr{z}(0)2−βd(0)(z,y)∑

z∗ Pr{z∗}(0)2−βd(0)(z∗ ,y)

6 k ← 1

7 while
∑

z∈Z,y∈Y
∣∣∣Pr {z|y}(k) − Pr {z|y}(k−1)

∣∣∣ /(|Y| · |Z|) ≥ ε do
8 Pr{z}(k) ← ∑

y Pr{y}Pr {z|y}(k)

9 Pr{x|z}(k) ← 1
Pr{z}(k)

∑
y Pr{x, y}Pr {z|y}(k)

10 d(k)(z, y)← DKL

(
Pr{x|y}||Pr{x|z}(k)

)
11 Pr {z|y}(k+1) ← Pr{z}(k)2−βd(k)(z,y)∑

z∗ Pr{z∗}(k)2−βd(k)(z∗ ,y)

12 k ← k + 1
13 end

14 Pr {z|y} ← Pr {z|y}(k)

15 Pr{z} ← ∑
y Pr{y}Pr {z|y}

16 Pr{x|z} ← 1
Pr{z}

∑
y Pr{x, y}Pr {z|y}

17 I(r(β))← ∑
x,z Pr {x|z}Pr {z} log2

(
Pr{x|z}
Pr{x}

)
18 r(β)← ∑

y,z Pr {z|y}Pr{y} log2

(
Pr {z|y}
Pr{z}

)
Algorithm 1: Iterative IB algorithm [TPB99], where DKL denotes relative entropy
(cf. App. A.5) or Kullback-Leibler-Divergence [CT91].
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in [Win14], MOE initialization yields only suboptimal but still good results. Specifying the
cardinality |Z| of Z is not only important for initialization, it also limits the compression rate
r ≤ H(Z) indirectly via its entropy. Hence, it has to be ensured that |Z| is sufficiently large to
cover the whole information-rate curve. Therefore, Fig. 6.3 shows information-rate curves for
differing cardinalities |Z1| = 2, |Z2| = 3, |Z3| = 4, and |Z4| = 16 whereby the most right points
correspond to β→ ∞.
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Figure 6.3: Information-rate curve for different cardinalities |Z1| = 2, |Z2| = 3, |Z3| = 4, and
|Z4| = 16 with x ∈ X = {−1, 1}, y = x + n, n ∈ N(0, 1), and ε = 10−4.

Iterative Information Bottleneck Algorithm for β→ ∞ (KL-Means Algorithm)

The problem in (6.3) represents the trade-off between a minimum quantizer rate I(Y; Z) and
maximum relevant information I(X; Z) which cannot be achieved at the same time but is steered
by β. The extreme cases are β = 0 and β → ∞ whereby the first case is not of interest because
it minimizes the rate I(Y; Z) and thus also the relevant information I(X; Z) to zero. The other
extreme however has a practical relevance as it maximizes rate I(Y; Z) and relevant information
I(X; Z) for a given given Z [Kur17]. This leads to a deterministic quantizer as maximizing
I(Y; Z) = H(Z) − H(Z|Y) implies H(Z|Y) = 0, that is, Pr{z|y} ∈ {0, 1}.3 Hence, the resulting
mapping Pr{z|y} can be implemented as a Look-Up-Table (LUT). Due to β → ∞, the trade-
off between relevant information and compression rate depends only on the cardinality |Z|
since (6.3) is solved for a specific Z. In particular, the maximum rate r for a specific Z is its
corresponding entropy H(Z). As the cardinality is integer, there is only a discrete (instead of
the beforehand continuous) range of rates r. This effect is very well depicted in Fig. 6.3 where

3Generally, for arbitrary β > 0, the IB method yields a random mapping Pr{z|y} ∈ [0, 1].
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only the most right point of each information-rate curve corresponds to a solution of (6.3) if
β → ∞. Fig. 6.3 shows furthermore that although the relevant information is maximized for
a specific cardinality |Z| it is slightly less than that of a comparable information-rate pair with
higher |Z| and variable β ∈ [0,∞]. Balancing pros and cons, the only considerable drawback
of setting β → ∞ is the discreteness of the range of rates r = H(Z) depending on |Z|. It will
be explained in Sec. 6.1.2 that this limited range of rates is not disadvantageous with respect to
the simulation setup in Sec. 6.2 to determine the achievable rate for CF. Finally, Algorithm 1
is modified such that β → ∞ yields Algorithm 3 in App. F. In particular, line 5 in Algorithm 1
simply changes to Pr {ŷR|yR}(1) ← 1ŷR=ŷ∗yR

with ŷ∗yR
= argminŷR

d(0)(ŷR, yR),∀yR where

1ŷR=ŷ∗yR
:=

1, if ŷR = ŷ∗yR

0, otherwise
(6.4)

denotes the indicator function.

6.1.2 Relay Channel Adapted Information Rate Function

Considering the 3-node relay channel for CF according to Fig. 6.4 and the corresponding
achievable rate in (3.17), (6.1) can be extended to the trade-off between I(XS 1; ŶR|YD1) and
I(YR; ŶR|YD1) exploiting the side information which is available at destination D due to the
broadcast phase. More precisely, it is possible to determine the final source coding rate r at the

I(XS 1; ŶR|YD1)

I(XS 1; YD1)

I(XR; YD2)

S

R

D

Figure 6.4: 3-node relay channel with CF.

output of a Wyner-Ziv encoder. It is important to note that although r is the rate after Wyner-Ziv
coding, the IB method determines the mapping Pr{ŷR|yR} and not a mapping Pr{b|yR} to a bin
index b according to random binning as in App. B. In other words, the rate I(YR; ŶR) before
Wyner-Ziv source coding is usually higher than the rate I(YR; ŶR|YD1) afterwards. Following
the derivation in [Zei12], the extended information rate function given the joint distribution
Pr{xS 1, yR, yD1} is defined as

I(r) , max
Pr{ŷR |yR}

I(XS 1; ŶR|YD1) s.t. I(YR; ŶR|YD1) ≤ r, (6.5)
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where 0 < r ≤ H(YR|YD1) denotes the rate after source coding with side information (Wyner-
Ziv). Applying the method of Lagrangian multipliers as in Sec. 6.1, (6.5) may be rewritten
as

r(I(β)) − βI(β) = min
Pr{ŷR |yR}

I(YR; ŶR|YD1) − βI(XS 1; ŶR|YD1). (6.6)

Relay Channel Adapted Iterative Information Bottleneck Algorithm

From (6.3) the modified iterative IB algorithm, as shown in Algorithm 2, can be derived [Zei12].
This algorithm delivers the mapping Pr{ŷR|yR}, the statistics Pr{xS 1|ŷR}, and the information rate
pair (I(r(β)), r(β)) for a given input distribution Pr{xS 1, yR, yD1} for a specific β. According to
the CF relay protocol, r is restricted by the capacity of the relay destination link such that
τ · r ≤ (1− τ) · I(XR; YD2) holds (cf. (3.19)). Obviously, simplification to deterministic quantiza-
tion by setting β → ∞ is possible similar as before (cf. Algorithm 4 in App. F). The input pmf
Pr{xS 1, yR, yD1} for the adapted iterative IB algorithm is given in the following. According to
(3.15a), (3.15b) and xS 1 being a uniformly distributed QAM symbol, all random variables can
be split into their respective real and imaginary parts denoted by a prime and a double prime.
Hence, I and Q component of yR can be quantized independently with the same quantizer be-
cause Pr{xS 1, yR, yD1} is symmetric in real and imaginary part. The real joint pmf is

Pr{x′S 1, y
′
R, y

′
D1} = Pr{y′R|x′S 1}Pr{y′D1|x′S 1}Pr{x′S 1} (6.7)

where Pr{y′R|x′S 1} and Pr{y′D1|x′S 1} are obtained by appropriate discretization of Gaussian distri-
butions according to N

(√
PS 1hS Rx′S 1,

1
2

)
and N

(√
PS 1hS Dx′S 1,

1
2

)
. The resolution of these pmfs

is defined by the A/D converter with resolution lad which is set to lad = 8 bit for the simulation
in Sec. 6.2. Given Pr{x′S 1, y

′
R, y

′
D1}, Algorithm 2 (and also Algorithm 4) delivers the mapping

Pr{ŷ′R|y′R} and the statistics Pr{x′S 1|ŷ′R} which will be exploited in a joint decoder at the destina-
tion.

Extension to Multivariate Compression

It is important to note that all depicted algorithms like Algorithm 2 and Algorithm 1 can gen-
erally be applied to multivariate variables. Therefore, the multivariate variables (described
by a vector) need to be stacked into one dimension [LSB16] to obtain a pmf of the form
Pr{xS 1, yR, yD1}. Then, the first dimension generally corresponds to relevant variable(s), the
second to quantizer input variable(s) (e.g. observed variable(s)), and the third to side informa-
tion. In the next chapter, Information Bottleneck Graphs (IBGs) will be used to graphically
emphasize this structure.
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Input: Pr{xS 1, yR, yD1}, XS 1, YR, YD1, ŶR, β > 0, ε > 0
Output: Pr {ŷR|yR}, Pr{xS 1|ŷR}, (I(r(β)), r(β))

1 initialize Pr {ŷR|yR}(0)

2 k ← 1
3 Pr{ŷR}(0) ← ∑

yR
Pr{yR}Pr {ŷR|yR}(0)

4 Pr{ŷR, yD1}(0) ← ∑
yR

Pr{yR, yD1}Pr {ŷR|yR}(0)

5 Pr{ŷR|yD1}(0) ← Pr{ŷR,yD1}(0)

Pr{yD1}
6 Pr{xS 1|ŷR, yD1}(0) ← 1

Pr{ŷR,yD1}(0)

∑
yR

Pr{xS 1, yR, yD1}Pr {ŷR|yR}(0)

7 d(0)(ŷR, yR)← β
∑

yD1
Pr{yD1|yR}

DKL

(
Pr{xS 1|yR, yD1}||Pr{xS 1|ŷR, yD1}(0)

)
−∑

yD1
Pr{yD1|yR} log2

(
Pr{ŷR|yD1}(0)

)
8 Pr {ŷR|yR}(1) ← 2−d(0)(ŷR,yR)/

∑
ŷ∗R

2−d(0)(ŷ∗R,yR)

9 while
∑

ŷR∈ŶR,yR∈YR

∣∣∣Pr {ŷR|yR}(k) − Pr {ŷR|yR}(k−1)
∣∣∣ /(|YR| · |ŶR|) ≥ ε do

10 Pr{ŷR}(k) ← ∑
yR

Pr{yR}Pr {ŷR|yR}(k)

11 Pr{ŷR, yD1}(k) ← ∑
yR

Pr{yR, yD1}Pr {ŷR|yR}(k)

12 Pr{ŷR|yD1}(k) ← Pr{ŷR,yD1}(k)

Pr{yD1}
13 Pr{xS 1|ŷR, yD1}(k) ← 1

Pr{ŷR,yD1}(k)

∑
yR

Pr{xS 1, yR, yD1}Pr {ŷR|yR}(k)

14 d(k)(ŷR, yR)← β
∑

yD1
Pr{yD1|yR}

DKL

(
Pr{xS 1|yR, yD1}||Pr{xS 1|ŷR, yD1}(k)

)
−∑

yD1
Pr{yD1|yR} log2

(
Pr{ŷR|yD1}(k)

)
15 Pr {ŷR|yR}(k+1) ← 2−d(k)(ŷR,yR)/

∑
ŷ∗R

2−d(k)(ŷ∗R,yR)

16 k ← k + 1
17 end

18 Pr {ŷR|yR} ← Pr {ŷR|yR}(k)

19 r(β)← ∑
yR,ŷR

Pr {ŷR|yR}Pr{yR} log2

(
Pr {ŷR |yR}

Pr{ŷR}
)
−∑

yD1,ŷR
Pr {ŷR|yD1}Pr{yD1} log2

(
Pr {ŷR |yD1}

Pr{ŷR}
)

20 I(r(β))← ∑
xS 1,yD1,ŷR

Pr {xS 1|ŷR, yD1}Pr {ŷR, yD1} log2

(
Pr{xS 1 |ŷR,yD1}

Pr{xS 1 |yD1}
)

Algorithm 2: Iterative IB algorithm considering side information [Zei12].
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Deterministic versus Random Quantization

In Sec. 6.1 is shown that β → ∞ simplifies the general IB problem such that the quantizer
mapping Pr{ŷR|yR} is deterministic and can be implemented as LUT. The trade-off between
relevant information I(XS 1; ŶR|YD1) and compression rate r = I(YR; ŶR|YD1) = H(ŶR|YD1) is
then steered by the cardinality |ŶR| of the compressed variable ŷR. Therefore, the range of
available compression rates r is now discrete due to the integer nature of cardinality. This
however is not a problem for determining a suitable quantizer for CF in the 3-node relay channel
such that τ · r = (1 − τ) · I(XR; YD2). In particular, as neither the optimal r nor the optimal
τ can be obtained in closed form, an exhaustive search including a high effort Monte Carlo
simulation is necessary (cf. Sec. 6.2). Generally, it does not matter whether a grid of τ or
r is defined: The respective other appears due to τ · r = (1 − τ) · I(XR; YD2). However, if
deterministic quantization is used, a set of rates r = H(ŶR|YD1) is inherently defined by a set
of different cardinalities |ŶR|. Hence, the limited range due to setting β → ∞ is no drawback
at all but an actual benefit because Algorithm 4 has to be run only once for a specific rate
indirectly determined by |ŶR|.4 On the contrary, Algorithm 2 (determining a random quantizer
mapping) would have to run several times such that a predefined rate r is met within a bisection
search. Especially for low values of r and I(r), the number of runs within this search increases
significantly due to the almost linear shape of the information-rate curve (cf. Fig. 6.2 or Fig. 6.3).
The reason is that, the search intervals are usually reduced by a factor of 2 with a reasonable
starting point of, e.g. , β = 500. In the almost linear regime of the information-rate function, the
relevant variation of β, which represents the slope of the function, becomes negligibly small (a
couple of decades). To visualize this problem, Fig. 6.5 shows different rates r in dependence
on the SNR on the direct link of the 3-node relay channel. The different rates r are either
obtained by varying |ŶR| ∈ {2, · · · , 16} for deterministic quantization (red) or by an equidistant
grid r ∈ { rmax

6 , · · · , rmax} with rmax = H(ŶR|YD1) according to |ŶR| = 16 for general random
quantization (blue). All red curves are monotonically decreasing because the uncertainty, which
defines the rate r = H(ŶR|YD1), is lowered with increasing SNR.5 In other words, with increasing
SNR, i.e. , amount of noise in YR decreases, a stronger compression is possible while keeping
the same amount of relevant information I(XS 1; ŶR). The observation of general decrease is
transferable to the blue curves because of rmax = H(ŶR|YD1). However, due to the beforehand
stated numerical issues of the bisection method, there is a varying error on the targeted rate
which is especially high for low rates. Comparing red and blue curves with respect to the
covered range, random quantization may only be advantageous for low SNR because it provides
very low quantizer rates below 1. Unfortunately, this advantage comes with a very high price,
namely, computational complexity. The maximum number of bisection iterations was set to 100,

4This approach is suboptimal because this artificially predefined set of rates may not contain the optimal rate r.
Anyhow, this is true for any artificial sampling which has to be coarse for the sake of feasibility.

5Due to numerical reasons the entropy does not decrease with every step of 0.1.
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Figure 6.5: Different quantizer rates r versus SNR (direct link of the 3-node relay channel) com-
paring deterministic quantization (r = H(ŶR|YD1)∀|ŶR| ∈ {2, · · · , 16}) to random quantization
(r ∈ { rmax

6 , · · · , rmax}) where rmax corresponds to |ŶR| = 16 (red and blue match).
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i.e. , in worst case the IB algorithm is carried out 100 times instead of only once. Furthermore,
the huge deviations from H(ŶR|YD1)/6 confirm that still after 100 iterations the targeted rate is
not reached. This numerical instability can be caused by different reasons, e.g. , the almost linear
shape of the information-rate function or suboptimal MOE initialization of Pr{ŷR|yR}. Due to the
just mentioned reasons and the aim of straightforward implementation as LUTs, deterministic
quantization will be used throughout this work.

6.2 Modified Simulation Setup for Compress and Forward

As the achievable rate for CF can only be determined considering a decoder which jointly
decodes yD1 and ŷR, the simulation setup from Sec. 2.4 has to be extended. Therefore, it is
necessary to clarify how the quantizer indices ŷR are interpreted by a joint turbo decoder. Using
both the results of the modified and the beforehand simulation, rate allocation can be done
analogue to Sec. 5.4.

×
hS R

+

nR

×
hS D

+

nD1

A/D Quantizer

A/D QAM-Demapper ∏−1 Joint Turbo-Decoder û1

QAM-Mapper

∏
Turbo-Encoder

u1

Interpreter

c1

xS 1
ỹR

ỹD1

yR

yD1 L(yD1|c1)

ŷR

L(ŷR|c1)

Figure 6.6: Block diagram for CF transmission with joint destination processing.

6.2.1 Processing of Compression Indices in Soft Decoders

Fig. 6.6 shows the simulation setup to determine the achievable CF rate for the BICM scheme
introduced in Sec. 2.3.5 (cf. Fig. 2.21). The depicted setup does not include the MAC but only
the broadcast phase to keep the complexity of the simulation feasible. In fact, it is assumed
that the relay can forward ŷR with a specific rate RxR

b in the MAC phase which is determined
as explained in Sec. 2.4. Thus, Fig. 6.6 does not show the channel and the required signal
processing between the quantizer output at the relay and the interpreter at the destination. Both
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the quantizer and the interpreter are designed as LUTs: The first is simply the mapping Pr{ŷR|yR}
prior obtained by the IB method. The second maps ŷR to an LLR L(ŷR|c1) with respect to
the code bits c1 which can be calculated a priori from Pr{xS 1|ŷR} (also determined by the IB
method). Please note that real and imaginary parts are independently quantized with the same
quantizer, that is, Pr{ŷ′R|y′R} = Pr{ŷ′′R |y′′R} and Pr{x′S 1|ŷ′R} = Pr{x′′S 1|ŷ′′R}. The variables ŷR and
L(ŷR|c1) in Fig. 6.6 represent multiplexed versions of their respective real and imaginary parts
which implies that the same interpreter LUT can be used to convert ŷ′R and ŷ′′R into an LLR.

L(ŷ′R|c1) = log
Pr{ŷ′R|c1 = 0}
Pr{ŷ′R|c1 = 1}

= log
∑
XS 1

Pr{ŷ′R|x′S 1}Pr{x′S 1|c1 = 0}∑
XS 1

Pr{ŷ′R|x′S 1}Pr{x′S 1|c1 = 1}
= log

∑
XS 1

Pr{x′S 1|ŷ′R}Pr{x′S 1|c1 = 0}/Pr{x′S 1}∑
XS 1

Pr{x′S 1|ŷ′R}Pr{x′S 1|c1 = 1}/Pr{x′S 1}
(6.8)

The component decoders of the joint turbo decoder in Fig. 6.6 are usual BCJR decoders and the
exchanging of extrinsic LLRs is as in Sec. 2.3.2. The only difference is that the decoder takes
the sum L(y′D1|c) + L(ŷ′R|c) as input instead of only L(y′D1|c) (cf. App. G). This seems natural
since ŷ′R and y′D1 are independent observations of x′S 1.

6.2.2 Rate Allocation

The above presented simulation setup will be used, similar as in Sec. 2.4, to obtain BERs versus
SNR (direct link) for each available Modulation and Coding Scheme (MCS).6 In addition, the
simulation is carried out for a set of different quantizers with compression rates r according to
|ŶR| ∈ {2, · · · , 16} as in Fig. 6.5. The reason is that neither τ nor r can be optimally determined
a priori (cf. (3.19)). Hence, a set of BERs is obtained for each MCS which yields a set of
achievable rates RxS 1

b (r) for a specific threshold SNR at a target BER of 10−5. Fig. 6.7 shows
the same rates as in Fig. 2.22 for an AWGN channel and additionally the rates RxS 1

b (r) for the
setup depicted in Fig. 6.6 whereby only the achievable rates RxS 1

b (r) for one specific quantizer
(|ŶR| = 8) are plotted. The quantizer rate versus SNR on the direct link is depicted in Fig. 6.5.
The gap between the respective curves in Fig. 6.7 visualizes the gain of a CF transmission
over a direct transmission. This gap increases or decreases with the source coding rate r of
the quantizer at the relay which depends on the achievable rate RxR

b (non) (non-orthogonal MAC)
or RxR

b (orth) (orthogonal MAC) on the relay-destination link and τ. Hence, to determine the

6As complexity (cf. Sec. 6.2.3) is an issue, the maximum simulated modulation order is m = 3 instead of m = 5
as in Sec. 2.4. All other parameters like interleaver length or the number of statistical realizations is like in Sec. 2.4
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Figure 6.7: Achievable rates RxS 1
b versus SNR on direct S → D link for |ŶR| = 8 and d =

0.8 compared to achievable rates for a direct transmission. Different colors indicate different
modulation orders.

finally achievable rate for CF, RxR
b and RxS 2

b (only for non-orthogonal MAC) are determined as
in Sec. 5.4.7 The final CF rate is

Rorth
CF = max

r
{τorthRxS 1

b (r)} s.t. τorth · r ≤ (1 − τorth)RxR
b (orth) (6.9a)

Rnon
CF = max

r
{τnonRxS 1

b (r) + (1 − τnon)RxS 2
b } s.t. τnon · r ≤ (1 − τnon)RxR

b (non) (6.9b)

whereby the maximization is over all simulated quantizers with respective compression rates r

according to |ŶR| ∈ {2, · · · , 16}.

6.2.3 Complexity

In the previous chapter, the complexity was fully determined by the Monte Carlo simulations
to find threshold SNRs for the predefined MCSs given a specific target BER (cf. Fig. 2.22).
The effort to calculate the final rates for DF (cf. Sec. 5.4) is comparably negligible. For CF
however, the complexity is significantly higher because the optimal values for τ and r cannot
be determined a priori and, thus, different combinations are tested whereby only one parameter
has to be varied since the other follows from τ · r = (1 − τ) · RxR

b . Hence, the Monte Carlo
simulation has to be carried out not only for each MCS and over a range of SNRs but also
for a range of, e.g. , r. Although the simulation setup in Sec. 2.4 differs slightly from the one
in Sec. 6.2, the effort for one simulation over a range of SNRs is almost the same. For DF, all
required individual rates RxS 1

b , RxR
b (non), RxR

b (orth), and Rx̃S 2
b are determined based on the simulations

in Sec. 2.4 which are 40 (one for each MCSs over a range of SNRs). For CF however, the rate
RxS 1

b (r) is not determined by the setup in Sec. 2.4 but by the setup in Sec. 6.2 whereby RxR
b (non),

7Please note that RxS 2
b for CF is similar to Rx̃S 2

b for DF. Both denote the rate of the superposed and independently
encoded new information word u2 which is transmitted by the source in the MAC phase (cf. Ch. 3).
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RxR
b (orth), and RxS 2

b are determined likewise as for DF. Hence, 360 additional simulations are
required: For each of the 24 MCSs (modulation order limited to m = 3), 15 different quantizers
are used in the simulations. Finally, the 15 different quantizers have to be determined once
for each SNR and each modulation order m which adds a small but not negligible amount of
complexity.

6.3 Achievable Rates for Compress and Forward with Opti-
mized Quantization

Similar as for DF in Sec. 5.5.2, the following results show achievable rates for CF versus the
SNR on the direct link whereby all nodes are placed on a line with individual transmit powers
PS 1 = PS 2 = PR = P. The achievable rates RCF are compared to the rates RDF of DF. Further-
more, the results are analyzed with respect to orthogonal and non-orthogonal MAC whereby
both the individual power constraint and the sum energy constraint are considered (cf. Sec. 3.5).
The results in this section are updated and more detailed than in [KK16].

6.3.1 Comparison to Decode and Forward

In the following, the achievable rate of CF will be compared to the achievable rate of DF and to
that of a direct transmission which does not use the relay. Both non-orthogonal and orthogonal
MAC are considered.
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Figure 6.8: Total achievable rates for CF and DF versus sum SNR (sum energy) at d = 0.8 for
non-orthogonal channel access in the MAC phase.
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Non-Orthogonal Channel Access

To compare the performance of CF and DF, Fig. 6.8 shows the achievable rates for a relay posi-
tion d = 0.8 whereby the MCSs are automatically adapted according to (6.9) and (5.18). Almost
in the whole depicted range DF is outperformed by CF. For some SNRs however, DF performs
equally good or better. When the relay is moved closer to the destination as in Fig. 6.9, CF
clearly outperformes DF. The reason is, as mentioned before, that the S → R link becomes the
bottleneck of the system. In addition to the achievable rates for DF and CF, Figures 6.8 and 6.9
show the achievable rates for direct transmission without using the relay. Obviously, CF is
always superior while DF does not pay off for d = 0.9 in the high SNR regime.
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Figure 6.9: Total achievable rates for CF and DF versus SNR (sum energy) at d = 0.9 for
non-orthogonal channel access in the MAC phase.

Orthogonal Channel Access

Comparing CF and DF for orthogonal MAC in the second time slot as shown in Fig. 6.10 and
Fig. 6.11, the same relative behavior as before can be observed. Anyhow, in contrary to DF, CF
clearly outperforms the direct transmission (no relay): For d = 0.8 in Fig. 6.10, CF is superior
in the whole range while DF is only beneficial up to 6 dB. For d = 0.9 in Fig. 6.11, DF has
only a slight gain in the low SNR regime while CF is still superior up to the mid SNR regime.
The reason for the inferior performance of CF versus the direct link in the high SNR regime is
reasoned by the saturation on the R→ D link due to the limited range of MCSs.
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Figure 6.10: Total achievable rates for CF and DF versus SNR (sum energy) at d = 0.8 for
orthogonal channel access in the MAC phase.
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Figure 6.11: Total achievable rates for CF and DF versus SNR (sum energy) at d = 0.9 for
orthogonal channel access in the MAC phase.
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6.3.2 Comparison of Non-Orthogonal and Orthogonal Scheme

Achievable Rate for Sum Energy

The comparison of non-orthogonal and orthogonal channel access shows similar results for CF
and DF (cf. Sec. 5.5). Fig. 6.12 shows the respective rates RCF for d = 0.8. In the low SNR
range, both curves coincide up to about 0 dB. The reason is the low capacity of the S → D

link since even the smallest MCS has a too high rate to ensure sufficient decoding. Hence, the
source remains quiet in the MAC phase leading to orthogonal channel access.
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Figure 6.12: Total achievable rates for CF versus SNR (sum energy) at d = 0.8 comparing
orthogonal to non-orthogonal channel access in the MAC phase.

In the moderate SNR range, both schemes perform very similar so that the additional effort
of non-orthogonal channel access becomes unrewarding. In fact, this insight is only true with
respect to the sum energy constraint. For another measure of comparison, e.g. , individual trans-
mit power as in Fig. 6.13, the non-orthogonal scheme will always outperform the orthogonal
if an MCS can be assigned to the direct link between S and D. For high SNRs in Fig. 6.12,
the orthogonal scheme is clearly outperformed by the non-orthogonal scheme: On one hand,
the non-orthogonal scheme has higher degrees of freedom in terms of time and rate allocation
(which will be shown in the following in Fig. 6.13). On the other hand, the R → D link is
limited by the highest practically available MCS that is 8 bit/s/Hz in the illustrated setup.8 This
saturation of the R → D link degrades the orthogonal scheme more than the non-orthogonal
because the “weak” S → D can be used for transmission with higher MCSs in the high SNR
regime. Using this link in both time slots (non-orthogonal) is now highly beneficial compared
to using it only in the first time slot (orthogonal). In other words, without the limitation due to

8Please note that this MCS corresponds to a 1024-QAM with code rate 4/5 which is at the limit of state-of-the-
art implementation.
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practical MCS, that is, if the R → D capacity could be achieved, the orthogonal scheme would
perform slightly better and the gap to the non-orthogonal scheme would be smaller.
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Figure 6.13: Total achievable rates for CF versus SNR (individual power) at d = 0.8 comparing
orthogonal to non-orthogonal channel access in the MAC phase.

Achievable Rate for Individual Power per Node

As before, Fig. 6.13 compares the performance of non-orthogonal and orthogonal channel ac-
cess for CF whereby here, in contrary to Fig. 6.12, achievable rate is plotted with respect to
transmit power per node. Additionally, Fig. 6.13 shows the respective parameters RxS 1

b (r), r, and
τ after optimization with respect to RCF according to (6.9). The general behavior of the rates
Rnon

CF and Rorth
CF is a step wise increase with the SNR which is originated in the discrete nature
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of the MCSs (similar as for DF) as well as in the artificial discreteness of r (cf. Fig. 6.5). De-
spite this step size nature both Rnon

CF and Rorth
CF increase as well within each step which becomes

especially visible for the orthogonal scheme and is reasoned in the decreasing behavior of r

(increasing τ) within one step size: Such a behavior is meaningful because an increasing SNR
allows stronger compression to reduce r while keeping the same relevant information particu-
larly because r is determined by H(ŶR|YD1) depending on |ŶR|. According to (6.9), the decrease
of r allows an increase of τ. This effect is not that obvious for the non-orthogonal scheme
due to the addition of RxS 2

b which increases only step-by-step whenever a threshold SNR for a
higher MCS is exceeded. From the behavior of the partial parameters, it is obvious that the
discreteness of r and the MCSs (RxS 1

b , RxR
b , RxS 2

b ) significantly reduces the degrees of freedom
in determining the optimal rate RCF . The general trend seems to be a decreasing r and an in-
creasing τ especially when the highest MCS for RxS 1

b is reached. Anyhow, due to only limited
discrete availability of transmission and source coding rates, the best trade-off does not follow
a monotone behavior but jumps unpredictably. As the non-orthogonal schemes have one degree
of freedom more, due to transmission via RxS 2

b , the best trade-off between τ, r, and RxS 1
b differs

in some points from that of the orthogonal scheme.

6.4 Discussion

In this chapter, the IB has been used to determine optimal quantizers to apply CF to the 3-node
relay channel as introduced in Sec. 3.1. As general random quantization may cause numerical
problems, the iterative IB is modified to deliver deterministic quantizers. This modification
simplifies on one hand the complexity of the algorithm but on the other hand allows only a
limited range of source coding rates which are determined by the cardinality of the compressed
variable instead of a Lagrangian multiplier. This includes also the fact that the source coding
rate cannot be arbitrarily small which is generally possible. Nevertheless, for the problem at
hand, a limited number of source coding rates is not a drawback for the sake of feasibility. It
rather is a benefit because it is much easier to generate a meaningful range of source coding
rates in dependence of cardinality instead of a Lagrangian Multiplier which depends on the
actual shape of the information-rate function. The suchlike obtained deterministic quantizers
are stored in straightforward implementable LUTs and used to determine achievable rates for a
BICM system. Simulation results show an expected better performance of CF over DF and a
direct transmission when the relay is considerably closer to the destination than to the source.
For the single-carrier system and the AWGN channel model with path loss which has been con-
sidered so far, feasibility to obtain optimal quantizers is not an issue. However, when extending
the channel model to a more realistic frequency selective channel which is tackled via a multi-
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carrier scheme like OFDM, quantizer design gets much more complex and suboptimal design
approaches have to be found. This topic is addressed in the following chapter.



Chapter 7

Quantizer Design for Compress and
Forward over Multiple Carriers

In this chapter, the quantizer design of the previous chapter is generalized to consider fre-
quency selective channels that are decomposed into flat Rayleigh fading channels via OFDM
(cf. Sec. 2.5). In contrary to DF, where SNRs and SINRs are simply converted into an effective
value, this extension is not straightforward for CF.1 In fact, the random nature of the channel
has to be incorporated into the quantizer design. In theory, there are different possibilities to do
that while only a few are feasible in practice. Firstly, it would be desirable to have a low cost
relay, that is, to have a minimum amount of signal processing. For CF, it would be theoretically
sufficient to directly quantize the received signal and apply a subsequent source and channel
coding to forward the quantizer indices. It has already been shown that a quantizer can be im-
plemented as a LUT optimized using the IB method. Furthermore, such an integer based signal
processing can be generalized, e.g. , for LDPC decoders or equalization with very low complex-
ity [LB15,LSB16]. Unfortunately, quantization in time domain is not feasible due to the channel
memory Lh. More precisely, the IB method requires the joint pmf of the channel input (rele-
vant variable), its output (observation), and additionally the channel itself as random variable.
Due to the inter-symbol-interference caused by the channel, one input sample of a time domain
OFDM symbol is present in a vector of received samples of length Lh + 1. Hence, the required
pmf would have a cardinality which grows exponentially with the channel length. Except for
very minimalist toy examples such a pmf would require a main storage far beyond Terabytes.
Therefore, quantization is implemented independently for each of the orthogonal subcarriers in
frequency domain where different possibilities arise: The simplest way would be to equalize the
subcarriers and do the quantization as in the previous chapter. Unfortunately, this approach is
not practical as will be shown in Sec. 7.1. An alternative is to treat the actual channel coefficient

1The effective SNR or SINR is obtained by converting each value into a mutual information and subsequent
averaging over all subcarriers. This average mutual information is than converted back into an effective value.
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as quantizer input, that is, quantization is optimized for the ensemble of channel coefficients.
Doing so leads to a higher dimensionality of the joint pmfs required by the IB algorithm. Fur-
thermore, the side information for Wyner-Ziv coding should cover channel knowledge which
further increases the dimensionality of the respective input pmf. The extra dimensions due to
additional random variables yield such a high cardinality that storage of these pmfs becomes
infeasible.2 As a consequence, this chapter proposes design approaches for suboptimal but fea-
sible quantizers using Information Bottleneck Graphs (IBGs) [LSB16]. These IBGs are used
to simplify the dimensionality and the cardinality of the respective pmfs, that is, one infeasible
IB problem is decomposed into several feasible problems. During the work on this chapter,
three publications have been originated which are concerned with different quantizer design ap-
proaches as well as perfect and imperfect channel knowledge [KK17a, KK17b, KK17c]. There
is a similar work in the literature which uses a more sophisticated relay to decode the received
vector and forward quantized LLRs [DSZ+11]. On the contrary, the following presented scheme
works without the need of a costly decoder keeping the goal of a relay, which uses solely integer
based signal processing, in mind.

The chapter is organized as follows: Sec. 7.1 introduces additional preliminaries like IBGs
which are basically factor graphs. Afterwards, Sec. 7.2 and Sec. 7.3 derive suitable quantizer
designs for perfect [KK17a, KK17c] and imperfect channel knowledge [KK17b], respectively.
Finally, simulation results in terms of achievable rates are presented in Sec. 7.4 before Sec. 7.5
concludes the chapter.

7.1 Preliminaries

As stated above, quantizer design for a state-of-the-art OFDM system is not straightforward:
In time domain, quantization is not feasible due to an exponentially growing storage complex-
ity caused by the channel memory. Therefore, quantization will be done in frequency domain
which requires an FFT before an independent quantization per subcarrier (cf. Fig. 7.1). The
theoretically optimal and intuitive way would be to equalize (cf. Sec. 2.5.2) each carrier and
design the quantizers as in the previous chapter for a range of relevant SNRs. Anyhow, such a
scheme cannot be practically implemented because the rate of each quantizer depends on the
instantaneous channel realization of each subcarrier which determines the SNR. Hence, the rate
of an OFDM symbol varies depending on the instantaneous vector channel.3 This scheme is
nevertheless theoretically treated in App. H and used as reference in the simulation results. The
alternative for practical implementation is to consider the channel coefficient or an equivalent

2The complexity here is huge but still far less complex than a comparable approach in time domain.
3To be honest, general random quantization and setting a specific rate for the IB algorithm, would avoid this

problem. However, despite numerical issues, this would increase run time complexity dramatically because a
bisection search has to be framed around the IB algorithm for each possible SNR (cf. Sec. 6.1).
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like the observed pilot symbol as an additional input to the quantizer (cf. Fig. 7.1). Doing so,
this quantizer is valid for the ensemble of channel coefficients (all possible SNRs) and can
be applied for all subcarriers which makes its output rate independent from the instantaneous
channel realization. Generally, this approach requires neither equalization nor channel estima-
tion which is a first step in the direction of a relay using solely integer based signal processing.
Nevertheless, explicit equalization before quantization has benefits as will be shown in Sec. 7.2
and Sec. 7.4. The entire relay processing chain is depicted in Fig. 7.1 whereby quantization

A/DỹR

A/Dỹp
R

FFT

. . .

FFT

. . .

Quant. P/S

...

Wyn.-Ziv Turbo enc.
∏

S/P QAM-Map.

IFFT

GI

x̃R

xR1
· · ·xR2 xRNFFT

yR ŷR

yp
R

...

Quant.

Figure 7.1: Relay Processing for CF with direct quantization of yR exploiting observed pilot yp
R.

is highlighted to be in a per subcarrier manner. Therefore, other carriers are only indicated by
dashed lines. For the sake of clarity, only the general approach of direct quantization is shown.
Anyhow, a second approach using explicit channel estimation and equalization before as in-
troduced in Sec. 2.5.2 will be investigated as well in Sec. 7.2. Just as in Sec. 6.2, Wyner-Ziv
source coding and the subsequent processing are only shown for the sake of completeness but
are not explicitly simulated. As the focus is on quantizer design, the same holds for the A/D
conversion and the FFT which are depicted to emphasize the need for a pre-quantization with an
A/D resolution of lad. To be precise, the analysis of this chapter is completely in the frequency
domain, that is, yR and yp

R are obtained according to the flat Rayleigh fading channel model in
Sec. 2.1.2. Although quantization in frequency domain is applicable independently along the
subcarriers with the same quantizer, the required pmf for the optimal design with an IB algo-
rithm would still require too much main storage (cf. Table 7.1). The reason is simply the high
number and cardinality of different dimensions in the required pmf especially when side infor-
mation is considered. Such a pmf and especially its factorization to reduce complexity can be
visualized with a factor graph as shown in the following. Afterwards, factor graphs are further
extended to obtain an Information Bottleneck Graph (IBG) to highlight IB optimized compres-
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x1 x2 x3 x4 x5 x6 x7

f1 f2 f3 f4

Figure 7.2: Exemplary factor Graph.

sion mappings [LSB16]. It is important to note that throughout the rest of this chapter notation
is done for one subcarrier because the resulting quantizer is applicable for all subcarriers.

7.1.1 Factor Graphs

In general, factor graphs are bipartite graphs known to be a graphical presentation of the factor-
ization of a global function. [KFL01, Ksc03]

F(v1, . . . , vn) =

J∏
j=1

f j(V j) withV j ⊆ {v1, . . . , vn} (7.1)

The function arguments vl of the global function F(v1, . . . , vn) are variable nodes which are usu-
ally drawn as circles. Factor nodes, usually depicted as squares, represent the local functions
f j(V j) which are only connected to a specific variable node if this node is an argument of the lo-
cal function f j. Fig. 7.2 illustrates an exemplary factor graph which represents the factorization
of global function F(x1, x2, x3, x4, x5, x6, x7) such that

F(x1, x2, x3, x4, x5, x6, x7) = f1(x1, x3, x4, x6) f2(x1, x5, x7) f3(x2, x4) f4(x6). (7.2)

In communications, factor graphs are very well known to describe, e.g. , LDPC codes to em-
phasize their decoding by message passing [KFL01, Ksc03]. The factor nodes in such codes
on graphs usually represent probabilities or related measures like LLRs that are passed as mes-
sages between factor and variable nodes. Revisiting Fig. 7.2 with the assumption of functions
being pdfs, one has the possibility to modify the graph to marginalize variables by merging,
e.g. , variable x6 with its connected factors f1 and f4 leading to the graph in Fig. 7.3 with
f14(x1, x3, x4) =

∑
x6∈X6

f1(x1, x3, x4, x6) f4(x6).
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Figure 7.3: Factor graph of Fig. 7.2 with Marginalization.

Pr{xS 1}
xS 1

Pr{yR|xS 1, hS R}

hS R

Pr{hS R}

yR

Pr{ŷR|yR, hS R}
ŷR
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Figure 7.4: Factor graph representation of the quantizer design for one subcarrier including the
compression mapping of the quantizer itself.

For the quantizer with mapping Pr{ŷR|yR, y
p
R} in Fig. 7.1 for example, the pmf Pr{xS 1, yR, y

p
R}

would be required in an IB algorithm if side information for Wyner-Ziv coding is omitted.
Factorizing this pmf yields

Pr{xS 1, yR, y
p
R} =

∑
hS R∈HS R

∑
xp∈Xp

Pr{yR|xS 1, hS R}Pr{yp
R|xp, hS R}Pr{xS 1}Pr{hS R}Pr{xp}

=
∑

hS R∈HS R

Pr{yR|xS 1, hS R}Pr{yp
R|xp, hS R}Pr{xS 1}Pr{hS R} (7.3)

where Xp has only one entry since the pilot is not actually random. Hence, the sum over all
xp ∈ Xp and Pr{xp} = 1 can be canceled. The pilot xp is even so notated as random variable
to visualize it in the factor graph in Fig. 7.4(b). As not only imperfect but also perfect chan-
nel knowledge is analyzed, yp

R is substituted by hS R which leads to the following pmf and its
factorization.

Pr{xS 1, yR, hS R} = Pr{yR|xS 1, hS R}Pr{xS 1}Pr{hS R} (7.4)

The pmfs Pr{yR|xS 1, hS R} and Pr{hS R} are assumed to be appropriately sampled from Gaussian
processes CN

(√
PS 1xS 1, |hS R|−2

)
and CN

(
0, d−αS R

)
with a resolution lad defined by the A/D con-

verters in Fig. 7.1. The respective factor graph for both perfect and imperfect channel knowl-
edge is depicted in Fig. 7.4 whereby the quantizer mapping Pr{ŷR|yR, hS R} (or Pr{ŷR|yR, y

p
R}) de-

livering ŷR is also included. Usually, factor and variable nodes could be placed as in Fig. 7.2. In
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Figure 7.5: Transformation of factor graph into simple IBG and further modification to consider
side information in a Wyner-Ziv coding manner.

Fig. 7.4 however, nodes are placed from a signal processing point of view with quantization as
the final step. So far, these factor graphs only visualize the statistics that are required to apply
the IB method. In the following, these graphs will be extended such that the compression factor
is highlighted to be obtained via an IB algorithm.

7.1.2 Information Bottleneck Graphs

Originally introduced by Lewandowsky et al. in [LSB16], Information Bottleneck Graphs
(IBGs) are a powerful tool to design cascaded quantizers for applications where optimal quan-
tizer design is not feasible due to complexity issues. An IBG is simply an extension of a factor
graph such that the flow of relevant information through a factor node is highlighted whereby
the resulting IBG is still a factor graph.

General Functionality

Whenever a factor node represents a compression mapping Pr{z|y} which has been optimized
by the IB method (cf. Sec. 6.1.1), it is depicted as a trapezoid instead of the usually used square.
Fig. 7.5 depicts how an IBG is obtained from a factor graph whereby the resulting IBG is still
a factor graph itself. It simply extends the graphical presentation to emphasize the compression
which can be considered as squeezing y = [y1, . . . , yN] through the bottleneck Pr{z|y} to obtain
z while keeping as much information as possible about the relevant variable x. Hence, such
factor nodes are called IB nodes whereby the relevant variable is written inside the trapezoid
and the compressed variable node is connected to the shortest edge of the trapezoid. All other
connected variables (circles) will be compressed into z according to Pr{z|y}, i.e. , multivariate
compression is generally possible. Extending the IBG in the middle of Fig. 7.5 by an additional
connection Yside, delivers the right one. This random variable represents the side information
and is therefore not declared as a variable node in the graph but simply visualizes that the re-
spective statistics are exploited within the IB algorithm. Algorithms 1–4 can be directly applied
to determine this mapping whereby the input pmf is directly given by all involved variables ex-
cept the resulting compression variable, i.e. , Pr{x, y} (without side information) or Pr{x, y, yside}
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Figure 7.6: IBG representation of factor graphs in Fig. 7.4.

(with side information). For the application of these algorithms, it is important to note that
multivariate compression (or as well multivariate side information) variables are stacked into a
vector, e.g. , y = [y1, . . . , yN].

Principal Graph for 3-Node Relay Channel

In Fig. 7.4, the statistics to apply the IB method are depicted as a factor graph which shall be now
transformed into an IBG. Therefore, the factor node representing the quantizer, more precisely,
its compression mapping, is replaced by an IB node (trapezoid with the relevant variable inside,
cf. Fig. 7.6). From this IB node in Fig. 7.6(a) one can see directly that equalization is inherently
applied because the compression mapping is optimized with respect to xS 1 which is indicated
inside the trapezoid. Furthermore, the connected side information (YD1 and HS D) illustrates
that the optimization exploits the statistics of the destination’s receive signal as well as the cor-
responding channel coefficient in a Wyner-Ziv source coding manner (cf. Sec. 6.1.2), i.e. , the
compression rate r is lowered because YD1 shares mutual information with XS 1 which increases
with knowledge about HS D. The IBG in Fig. 7.6(b) is very similar to Fig. 7.6(a): It is only
extended by the lower branch representing pilot symbol xp and corresponding receive signal yp

R

whereby yp
R is now connected to the compression factor Pr{ŷR|yR, y

p
R} instead of hS R. As a con-

sequence, the IB node implicitly includes channel estimation additionally to equalization. Sim-
ilarly as in Fig. 7.6(a), the compression mapping in Fig. 7.6(b) exploits side information HS D

which is still assumed to be perfect instead of noisy for the sake of comparability (cf. Sec. 7.3).
In either case (perfect or imperfect channel knowledge), direct application of the IB method is
not feasible due to the overwhelming cardinality (dimensionality) of the joint pmf which is re-
quired in the IB algorithm. Considering for instance Fig. 7.6(a), Pr{xS 1, yR, hS R, yD1, hS D} would
be of interest (all involved or connected variables except output). Due to the complex valued na-
ture of all variables, there are totally 10 dimensions, 8 of them quasi-continuous with resolution
2lad . The cardinality 2m of xS 1 is directly given by modulation order m. In total, the cardinality is
28·lad+m which is far away from storable in todays hardware, e.g. , assuming even a quite coarse
resolution of lad = 6 and m = 2, Pr{xS 1, yR, hS R, yD1, hS D} would already have 250 entries which
would need 8 Petabyte of storage (RAM) in double values (cf. Table 7.1). Therefore, different
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simplifying approaches are introduced and compared in the following, starting with perfect and
followed by imperfect channel knowledge.

7.2 Quantizer Design for Perfect Channel Knowledge

In this section, three quantizer design approaches will be considered whereby different approxi-
mations are used: In the first approach, cascading is used to decouple and reduce the joint cardi-
nality of the pmf that would be required in Fig. 7.6(a). In particular, one IB node is decomposed
into several IB nodes with respective lower complexity. Cascading makes the compression sub-
optimal because the individual optimization of several IB nodes has less degrees of freedom
than the joint optimization of one IB node. Additionally, marginalization is used to exploit only
a part of the side information for the sake of feasibility (cf. Sec. 7.2.4). The second approach,
uses explicit equalization before quantization instead of using a cascaded quantizer which al-
lows to independently quantize real and imaginary part. Such a decomposition is obviously
optimal except for the marginalization which is still required to keep exploitation of the side
information feasible (cf. Table 7.1). Anyhow, having the goal of a solely integer based signal
processing in mind, the implicit approach is investigated for the sake of comparing the final
performance. Finally, the explicit approach is cascaded as well to reduce cardinality further to
exploit the full side information without marginalization.

7.2.1 Implicit Equalization with Partial Side Information

The originally optimal compression mapping in Fig. 7.6(a) (one IB node jointly optimized) can
be cascaded according to Fig. 7.7 yielding three consecutive stages (4 IB nodes individually
optimized) which are highlighted with different colors. Firstly, yR is split into real y′R and imag-
inary part y′′R using the definitions x̄′ = Re(hS RxS 1) = x′S 1h′S R − x′′S 1h′′S R and x̄′′ = Im(hS RxS 1) =

x′S 1h′′S R + x′′S 1h′S R which serve as respective relevant variables. The idea of this two first stage
quantizers is to preserve as much information as possible about channel coefficient and transmit
signal. In this way, the intermediate compressions y′R → w1 and y′′R → w2 lower the complexity
of the second stage (cf. Table 7.1). This second stage IB node represents an inherent implicit
equalization because it takes the channel coefficient together with w1 and w2 which are infor-
mative about both hS R and xS 1 but preserves only the relevant information about xS 1. The third
stage, only processes the side information ȲD1 which is the equalized received signal at the des-
tination. As equalization at the destination is done in any case, it does generally not matter if
YD1 (and HS D) or ȲD1 (and |HS D|) are exploited. The latter however is preferable if there is a
need for marginalization: Despite the cascading into different stages, the complexity of the last
stage would still be too large if the full side information is considered (cf. Sec. 7.2.4). Thus, it is
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Figure 7.7: IBG with cascading into 3 stages considering part of side information.

more suitable to consider ȲD1 and marginalize over |HS D| than the other way round because ȲD1

shares more mutual information with XS 1 than YD1 whenever information is modulated into the
phase. The respective pmfs for the IB optimization of the IB nodes are given in the following
while the corresponding complexity is shown in Table 7.1.

Stage 1

If the relevant information in the first stage would be xS 1 as usual, y′R = x′S 1h′S R − x′′S 1h′′S R + n′R
and y′′R = x′S 1h′′S R + x′′S 1h′S R + n′′R could not be compressed independently since both depend
on real x′S 1 and imaginary part x′′S 1 of the relevant variable. That is why x̄ = xS 1hS R, split
into x̄′ = x′S 1h′S R − x′′S 1h′′S R and x̄′′ = x′S 1h′′S R + x′′S 1h′S R, is defined as relevant information. As
the respective real and imaginary parts, x′S 1 and x′′S 1, h′S R and h′′S R as well as n′R and n′′R , are
independent and identically symmetrically distributed, the pmfs Pr{x̄′, y′R} and Pr{x̄′′, y′′R} and,
thus, quantizer mappings Pr{w1|y′R} and Pr{w2|y′′R} are identical too. The required input pmf for
the real part is

Pr{x̄′, y′R} = Pr{y′R|x̄′}Pr{x̄′} (7.5)

with Pr{y′R|x̄′} being appropriately sampled from a Gaussian process N
(√

PS 1 · x̄′, 1
2

)
and

Pr{x̄′} =
∑
XS 1

Pr{x̄′|xS 1}Pr{xS 1}

=
∑
XS 1

( (
Pr{h′S R} · x′S 1

) ∗ (Pr{h′′S R} · x′′S 1
) )

Pr{xS 1} (7.6)

where Pr{x̄′|xS 1} is obtained similarly as before from a Gaussian process N
(
0, d−αS R

2 |xS 1|2
)
. This

becomes clear when analyzing x̄′ = x′S 1h′S R − x′′S 1h′′S R given that xS 1 is known: Both summands

are Gaussian processes (with N
(
0, d−αS R

2

)
, cf. Sec. 2.1.2) scaled according to the given values of
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x′S 1 and x′′S 1, that is, multiplying variances d−αS R
2 with |x′S 1|2 and |x′′S 1|2, respectively. Summing two

Gaussians leads again to a Gaussian whereby the individual variances sum up as well.

Stage 2

For the second stage IB node,

Pr{xS 1, hS R,w1,w2} =
∑
Y′R

∑
Y′′R

Pr{w1|y′R}Pr{w2|y′′R}Pr{y′R|xS 1, hS R}Pr{y′′R |xS 1, hS R}Pr{hS R}Pr{xS 1}

(7.7)

is needed where Pr{y′R|xS 1, hS R} as well as Pr{y′′R |xS 1, hS R} are sampled from a Gaussian process
N

(
hS R
√

PS 1xS 1,
1
2

)
. The simplification Pr{w1|y′R} = Pr{w1|y′R, hS R, xS 1} holds due to Markov

property that the quantizer output depends only on the quantizer input (cf. Sec. 6.1).

Stage 3

To optimize the third stage with the IB algorithm,

Pr{xS 1, t, ȳD1} = Pr{t|xS 1}Pr{ȳD1|xS 1}Pr{xS 1} (7.8)

is of interest, where ȳD1 and t are independent when xS 1 is known due to transmission over
independent links. In (7.8), Pr{t|xS 1} = Pr{xS 1 |t}Pr{t}

Pr{xS 1} is inherently known from the IB optimization
of the previous stage and Pr{ȳD1|xS 1} is determined via marginalization.

Pr{ȳD1|xS 1} =
∑

|hS D |∈HS D

Pr{ȳD1||hS D|, xS 1}Pr{|hS D|} (7.9)

According to equalization as in (2.13c), Pr{ȳD1||hS D|, xS 1} is sampled from a complex Gaussian
process CN

(√
PS 1xS 1, |hS D|−2

)
and Pr{|hS D|} from a Rayleigh process R

(
d−αS D

)
.

7.2.2 Explicit Equalization with Partial Side Information

In Sec. 7.2.1, equalization is done implicitly within an IB node with the advantage of no addi-
tional processing except an FFT which cannot be avoided.4 Due to phase rotation of the channel
however, I and Q component are not statistically independent and, therefore, cannot be com-
pressed independently. Applying equalization explicitly before quantization, recovers statistical

4Theoretically, the goal is a vector quantizer in time domain which would have lower complexity because
of sparing the FFT. Unfortunately, such an approach can neither determined nor implemented in state-of-the-art
hardware because the complexity is growing exponentially with the number of subcarriers.
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Figure 7.8: IBG with explicit equalization considering part of the side information.

independence of I and Q. Fig. 7.8 shows the modified IBG whereby the red box illustrates the
splitting into real and imaginary part. Hence, this quantization approach is optimal except for
the neglected side information due to marginalization of |HS D|. More precisely, the IB algo-
rithms have more degrees of freedom to optimize the quantizer mapping due to availability of
all contributing variables in the joint input pmf. The required input pmf for the IB optimization
is

Pr{x′S 1, ȳ
′
R, |hS R|, ȳ′D1} = Pr{ȳ′R|x′S 1, |hS R|}Pr{ȳ′D1|x′S 1}Pr{|hS R|}Pr{x′S 1}. (7.10)

where Pr{ȳ′R|x′S 1, |hS R|} is sampled appropriately from a GaussianN
(√

PS 1x′S 1,
|hS R |−2

2

)
and Pr{|hS R|}

from a Rayleigh process R
(
d−αS R

)
. Similar as in (7.9), Pr{ȳ′D1|x′S 1} is obtained via marginalization

with respect to |hS D| for the sake of feasibility.

Pr{ȳ′D1|x′S 1} =
∑

|hS D |∈HS D

Pr{ȳ′D1||hS D|, x′S 1}Pr{|hS D|} (7.11)

As only the real part is of interest here, Pr{ȳ′D1||hS D|, x′S 1} is sampled from N
(√

PS 1x′S 1,
|hS D |−2

2

)
.

7.2.3 Explicit Equalization with Full Side Information

So far the statistics of |HS D| have been neglected via marginalization for the sake of complexity.
Furthermore, it has been shown that explicit equalization allows independent quantization of
components I and Q which is feasible without cascades. Introducing cascades in branches I and
Q again as depicted in Fig. 7.9, enables consideration of side information |HS D| additionally
to ȲD1. Although the cascade leads certainly to a performance degradation, the use of the full
available side information may overcompensate this approximation loss. The respective input
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Figure 7.9: IBG with explicit equalization and cascading considering full side information.

pmfs for an IB algorithm starting with the first stage are as follows:

Pr{x′S 1, ȳ
′
R, |hS R|} = Pr{ȳ′R|x′S 1, |hS R|}Pr{|hS R|}Pr{x′S 1} (7.12a)

Pr{x′S 1,w1, ȳ′D1, |hS D|} = Pr{ȳ′D1||hS D|, x′S 1}Pr{|hS D|}Pr{x′S 1,w1} (7.12b)

7.2.4 Complexity

Comparing the different quantizer design approaches of this section to the optimal quantizer in
Fig. 7.6(a), a distinct complexity reduction in terms of cardinality becomes visible (cf. Table 7.1).
The complexity depicted in Table 7.1 refers to the cardinality (and also the corresponding RAM

Table 7.1: Complexity of Quantizer Design for Perfect Channel Knowledge

Optimal Approach #1 Approach Approach #3
Stage 1 Stage 2 Stage 3 #2 Stage 1 Stage 2

lad, lcv,m 28·lad+m 22·lad 22·lad+2·lcv+m 22·lad+lcv+m 23·lad+ m
2 22·lad+ m

2 22·lad+lcv+ m
2

lad = 8, lcv = 4, m = 2 7.4 · 1019 65536 67108864 4194304 33554432 131072 2097152
Main Storage 512 EB 512 KB 512 MB 32 MB 256 MB 1 MB 16 MB
lad = 6, lcv = 4, m = 2 1.1 · 1015 4096 4194304 262144 524288 8192 131072
Main Storage 8 PB 32 KB 32 MB 2 MB 4 MB 64 KB 1 MB

for implementation in double precision) of the respective input pmf of an iterative IB algo-
rithm where lad and lcv denote the resolution of the quasi-continuous variables (A/D conversion)
and the intermediate compression variables (cascading), respectively. These pmfs are functions
of all random variables involved with an IB node except the output (short edge of the trape-
zoid). The pmf Pr{xS 1, yR, hS R, yD1, hS D} to optimize the mapping Pr{ŷR|yR, hS R} of the principal
IB node in Fig. 7.6(a) for example, has a cardinality of 28·lad+m which arises from 4 quasi-
continuous complex variables yR, hS R, yD1 and hS D with A/D resolution lad in I and Q as well
as alphabet size 2m of the transmit signal. Obviously, such an optimal design is infeasible with
state-of-the art main storage which is in the range of Gigabytes instead of Peta- or Exabytes as
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for the exemplary parametrization in Table 7.1. In contrary, all above derived suboptimal design
approaches have a feasible storage need of a couple of Megabyte. The highest storage capacity
of 512 or 32 MB is required by the first approach for the IB node with implicit equalization in
the 2nd Stage. The storage complexity is mainly determined by the A/D resolution lad which is
with two different parametrizations lad = 8 and lad = 6 Bit shown in Table 7.1. The resolution
lcv of intermediate compression variables is set to lcv = 4 Bit which is beyond the intended range
of rates at the quantizer output. Although the physical limit of state-of-the-art main storage has
room for a couple of Gigabytes, the A/D resolution lad is not further increased because the run
time of an iterative IB algorithm would grow too large to obtain different quantizers (range of
SNRs and compression rates r) in a meaningful time. For the simulation results in Sec. 7.4, a
resolution of lad = 8 Bit is usually used except for the very complex IB node in the second stage
of the first approach. Finally, as the complexity is determined by the largest pmf of an approach,
the last design has not only the lowest complexity but also the lowest expectable performance
degradation (if the exploitation of the full side information overcompensates the decomposition
into cascades cf. Sec. 7.4).

7.3 Quantizer Design for Imperfect Channel Knowledge

Here, the approaches of the previous section will be extended such that the IB optimization takes
channel estimation errors into account. For the sake of clarity, the focus will be set to the general
influence of estimation errors as well as to the difference between implicit and explicit channel
estimation/equalization. Therefore, the following subsections extend Sec. 7.2.1 and Sec. 7.2.2.
Please note that hS D is assumed to be still perfectly known to ensure a fair comparison when
using a quantizer designed for perfect channel knowledge. In particular, Wyner-Ziv coding is
only theoretically considered via the achievable source coding rate r but not actually simulated:
Side information decreases due to noise in the estimated channel coefficient. This would lead
to a benefit when pragmatically using the quantizer, optimized for perfect channel knowledge,
because the simulation environment neglects errors occurring due to mismatched Wyner- Ziv
coding.

7.3.1 Implicit Channel Estimation and Equalization

The implicit approach as depicted in Fig. 7.10 corresponds to the one in Fig. 7.7. The first stage
is simply extended by two IB nodes compressing the received pilot signal yp

R to intermediate
compression variables wp1 and wp2 that are informative about real h′S R and imaginary part h′′S R of
the channel coefficient, respectively. These two IB nodes realize the implicit channel estimation,
the second stage realizes as before the implicit equalization, and the third stage incorporates the
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ŷR

Figure 7.10: IBG with cascading into 3 stages with implicit channel estimation and equalization.

side information according to Wyner-Ziv coding. It is important to note that due to inherent
compression of channel knowledge, the complexity is reduced (22·lad · 22·lcv · 2m → 24·lcv · 2m,
cf. Table 7.2) in the second stage of Fig. 7.10 compared to the IBG in Fig. 7.7 which has perfect
channel knowledge. The outer IB nodes in the first stage (cyan) and the IB node in the third
stage (green) are identical to the IB nodes (same color) in Fig. 7.7.5 The pmfs to determine the
new (blue) or modified (magenta) IB nodes are given in the following.

Inner IB Nodes (blue) of Stage 1

For the inner IB nodes in the first stage, due to symmetry of real and imaginary part, i.e. ,
Pr{h′S R, y

p
R
′} = Pr{h′′S R, y

p
R
′′}, the required pmf is

Pr{h′S R, y
p
R
′} = Pr{yp

R
′|h′S R}Pr{h′S R} (7.13)

where Pr{yp
R
′|h′S R} and Pr{h′S R} are sampled from Gaussian processesN

(√
PS 1h′S R,

1
2

)
andN

(
0, d−αS R

2

)
.

5Reuse of the third stage IB node implies perfect knowledge of hS D which is assumed to ensure a fair compar-
ison because actual Wyner-Ziv coding is not implemented.
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Figure 7.11: IBG with explicit channel estimation and equalization.

Stage 2 (magenta)

In the second stage, the IB algorithm needs

Pr {xS 1,w1,w2,wp1,wp2} =
∑

y′R∈Y′R

∑
y′′R∈Y′′R

Pr{w1|y′R}Pr{w2|y′′R}∑
hS R∈HS R

Pr{y′R|hS R, xS 1}Pr{y′′R |hS R, xS 1}Pr{hS R,wp1,wp2}Pr{xS 1}

(7.14)

where Pr{hS R,wp1,wp2} = Pr{h′S R|wp1}Pr{h′′S R|wp2}Pr{wp1}Pr{wp2} and the mappings Pr{w1|y′R}
as well as Pr{w2|y′′R} are inherently known from the previous stage.

7.3.2 Explicit Channel Estimation and Equalization

The explicit approach as depicted in Fig. 7.11 corresponds to the IBG in Fig. 7.8. The only
difference in the IB nodes is the consideration of ĥS R instead of hS R. The pmf to determine the
compression mapping which holds for both the upper and the lower IB node, is

Pr{x′S 1, ȳ
′
R, |ĥS R|, ȳ′D1} = Pr{ȳ′R||ĥS R|, x′S 1}Pr{|ĥS R|}Pr{x′S 1}

∑
|hS D |∈HS D

Pr{ȳ′D1||hS D|, x′S 1}Pr{|hS D|}

(7.15)

where, according to (2.13a) and (2.13b), Pr{ȳ′R||ĥS R|, x′S 1}, Pr{ȳ′D1||hS D|, x′S 1}, Pr{|ĥS R|}, and Pr{|hS D|}
are appropriately sampled from N

(√
PS 1x′S 1, |ĥS R|−2

)
, N

(√
PS 1x′S 1, |hS D|−2

)
, R

(
d−αS R + 1

)
, and

R
(
d−αS D + 1

)
, respectively
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7.3.3 Complexity

The complexity of the just derived two approaches does not differ from the analysis in Sec. 7.2.4
except for the first approach with implicit channel estimation and equalization: Firstly, the IB
node optimization in the second stage has lower complexity due to beforehand compression of
channel knowledge. Secondly, the IB nodes (inner), which compress the observed pilots yp

R
′ and

yp
R
′′ with respect to the channel coefficients h′S R and h′′S R, are added whereby their complexity

does not differ from that of the outer IB nodes.

Table 7.2: Complexity of Quantizer Design for Imperfect Channel Knowledge

Optimal Approach #1 Approach #2
Stage 1 (outer) Stage 1 (inner) Stage 2 Stage 3

lad, lcv,m 28·lad+m 22·lad 22·lad 24·lcv+m 22·lad+lcv+m 23·lad+ m
2

lad = 8, lcv = 4, m = 2 7.4 · 1019 65536 65536 262144 4194304 33554432
Main Storage 512 EB 512 KB 512 KB 2 MB 32 MB 256 MB
lad = 6, lcv = 4, m = 2 1.1 · 1015 4096 4096 262144 262144 524288
Main Storage 8 PB 32 KB 32 KB 2 MB 2 MB 4 MB

7.4 Achievable Rates for Compress and Forward Using Mul-
tiple Carriers

The rate allocation is done very similar as in Sec. 6.2.2 using (6.9) to determine the final rate
for CF. The partial rates RxR

b and RxS 2
b are as well obtained as in Sec. 2.4 with the only difference

of considering effective SNRs which are obtained via averaging the mutual informations of all
subcarriers. More precisely, the individual carrier-SNRs are converted into a mutual information
and the average mutual information is then converted back into an effective SNR. The broadcast
rate RxS 1

b is obtained with an extra simulation that contains the quantizers obtained with respect
to the different approaches. This simulation has the same functionality as the one shown in
Fig. 6.6 but is extended to an OFDM system (cf. Sec. 2.5) with NFFT = 1024 subcarriers and a
guard interval of length NGI = 256. Again, a line setup with equal transmit power at all nodes
is assumed. The SNR is always that of the direct link either with respect to individual transmit
power per node or sum transmit energy.
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7.4.1 Perfect Channel Knowledge

Different Quantizer Design Approaches

To investigate the performance of the different quantizer design approaches, Fig. 7.12 shows the
total achievable rate RCF versus SNR (power per node) on the direct link for orthogonal MAC.
Despite the three beforehand derived approaches which design a quantizer for the ensemble of
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reference with eff. SNR

Figure 7.12: Total achievable rates for CF versus SNR (individual power) on direct link at
d = 0.8 with α = 4 comparing different quantizer approaches for orthogonal channel access.

channel coefficients hS R, Fig. 7.12 shows additionally results (red filled circles) for the approach
described in App. H which is used as a theoretical reference scheme. The SNR resolution is
coarser due to the much higher effort to simulate each point in detail. Anyhow, at the comparable
points, the best of derived quantizer designs has more or less equal performance as the refer-
ence scheme. Comparing the derived quantizer designs among themselves, the first approach
(cf. Fig. 7.7) with implicit equalization performs obviously worst except for SNR ∈ [2, 3.4].6

This bad performance is reasoned in the cascading which splits the original IB node with its full
degrees of freedom into three less complex IB problems with an also less efficient compression
due to reduced degrees of freedom during the optimization. Hence, explicit equalization is a key
issue and provides the smallest performance degradation. The reason is simply the dimension-
ality reduction (without approximation) due to independent quantization of I and Q components
(cf. Fig. 7.8). Furthermore, independent quantization of I and Q enables exploitation of the full
side information by reintroducing cascading in the I and Q branches (cf. Fig. 7.9). The results
in Fig. 7.12 reveal that consideration of the full side information compensates the suboptimal
quantization due to cascades in branches I and Q. However, the gain in terms of performance is

6The reason for this exceptions is explained in the end of Sec. 7.4.2.
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very small compared to the improvement obtained by explicit equalization. As a last point, one
may think that a further joint compression of the independently quantized components I and Q
could lead to an improvement since both quantizers use the channel magnitude |hS R| as input.
This is not the case because the IB optimization focuses on preserving relevant information
about xS 1 and does not care about the actual channel amplitude. In other words, there are differ-
ent combinations of |hS R| and yR yielding a specific compression index ŷR subject to a specific
relevant information. Practically, relevant information is expressed by probability Pr{xS 1|ŷR}
which does neither directly depend on nor differentiate between yR and |hS R|, e.g. , whether the
channel is strong and the observation very noisy or the other way around.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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1.4
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R C
F
→
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Figure 7.13: Total achievable rates for CF versus SNR (sum energy) on direct link at d = 0.8
with α = 4 comparing non-orthogonal and orthogonal channel access for exploitation of total
side information.

Non-orthogonal versus Orthogonal Channel Access

Fig. 7.13 shows the achievable CF rates for the quantizer design which exploits the full side in-
formation. Similar as in the last chapter, the non-orthogonal scheme does not pay off compared
to the orthogonal in the low SNR range but does outperform it usually for moderate and high
SNR. The reason is again the SNR on the direct link which is too low to allocate one of the
available MCSs as depicted in Fig. 2.22. In some cases, the non-orthogonal scheme does not
outperform the orthogonal due to the higher sum energy consumption which is reasoned in the
discreteness of transmission and source coding rates.
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7.4.2 Imperfect Channel Knowledge

To discuss the influence of imperfect channel knowledge on the achievable rate RCF , Fig. 7.14
shows the results for quantization as in Fig. 7.8 (optimized for perfect channel knowledge)
for both perfect (blue circles) and imperfect channel knowledge (blue dashed squares). Further-
more, the adapted quantizer approaches with either implicit (cf. Fig. 7.10) or explicit (cf. Fig. 7.11)
estimation/equalization are shown in green (dashdotted pluses) and red (dashdotdotted crosses),
respectively. The main observation in Fig. 7.14 is the distinct rate loss caused by the channel es-
timation errors which is present for both the mismatched and the adapted quantizer. Hence, the
visible gain due to this adaptation is also very limited. The reason is simply that channel estima-
tion errors in either case reduce the mutual information between ŷR and xS 1: In the mismatched
case, the error occurs at the quantizer input because |hS R| , |ĥS R| which leads to an error in
Pr{xS 1|ŷR} at the destination decoder. In the adapted case, the quantizer is matched but less ef-
ficient due to the additional noise in |ĥS R| which decreases the ratio of preserved information to
source coding rate. Thus, the forwarding of ŷR to the destination requires more time or provides
less information. Either way the totally achievable rate RCF is degraded. In the low SNR range,
the difference between these two different errors is visible in the achievable rate, that is, a mis-
matched quantizer is less suited than the adapted which is expectable. Furthermore, as expected,
the adapted quantizer design with explicit estimation and equalization performs best in this SNR
regime. For higher SNRs however, the performance of all approaches is very similar except
for the approach with cascades (dashed green pluses). Hence, even a mismatched quantizer
scheme performs well and sometimes slightly better than the expected optimal design (dashed
red crosses). These small variations in the achievable rate are reasoned in the artificially created
discrete range of source coding rates r which limit the degrees of freedom in (6.9).7 More pre-
cisely, due to the restriction to deterministic quantizers, r depends only on the cardinality |ŶR| of
ŷR and the specific quantizer design according to an IBG. Hence, all quantizer design approaches
have different sets of available rates r according to either r = H(ŶR|ȲD1),∀|ŶR| ∈ {2, · · · , 16} for
complex compression or r = H(Ŷ ′R|Ȳ ′D1) + H(Ŷ ′′R |Ȳ ′′D1),∀|Ŷ′R| = |Ŷ′′R | ∈ {2, · · · , 16} for indepen-
dent compression of I and Q. These available rates r are shown in the last plot of Fig. 7.14 for
|Ŷ′R| = |Ŷ′′R | ∈ {2, · · · , 5} and reveal that the slightly better performance of the unadapted quan-
tizer is only caused due to the possibility to pick a slightly smaller r (3rd plot) which allows a
slightly higher τ (4th plot). Please note that this effect can only occur when a jump to a better
transmission rate RxS 1

b (2nd plot), which are constant in a specific SNR range, is not possible.
The same holds for the green curve which is not plotted in all subplots for the sake of clarity.

7The same is true for the transmission rates that are determined by the MCSs. Anyhow, this is not relevant here
because all quantizer approaches are simulated with the same BICM setup.



108 CHAPTER 7 QUANTIZER DESIGN FOR CF OVER MULTIPLE CARRIERS

0.4

0.6

0.8

1

1.2

1.4

R C
F
→

perf. ch. knowl.
unadapted quant.
expl. est & equal.
impl. est & equal.

1

1.5

R
x S

1
b
→

2

4

r
→

0.6

0.7

0.8

0.9

τ
→

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

2

3

4

5

SNR in dB→

r
→
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Figure 7.14: Total achievable rates for CF versus SNR (individual power) on direct link at
d = 0.8 with α = 4 comparing different quantizer approaches for orthogonal channel access.
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7.5 Discussion

In contrary to all previous chapters which consider single carrier transmission according to an
AWGN channel model with an attenuation coefficient due to path-loss, this chapter has consid-
ered multi-carrier transmission with Rayleigh fading subcarriers to investigate the influence of
randomly changing channel coefficients on the quantizer design. There are two possibilities to
exploit the channel knowledge during quantization: On one hand, equalization may be applied
before quantization whereby the channel influence is present in the SNR per carrier for which
the quantizer is designed as in the previous chapter. On the other hand, the channel coefficient
may be considered as additional input, that is, quantization is designed for the ensemble of
possible channel coefficients. Both approaches have their drawbacks and benefits and are gen-
erally infeasible. The first case is not implementable using deterministic quantization due to
dependence of the compression rate on the instantaneous vector channel realization. Random
quantization could avoid this issue but is not feasible due to an additionally required bisection
search. Either way deterministic quantization is preferable since it can be implemented straight-
forward as LUT. Hence, quantizers for the ensemble of channel coefficients have been derived
while the other approach has been used as reference. As quantizer design for the ensemble of
channel coefficients is generally too complex due to storage incapability of the required pmfs,
IBGs have been used to find suboptimal but feasible quantizer designs. A couple of approaches
with differing approximations were derived for perfect and imperfect channel knowledge and
compared in terms of simulation results. According to these results, explicit equalization should
be applied before quantization to achieve a more efficient compression and, thus, a better total
performance. Furthermore, it could be shown that exploitation of the full side information in-
stead of marginalizing the channel amplitude at the cost of cascading is preferable and performs
equally good as the reference scheme. Finally, imperfect channel knowledge degrades the per-
formance as expected. However, adapting the quantizer design to the statistics of the channel
estimation errors yields only a significant improvement for low SNRs. In the high SNR regime,
unadapted quantizers perform very similar.





Chapter 8

Conclusion

Two very common relay protocols, Decode-and-Forward (DF) and Compress-and-Forward (CF)
[CE79, KGG05, HMZ05], have been studied from a practical point of view: On one hand, the-
oretically neglected imperfections due to practical implementation like estimation errors have
been considered. On the other hand, the question of how to implement specific signal processing
steps has been addressed. In particular, the actual quantizer design for CF, which is only mod-
eled as quantization noise in the information theoretic analysis in Ch. 3, has been accomplished
and evaluated. Despite some information theoretic results in Ch. 3, Ch. 4 and Ch. 5, simulation
results have been determined for a Bit Interleaved Coded Modulation (BICM) system using
state-of-the-art coding and modulation techniques (turbo coding, Quadrature Amplitude Modu-
lation (QAM)). As a practical matter, half-duplex relays have been considered which enables to
differentiate between general non-orthogonal and orthogonal channel access in the second time
slot: The relay may transmit either alone (orthogonal access) or jointly with the source (non-
orthogonal access) which requires more complicated signal processing. Both channel access
schemes have been compared throughout the work with respect to individual transmit power
per node as well as sum sum energy.

The main part of Ch. 3 reviews information theoretic results from the literature [KGG05,
HMZ05,Wei12] which reveal a huge gain of non-orthogonal channel access towards orthogonal
access for DF whenever distributed beamforming is reasonable, that is, source-destination and
relay-destination link have comparable quality. If beamforming is not meaningful, this gain is
still moderate for an individual power constraint as it is usually considered in literature. At the
end of Ch. 3 however, it has been shown that, for an individual and a sum energy constraint, this
gain is only visible for distributed beamforming but vanishes otherwise [KK15a]. Motivated
by transmission strategy of the source in the Multiple Access (MAC) phase to either apply
distributed beamforming, superposition coding, or a mixture of both, Ch. 4 has generalized
this information theoretic concept into a multilevel code. Due to the superposition nature of
the relay channel, superposition modulation [Wo11] was used to create the desired mapping.
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The usually two bit levels have been furthermore extended to arbitrary many layers to exploit a
shaping gain [DRU97] which allows to approach the information theoretically achievable rate.
Moreover, bit level design was adapted such that the resulting joint mapping of two bit streams
at the destination follows a specific power allocation scheme presented in Sec. 2.3.4. As a
consequence, the destination can demap both bit streams at once with low complexity instead
of applying successive interference cancellation. This adapted superposition multilevel code
performs almost as well as without the restriction but cannot be applied for each imaginable
scenario [KK15b].

The next topic which has been discussed, is imperfect phase knowledge which is necessary
to apply distributed beamforming. More precisely, the source must know the channel phase of
the relay’s transmit signal to ensure a constructive superposition at the destination. In a practical
usually noisy system, phase estimation errors will occur and degrade the performance. The aris-
ing question is how strong this impact is and up to which point beamforming is still reasonable.
Until now, phase errors have been modeled either as negligible or uniformly distributed which
disables beamforming [KGG05]. In Ch. 5, a better suited model for phase errors based on a
Phase Locked Loop (PLL) has been introduced and used to investigate the impact of such er-
rors on the achievable rate for both information theoretic and simulation results: As expectable,
phase errors degrade the performance in dependence of the Signal to Noise Ratio (SNR) of a
first order PLL. If this SNR is low, severe phase errors cause disabling of distributed beamform-
ing while for high SNR, distributed beamforming still pays off with only minor degradation.
Simulation results have mainly confirmed these insights [KK15c]. However, due to the limited
range of Modulation and Coding Scheme (MCS) especially in the low SNR regime, orthogonal
channel access may be preferable when there is no suitable MCS to transmit an additional su-
perposed signal from the source, i.e. , when the rate of the smallest MCS already exceeds the
virtual capacity.

The last two chapters have dealt with quantizer design for CF whereby Ch. 6 has con-
sidered path loss attenuated Additive White Gaussian Noise (AWGN) links and Ch. 7 fre-
quency selective Rayleigh fading channels decomposed into multiple carriers via Orthogonal
Frequency Division Multiplexing (OFDM). In Ch. 6, the Information Bottleneck (IB) method
[TPB99, Slo02, ZKBW09a, ZBW12, Zei12] has been used to design optimal quantizers for the
given setup which are implemented as Look-Up-Tables (LUTs) in a BICM system. The sim-
ulation results confirm functionality and a well performance especially when compared to the
same results for DF [KK16]: CF is indeed superior when the source-relay link is the bottleneck
of the system. Insights with respect to channel access are similar as for DF. In Ch. 7, the plain
IB method cannot be directly applied as in Ch. 6 because the implementation would require far
too much storage. Thus, Information Bottleneck Graphs (IBGs) [LSB16] have been introduced
to make quantizer design feasible. Different approximations were used to derive three quantizer
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designs whose performance has been compared again via simulation results [KK17a, KK17c].
It could be shown that all approaches work and that explicit equalization before quantization
yields the best performance comparable to the reference scheme. Finally, imperfect channel
knowledge has been investigated [KK17b]: Results reveal that channel estimation error statis-
tics should be considered in the quantizer design, at least for high noise variances. Again,
explicit channel estimation and equalization yields better results.
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Appendix

A Entropy and Mutual Information

The statistical measures entropy and mutual information are basic concepts of information the-
ory. The concept of entropy is a measure of uncertainty either for a single random variable or
multiple variables, whereby the latter case is distinguished into joint and conditional entropy.
In addition, entropy is defined on discrete random variables, while the same concept is known
as differential entropy on continuous variables. Mutual information is the information that two
or more random variables share and can be considered as the reduction of uncertainty of a ran-
dom variable due to knowledge about the other. Proofs and detailed derivation of the following
definitions can be found in [CT91].

A.1 Entropy

Suppose X is a discrete random variable with probability mass function (pmf) Pr{x} and alphabet
x ∈ X. Then, the entropy of X is defined as

H(X) = −E
{
log2 Pr{x}}

= −
∑
x∈X

Pr{x} log2 Pr{x} (A.1)

As the logarithm is of base 2, the unit of entropy is bits. Entropy only depends on the statistics
of X and is literally the negative expectation of the logarithm of its pmf. Maximum entropy,
which is the highest uncertainty about X, is achieved for a uniform distribution. In this context,
the uncertainty is a measure about the average number of bits that are needed to describe the
random variable. That is why a uniformly distributed random variable cannot be compressed
without loss.
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A.2 Joint and Conditional Entropy

The joint entropy of a pair of random variables is defined in a similar way as for a single one.

H(X,Y) = −E
{
log2 Pr{x, y}}

= −
∑
x∈X

∑
y∈Y

Pr{x, y} log2 Pr{x, y} (A.2)

For the entropy of Y given X, again the negative expected value of logarithm of the correspond-
ing pmf is taken.

H(Y |X) = −E
{
log2 Pr{y|x}}

= −
∑
x∈X

∑
y∈Y

Pr{x, y} log2 Pr{y|x} (A.3)

From these two quantities, the chain rule of entropies appears to be

H(X,Y) = H(Y |X) + H(X) (A.4)

simply by using logarithmic law log2 Pr{x, y} = log2 Pr{y|x} + log2 Pr{x} and taking expectation
of both sides. Generalization to more than two random variables yields

H(X1, X2, · · · , Xn) =

n∑
i=1

H(Xi|X1, X2, · · · , Xi−1). (A.5)

A.3 Mutual Information for Discrete Random Variables

As illustrated in Fig. A.1, mutual information I(X; Y) denotes the information that one random
variable X has about another Y and vice versa, that is, it is symmetric. Mathematically, its
definition is

I(X; Y) =
∑
x∈X

∑
y∈Y

Pr{x, y} log2
Pr{x, y}

Pr{x}Pr{y} (A.6)

where the knowledge of Y or X reduces the uncertainty about X or Y , respectively. Obviously,
the mutual information I(X; X) = H(X)−H(X|X) = H(X) of a random variable with itself is the
entropy of that variable. Hence, H(X) is the mean information of the source, from which the
uncertainty H(X|Y) (also known as equivocation) of the source given the observed output has
to be subtracted. Due to mutuality, one can also subtract the irrelevance H(Y |X) from the mean
information H(Y) of the sink which contains the irrelevant noise. Extending (A.6) by condition
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I(X; Y)

H(Y |X)

H(X|Y)

H(X)

H(Y)

Figure A.1: Visualization of mutual information is difference of entropies.

on Z delivers the conditional mutual information.

I(X; Y |Z) = H(X|Z) − H(X|Y,Z) (A.7a)

= H(Y |Z) − H(Y |X,Z) (A.7b)

= H(Y |Z) + H(X|Z) − H(X,Y |Z) (A.7c)

=
∑
x∈X

∑
y∈Y

∑
z∈Z

Pr{x, y, z} log2
Pr{x, y|z}

Pr{x|z}Pr{y|z} (A.7d)

Finally, ensuing from the chain rule of entropies, the chain rule for mutual information reads as
follows.

I(X1, X2, · · · , Xn; Y) =

n∑
i=1

I(Xi; Y |X1, X2, · · · , Xi−1) (A.8)

A.4 Differential Entropy

The differential entropy for continuous random variables is very similar defined as the entropy
of discrete random variables. As continuous random variables, e.g. , X with probability density
function (pdf) p(x) generally have an unlimited support, e.g. , X, the sums in (A.1) change to
integrals to obtain differential entropy.

h(X) = −
∫
X

p(x) log2 p(x)dx (A.9)

It is important to note that in contrary to the entropy for discrete random variables, differen-
tial entropy can be negative and may also not exist, e.g. , if the integral or a pdf do not exist.
Similarly as before, joint and conditional differential entropies are defined as

h(X1, X2, · · · , Xn) =

∫
p(x1, x2, · · · , xn) log2 p(x1, x2, · · · , xn)dx1dx2 · · · dxn (A.10)
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and

h(X1|X2, · · · , Xn) =

∫
p(x1, x2, · · · , xn) log2 p(x1|x2, · · · , xn)dx1dx2 · · · dxn (A.11)

respectively. The corresponding chain rule is

h(X1, X2, · · · , Xn) =

n∑
i=1

h(Xi|X1, X2, · · · , Xi−1). (A.12)

A.5 Relative Entropy

The concept of relative entropy or Kullback-Leibler distance is a measure of the similarity of
two distribution functions. In other words, it is the inefficiency of describing a random variable
X with pdf q(x) instead of the true pdf p(x).

DKL (p||q) =

∫
x∈X

p(x) log2
p(x)
q(x)

dx (A.13)

The relative entropy DKL (p||q) denotes then the number of additional Bits that are necessary to
describe x when using q(x) instead of p(x). The same principle can also be applied to discrete
random variables by substituting integrals by sums. Moreover, the concept can be extended
easily to joint or conditioned pdfs or pmfs. In Ch. 6 for example the following conditioned
Kullback-Leibler distance is required.

DKL (Pr{x|y}||Pr{x|z}) =
∑
x∈X

Pr{x|y} log2
Pr{x|y}
Pr{x|z} (A.14)

A.6 Mutual Information for Continuous Variables

The (conditional) mutual information for continuous variables and its chain rule are defined in
the same way as for discrete variables: Simply by replacing entropies by differential entropies.

I(X; Y) =

∫
X

∫
Y

p(x, y) log2
p(x, y)

p(x)p(y)
dxdy (A.15a)
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A.7 Differential Entropy of Normal Distribution

The differential entropy of a normal distribution is quite important in information theory because
it maximizes differential entropy given an average power constraint, i.e. , variance limited. For

a random variable X ∼ p(x) = 1√
2πσ2

X

e
−x2

2σ2
X , the differential entropy using natural logarithm is

h(X) =
1
2

log2(2πeσ2
X) (A.16)

Following a similar derivation, the differential entropy of multivariate normal distributed vari-
ables X1, · · · , Xn ∼ Nn(µ,R) becomes

h(X1, · · · , Xn) =
1
2

log2 ((2πe)n det R) , (A.17)

whereby a complex Gaussian denotes a special case: Let N be a complex Gaussian random vari-
able denoting AWGN, i.e. , a realization n follows CN(0, σ2

N) which is equivalent toN2(0,RNN)
with RNN = 1

2σ
2
NI (I denotes identity matrix).

h(N) = log2 πeσ2
N (A.18)

B Random Binning as in Wyner-Ziv Coding

A general explanation of random binning for Wyner-Ziv coding can be found in [EK12]. Here
random binning will be explained for CF as introduced in Sec. 3.3.3. The relay has received yR

according to (3.15a) and compresses it to ŷR while the destination has already received yD1 ac-
cording to (3.15b) which is correlated to ŷR. As the focus is on the concept of random binning,
let us assume a strongly simplified toy example where xS 1 is BPSK modulated and the com-
pression yR → ŷR is a simple uniform quantization with 4 levels ŶR = {1, 2, 3, 4} (cf. Fig. A.2)
which is typically not optimal (cf. Ch. 6).1 Usually, the quantized signal ŷR ∈ {1, 2, 3, 4} would
have the rate r̃ = H(ŶR) but, due to the side information YD1 at the destination, this rate can be
lowered to r = H(ŶR|YD1) with the help of random binning (Wyner-Ziv coding). Please note
that knowledge about YD1 is only required at the Wyner-Ziv source decoder. Table B.1 shows
an arbitrary binning to visualize the rate reduction exploiting side information. In particular, the
quantization indices ŷR = 1 and ŷR = 4 are grouped into the same bin B with index b = 1 while
ŷR = 2 and ŷR = 3 fall into B(b = 2). Forwarding b ∈ {1, 2} is obviously possible with 1 Bit

1Please note that ŷR is not a representative but only a compression index which has to be appropriately inter-
preted, e.g. , with the probability Pr{xS 1|ŷR} as in Ch. 6.
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Figure A.2: pdfs of yR and yD1 for BPSK input with SNRs (3.9, 0dB) according to a line setup:
Source, relay, and destination are at positions dS = 0, dR = 0.8, and dD = 1 with pathloss
exponent α = 4, transmit power PS 1 = 1 and noise power N0 = 1.
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which is less than H(ŶR) ≈ 2 (ŷR is almost uniformly distributed). The decoding at the destina-
tion is very simple: Depending on yD1 > 0 or yD1 < 0 and b = 1 has been received, ŷR is either 1
or 4, respectively. That is why all ŷR have been grouped in a mirrored fashion. Please note that
the scheme in Table B.1 is not optimal (and may cause an information loss) but serves only the
purpose of illustration. In fact, a whole vector of length o of indices ŷR is entropy-encoded with
rate r̃ to 2or̃ sequences with index s. Afterwards, these indices s ∈ {1, 2, · · · , 2oR} are uniformly
distributed among 2Mr bins B(b) where r ≤ r̃.

Table B.1: Simple Wyner-Ziv coding scheme using random binning.

B(b = 1) B(b = 2)
ŷR = 1 ŷR = 4 ŷR = 2 ŷR = 3

yD1 > 0 • •
yD1 < 0 • •

C Achievable Rates for Discrete Input

C.1 AWGN Channel

As digital communication systems use discrete modulation alphabets, the achievable rate of an
AWGN channel for a specific discrete input is considered. Therefore, mutual information is
split into the difference of input entropy and conditional input entropy.

I(X; Y) = H(X) − H(X|Y) (C.19)

For common digital modulations schemes, H(X) can be very easily determined especially for
uniform distributions. The second term however has to be evaluated numerically, e.g. , by ran-
domly generating realizations of x and y according to (2.1) and calculating

Pr{x|y} =
p(y|x) Pr{x}∑

x∈X p(y|x) Pr{x} , (C.20)

where p(y|x) is a shifted Gaussian CN(h
√

Px, 1) and the denominator nothing else than normal-
ization.

C.2 Max Flow Min Cut Sets for Relay Channel

The achievable rate for DF (cf. (3.13)) can only be solved analytically for the Gaussian relay
channel which implicates a Gaussian distributed input (cf. (3.28)). For a practical scheme with
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digital modulation however, the input alphabet Pr{xS 1, xS 2, xR} is always discrete and, hence,
(3.13) can only be solved numerically . According to (3.13), 4 information terms are of inter-
est, where I(XS 1; YR) and I(XS 1; YD1) are Point-to-Point (P2P) transmissions as in Sec. 2.2 and
I(XS 2; Ynon

D2 |XR) is, according to chain rule, included in

I(XS 2, XR; Ynon
D2 ) = I(XR; Ynon

D2 ) + I(XS 2; Ynon
D2 |XR)

= E
{

log2

Pr{xR|ynon
D2 }

Pr{xR}
}

+ E
{

log2

Pr{xS 2|xR, ynon
D2 }

Pr{xS 2|xR}
}
. (C.21a)

A priori probabilities as well as entropies in the denominators are straightforward with Pr{xS 2|xR} =

Pr{x̃S 2}. The a posteriori probabilities

Pr{xR|ynon
D2 } =

∑
x̃S 2∈X̃S 2

p(ynon
D2 |xR, x̃S 2) Pr{xR, x̃S 2}∑

XR∈XR

∑
x̃S 2∈X̃S 2

p(ynon
D2 |xR, x̃S 2) Pr{xR, x̃S 2} (C.21b)

and

Pr{xS 2|xR, ynon
D2 } =

p(ynon
D2 |xR, x̃S 2) Pr{xR, x̃S 2}∑

x̃S 2∈X̃S 2
p(ynon

D2 |xR, x̃S 2) Pr{xR, x̃S 2} (C.21c)

are determined by numerical evaluation whereby p(ynon
D2 |xR, x̃S 2) is usually a shifted noise dis-

tribution, CN(hS D
√

PS 2

√
1 − ρ2 · x̃S 2 +

(
hS D
√

PS 2 · ρ + hRD
√

PR

)
· xR, 1). Hereby, an unusual

case is the presence of phase errors when applying distributed beamforming for DF which is
discussed in Ch. 5.

D Log-Likelihood-Ratios in a Turbo Decoder

Following the symbol by symbol Maximum-A-Posteriori (MAP) criterion the Log Likelihood
Ratio (LLR)

L(ul) = log
Pr{ul = 0, y}
Pr{ul = 1, y} (D.22a)

is of interest, whereby the occurring joint probabilities are not directly accessible. Therefore,
the set Γ of all possible code words c is divided into subsets Γ

(0)
l and Γ

(1)
l of code words whose

lth information bit is ul = 0 and ul = 1, respectively.

L(ul) = log

∑
c∈Γ(0)

l
Pr{y|c}Pr{c}∑

c∈Γ(1)
l

Pr{y|c}Pr{c} (D.22b)
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Exploiting the fact that elements yi of y are independent when c is known and Pr{c} = Pr{u} due
to bijectivity, where elements u j of u are independent as well, leads to

L(ul) = log

∑
c∈Γ(0)

l

n−1∏
i=0

Pr{yi|ci}
k−1∏
j=0

Pr{u j}

∑
c∈Γ(1)

l

n−1∏
i=0

Pr{yi|ci}
k−1∏
j=0

Pr{u j}
(D.22c)

Finally, as the component encoders are systematic (ul = cl), Pr{yl|cl} = Pr{yl|ul} and Pr{ul} can
be extracted as constant factors from the sum and split up due to logarithmic laws.

L(ul) = log
Pr{yl|ul = 0}
Pr{yl|ul = 1} + log

Pr{ul = 0}
Pr{ul = 1} + log

∑
c∈Γ(0)

l

n−1∏
i=0,i,l

Pr{yi|ci}
k−1∏

j=0, j,l
Pr{u j}

∑
c∈Γ(1)

l

n−1∏
i=0,i,l

Pr{yi|ci}
k−1∏

j=0, j,l
Pr{u j}

(D.22d)

= L(yl|ul) + La(ul) + log

∑
c∈Γ(0)

l

n−1∏
i=0,i,l

e−(L(yi |ci))ci
k−1∏

j=0, j,l
e−L(u j)u j

∑
c∈Γ(1)

l

n−1∏
i=0,i,l

e−(L(yi |ci))ci
k−1∏

j=0, j,l
e−L(u j)u j

︸                                          ︷︷                                          ︸
Le(ul)

(D.22e)

E Superposition Multilevel Coding - ρ for Parallel Detection

The following tables depict the possible values for ρ for different parameters K, L, and G of
a superposition multilevel code with joint demapping. The scenario is assumed to be a line
setup with source, relay, and destination at positions 0, d, and 1, i.e. , only the relay position is
variable and determines all channel (attenuation) coefficients of the relay channel. All average
transmit powers are set to unity.
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E.1 Complex Group Size G = 6:

Table E.2: Values of ρ for different combinations of K and L for G = 6 and d = 0.3.

L = 2 L = 3 L = 4 L = 5 L = 6 L = 7
K = 9 0.521 0.298 0.242 0.229 0.225 0.224
K = 10 0.685 0.464 0.410 0.397 0.394 0.393
K = 11 0.844 0.623 0.570 0.556 0.553 0.552
K = 12 1.000 0.777 0.723 0.710 0.706 0.705
K = 13 - 0.814 0.761 0.747 0.744 0.743
K = 14 - 0.852 0.798 0.785 0.781 0.780
K = 15 - 0.889 0.835 0.822 0.818 0.818
K = 16 - 0.926 0.872 0.859 0.855 0.854
K = 17 - 0.963 0.909 0.895 0.892 0.891
K = 18 - 1.000 0.945 0.932 0.929 0.928
K = 19 - - 0.955 0.941 0.938 0.937
K = 20 - - 0.964 0.950 0.947 0.946
K = 21 - - 0.973 0.959 0.956 0.955
K = 22 - - 0.982 0.968 0.965 0.964
K = 23 - - 0.991 0.977 0.974 0.973
K = 24 - - 1.000 0.986 0.983 0.982
K = 25 - - - 0.989 0.985 0.984
K = 26 - - - 0.991 0.988 0.987
K = 27 - - - 0.993 0.990 0.989
K = 28 - - - 0.995 0.992 0.991
K = 29 - - - 0.998 0.994 0.994
K = 30 - - - 1.000 0.997 0.996
K = 31 - - - - 0.997 0.996
K = 32 - - - - 0.998 0.997
K = 33 - - - - 0.998 0.997
K = 34 - - - - 0.999 0.998
K = 35 - - - - 0.999 0.999
K = 36 - - - - 1.000 0.999



E SUPERPOSITION MULTILEVEL CODING - ρ FOR PARALLEL DETECTION 131

Table E.3: Values of ρ for different combinations of K and L for G = 6 and d = 0.4.

L = 2 L = 3 L = 4 L = 5 L = 6 L = 7
K = 9 0.176 - - - - -
K = 10 0.488 0.047 - - - -
K = 11 0.755 0.377 0.275 0.249 0.242 0.241
K = 12 1.000 0.644 0.554 0.531 0.525 0.524
K = 13 - 0.706 0.617 0.595 0.589 0.588
K = 14 - 0.767 0.679 0.657 0.652 0.650
K = 15 - 0.827 0.740 0.718 0.713 0.711
K = 16 - 0.885 0.799 0.778 0.772 0.771
K = 17 - 0.943 0.858 0.836 0.831 0.830
K = 18 - 1.000 0.915 0.894 0.889 0.887
K = 19 - - 0.929 0.908 0.903 0.902
K = 20 - - 0.944 0.923 0.917 0.916
K = 21 - - 0.958 0.937 0.932 0.930
K = 22 - - 0.972 0.951 0.946 0.944
K = 23 - - 0.986 0.965 0.960 0.958
K = 24 - - 1.000 0.979 0.974 0.972
K = 25 - - - 0.983 0.977 0.976
K = 26 - - - 0.986 0.981 0.979
K = 27 - - - 0.990 0.984 0.983
K = 28 - - - 0.993 0.988 0.986
K = 29 - - - 0.997 0.991 0.990
K = 30 - - - 1.000 0.995 0.993
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Table E.4: Values of ρ for different combinations of K and L for G = 6 and d = 0.5.

L = 2 L = 3 L = 4 L = 5 L = 6 L = 7
K = 9 - - - - - -
K = 10 - - - - - -
K = 11 0.538 - - - - -
K = 12 1.000 0.286 0.000 - - -
K = 13 - 0.433 0.214 0.149 0.131 0.127
K = 14 - 0.563 0.372 0.319 0.305 0.302
K = 15 - 0.682 0.507 0.460 0.448 0.445
K = 16 - 0.793 0.629 0.586 0.575 0.572
K = 17 - 0.899 0.742 0.701 0.691 0.688
K = 18 - 1.000 0.849 0.810 0.800 0.798
K = 19 - - 0.874 0.836 0.826 0.824
K = 20 - - 0.900 0.862 0.852 0.850
K = 21 - - 0.925 0.888 0.878 0.876
K = 22 - - 0.951 0.913 0.904 0.901
K = 23 - - 0.975 0.938 0.929 0.927
K = 24 - - 1.000 0.963 0.954 0.952
K = 25 - - - 0.969 0.960 0.958
K = 26 - - - 0.975 0.966 0.964
K = 27 - - - 0.982 0.972 0.970
K = 28 - - - 0.988 0.979 0.976
K = 29 - - - 0.994 0.985 0.982
K = 30 - - - 1.000 0.991 0.989
K = 31 - - - - 0.992 0.990
K = 32 - - - - 0.994 0.992
K = 33 - - - - 0.995 0.993
K = 34 - - - - 0.997 0.995
K = 35 - - - - 0.998 0.996
K = 36 - - - - 1.000 0.998
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Table E.5: Values of ρ for different combinations of K and L for G = 6 and d = 0.6.

L = 2 L = 3 L = 4 L = 5 L = 6 L = 7
K = 9 - - - - - -
K = 10 - - - - - -
K = 11 - - - - - -
K = 12 1.000 - - - - -
K = 13 - - - - - -
K = 14 - - - - - -
K = 15 - 0.112 - - - -
K = 16 - 0.512 - - - -
K = 17 - 0.778 0.356 0.204 0.158 0.145
K = 18 - 1.000 0.657 0.557 0.531 0.524
K = 19 - - 0.720 0.626 0.601 0.595
K = 20 - - 0.781 0.690 0.667 0.661
K = 21 - - 0.838 0.752 0.729 0.723
K = 22 - - 0.894 0.810 0.789 0.783
K = 23 - - 0.948 0.867 0.846 0.841
K = 24 - - 1.000 0.921 0.901 0.896
K = 25 - - - 0.935 0.915 0.910
K = 26 - - - 0.948 0.928 0.923
K = 27 - - - 0.961 0.941 0.936
K = 28 - - - 0.974 0.955 0.950
K = 29 - - - 0.987 0.968 0.963
K = 30 - - - 1.000 0.981 0.976
K = 31 - - - - 0.984 0.979
K = 32 - - - - 0.987 0.982
K = 33 - - - - 0.990 0.986
K = 34 - - - - 0.994 0.989
K = 35 - - - - 0.997 0.992
K = 36 - - - - 1.000 0.995
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Table E.6: Values of ρ for different combinations of K and L for G = 6 and d = 0.7.

L = 2 L = 3 L = 4 L = 5 L = 6 L = 7
K = 9 - - - - - -
K = 10 - - - - - -
K = 11 - - - - - -
K = 12 1.000 - - - - -
K = 13 - - - - - -
K = 14 - - - - - -
K = 15 - - - - - -
K = 16 - - - - - -
K = 17 - 0.053 - - - -
K = 18 - 1.000 - - - -
K = 19 - - - - - -
K = 20 - - 0.090 - - -
K = 21 - - 0.456 - - -
K = 22 - - 0.673 0.317 0.171 0.120
K = 23 - - 0.848 0.574 0.490 0.467
K = 24 - - 1.000 0.765 0.698 0.681
K = 25 - - - 0.807 0.743 0.727
K = 26 - - - 0.848 0.787 0.771
K = 27 - - - 0.888 0.828 0.813
K = 28 - - - 0.926 0.868 0.854
K = 29 - - - 0.964 0.907 0.893
K = 30 - - - 1.000 0.945 0.931
K = 31 - - - - 0.954 0.941
K = 32 - - - - 0.964 0.950
K = 33 - - - - 0.973 0.959
K = 34 - - - - 0.982 0.968
K = 35 - - - - 0.991 0.977
K = 36 - - - - 1.000 0.987
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Table E.7: Values of ρ for different combinations of K and L for G = 6 and d = 0.8.

L = 2 L = 3 L = 4 L = 5 L = 6 L = 7
K = 9 - - - - - -
K = 10 - - - - - -
K = 11 - - - - - -
K = 12 1.000 - - - - -
K = 13 - - - - - -
K = 14 - - - - - -
K = 15 - - - - - -
K = 16 - - - - - -
K = 17 - - - - - -
K = 18 - 1.000 - - - -
K = 19 - - - - - -
K = 20 - - - - - -
K = 21 - - - - - -
K = 22 - - - - - -
K = 23 - - - - - -
K = 24 - - 1.000 - - -
K = 25 - - - - - -
K = 26 - - - - - -
K = 27 - - - 0.252 - -
K = 28 - - - 0.599 - -
K = 29 - - - 0.821 0.456 0.315
K = 30 - - - 1.000 0.718 0.631
K = 31 - - - - 0.771 0.690
K = 32 - - - - 0.821 0.745
K = 33 - - - - 0.869 0.796
K = 34 - - - - 0.914 0.845
K = 35 - - - - 0.958 0.892
K = 36 - - - - 1.000 0.936
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Table E.8: Values of ρ for different combinations of K and L for G = 6 and d = 0.9.

L = 2 L = 3 L = 4 L = 5 L = 6 L = 7
K = 9 - - - - - -
K = 10 - - - - - -
K = 11 - - - - - -
K = 12 1.000 - - - - -
K = 13 - - - - - -
K = 14 - - - - - -
K = 15 - - - - - -
K = 16 - - - - - -
K = 17 - - - - - -
K = 18 - 1.000 - - - -
K = 19 - - - - - -
K = 20 - - - - - -
K = 21 - - - - - -
K = 22 - - - - - -
K = 23 - - - - - -
K = 24 - - 1.000 - - -
K = 25 - - - - - -
K = 26 - - - - - -
K = 27 - - - - - -
K = 28 - - - - - -
K = 29 - - - - - -
K = 30 - - - 1.000 - -
K = 31 - - - - - -
K = 32 - - - - - -
K = 33 - - - - - -
K = 34 - - - - - -
K = 35 - - - - - -
K = 36 - - - - 1.000 -
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E.2 Complex Group Size G = 4:

Table E.9: Values of ρ for different combinations of K and L for G = 4 and d = 0.3.

L = 2 L = 3 L = 4 L = 5 L = 6 L = 7
K = 5 0.259 0.020 - - - -
K = 6 0.521 0.298 0.242 0.229 0.225 0.224
K = 7 0.765 0.544 0.491 0.478 0.474 0.473
K = 8 1.000 0.777 0.723 0.710 0.706 0.705
K = 9 - 0.833 0.779 0.766 0.763 0.762
K = 10 - 0.889 0.835 0.822 0.818 0.818
K = 11 - 0.945 0.890 0.877 0.874 0.873
K = 12 - 1.000 0.945 0.932 0.929 0.928
K = 13 - - 0.959 0.946 0.942 0.941
K = 14 - - 0.973 0.959 0.956 0.955
K = 15 - - 0.986 0.973 0.969 0.969
K = 16 - - 1.000 0.986 0.983 0.982
K = 17 - - - 0.990 0.986 0.986
K = 18 - - - 0.993 0.990 0.989
K = 19 - - - 0.997 0.993 0.992
K = 20 - - - 1.000 0.997 0.996

Table E.10: Values of ρ for different combinations of K and L for G = 4 and d = 0.4.

L = 2 L = 3 L = 4 L = 5 L = 6 L = 7
K = 5 - - - - - -
K = 6 0.176 - - - - -
K = 7 0.625 0.225 0.110 0.080 0.072 0.070
K = 8 1.000 0.644 0.554 0.531 0.525 0.524
K = 9 - 0.737 0.648 0.626 0.621 0.619
K = 10 - 0.827 0.740 0.718 0.713 0.711
K = 11 - 0.914 0.829 0.807 0.802 0.801
K = 12 - 1.000 0.915 0.894 0.889 0.887
K = 13 - - 0.937 0.915 0.910 0.909
K = 14 - - 0.958 0.937 0.932 0.930
K = 15 - - 0.979 0.958 0.953 0.951
K = 16 - - 1.000 0.979 0.974 0.972
K = 17 - - - 0.984 0.979 0.978
K = 18 - - - 0.990 0.984 0.983
K = 19 - - - 0.995 0.990 0.988
K = 20 - - - 1.000 0.995 0.993
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Table E.11: Values of ρ for different combinations of K and L for G = 4 and d = 0.5.

L = 2 L = 3 L = 4 L = 5 L = 6 L = 7
K = 5 - - - - - -
K = 6 - - - - - -
K = 7 0.236 - - - - -
K = 8 1.000 0.286 0.000 - - -
K = 9 - 0.500 0.297 0.239 0.224 0.220
K = 10 - 0.682 0.507 0.460 0.448 0.445
K = 11 - 0.847 0.686 0.644 0.634 0.631
K = 12 - 1.000 0.849 0.810 0.800 0.798
K = 13 - - 0.887 0.849 0.839 0.837
K = 14 - - 0.925 0.888 0.878 0.876
K = 15 - - 0.963 0.926 0.916 0.914
K = 16 - - 1.000 0.963 0.954 0.952
K = 17 - - - 0.972 0.963 0.961
K = 18 - - - 0.982 0.972 0.970
K = 19 - - - 0.991 0.982 0.979
K = 20 - - - 1.000 0.991 0.989

Table E.12: Values of ρ for different combinations of K and L for G = 4 and d = 0.6.

L = 2 L = 3 L = 4 L = 5 L = 6 L = 7
K = 5 - - - - - -
K = 6 - - - - - -
K = 7 - - - - - -
K = 8 1.000 - - - - -
K = 9 - - - - - -
K = 10 - 0.112 - - - -
K = 11 - 0.653 0.134 - - -
K = 12 - 1.000 0.657 0.557 0.531 0.524
K = 13 - - 0.751 0.658 0.634 0.628
K = 14 - - 0.838 0.752 0.729 0.723
K = 15 - - 0.921 0.839 0.818 0.812
K = 16 - - 1.000 0.921 0.901 0.896
K = 17 - - - 0.941 0.921 0.916
K = 18 - - - 0.961 0.941 0.936
K = 19 - - - 0.981 0.961 0.956
K = 20 - - - 1.000 0.981 0.976
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Table E.13: Values of ρ for different combinations of K and L for G = 4 and d = 0.7.

L = 2 L = 3 L = 4 L = 5 L = 6 L = 7
K = 5 - - - - - -
K = 6 - - - - - -
K = 7 - - - - - -
K = 8 1.000 - - - - -
K = 9 - - - - - -
K = 10 - - - - - -
K = 11 - - - - - -
K = 12 - 1.000 - - - -
K = 13 - - - - - -
K = 14 - - 0.456 - - -
K = 15 - - 0.764 0.459 0.357 0.328
K = 16 - - 1.000 0.765 0.698 0.681
K = 17 - - - 0.828 0.765 0.749
K = 18 - - - 0.888 0.828 0.813
K = 19 - - - 0.945 0.888 0.873
K = 20 - - - 1.000 0.945 0.931

Table E.14: Values of ρ for different combinations of K and L for G = 4 and d = 0.8.

L = 2 L = 3 L = 4 L = 5 L = 6 L = 7
K = 5 - - - - - -
K = 6 - - - - - -
K = 7 - - - - - -
K = 8 1.000 - - - - -
K = 9 - - - - - -
K = 10 - - - - - -
K = 11 - - - - - -
K = 12 - 1.000 - - - -
K = 13 - - - - - -
K = 14 - - - - - -
K = 15 - - - - - -
K = 16 - - 1.000 - - -
K = 17 - - - - - -
K = 18 - - - 0.252 - -
K = 19 - - - 0.717 0.253 -
K = 20 - - - 1.000 0.718 0.631
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Table E.15: Values of ρ for different combinations of K and L for G = 4 and d = 0.9.

L = 2 L = 3 L = 4 L = 5 L = 6 L = 7
K = 5 - - - - - -
K = 6 - - - - - -
K = 7 - - - - - -
K = 8 1.000 - - - - -
K = 9 - - - - - -
K = 10 - - - - - -
K = 11 - - - - - -
K = 12 - 1.000 - - - -
K = 13 - - - - - -
K = 14 - - - - - -
K = 15 - - - - - -
K = 16 - - 1.000 - - -
K = 17 - - - - - -
K = 18 - - - - - -
K = 19 - - - - - -
K = 20 - - - 1.000 - -
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F Information Bottleneck Algorithms

Algorithms described in this appendix are adapted versions of the iterative IB algorithms in
Sec. 6.1: The Lagrangian multiplier β, which usually trades off compression rate against pre-
served relevant information, is eliminated by setting β → ∞. Hence, rate and information are
maximized (lower compression) with respect to a specific cardinality of the compressed vari-
able. In fact, this cardinality now steers the trade-off.

Input: Pr{x, y}, X, Y,Z, ε > 0
Output: Pr {z|y}, Pr{x|z}, (I(r), r)

1 initialize Pr {z|y}(0) according to Maximum Output Entropy (MOE) [Win14]
2 k ← 1
3 Pr{z}(0) ← ∑

y Pr{y}Pr {z|y}(0)

4 Pr{x|z}(0) ← 1
Pr{z}(0)

∑
y Pr{x, y}Pr {z|y}(0)

5 d(0)(z, y)← DKL

(
Pr{x|y}||Pr{x|z}(0)

)
6 find, ∀y, z∗y = argminz d(0)(z, y)
7 Pr {z|y}(1) ← 1z=z∗y
8 while |Pr {z|y}(k) − Pr {z|y}(k−1)|/(|Y| · |Z|) ≥ ε do
9 Pr{z}(k) ← ∑

y Pr{y}Pr {z|y}(k)

10 Pr{x|z}(k) ← 1
Pr{z}(k)

∑
y Pr{x, y}Pr {z|y}(k)

11 d(k)(z, y)← DKL

(
Pr{x|y, yD1}||Pr{x|z}(k)

)
12 find, ∀y, z∗y = argminz d(k)(z, y)
13 Pr {z|y}(k+1) ← 1z=z∗y
14 k ← k + 1
15 end
16 Pr {z|y} ← Pr {z|y}(k)

17 Pr{z} ← ∑
y Pr{y}Pr {z|y}

18 Pr{x|z} ← 1
Pr{z}

∑
y Pr{x, y}Pr {z|y}

19 I(r(β))← ∑
x,z Pr {x|z}Pr {z} log2

(
Pr{x|z}
Pr{x}

)
20 r(β)← ∑

y,z Pr {z|y}Pr{y} log2

(
Pr {z|y}
Pr{z}

)
Algorithm 3: Iterative IB algorithm that delivers deterministic quantizers (β → ∞) [Zei12],
where 1 denotes the indicator function.
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Input: Pr{xS 1, yR, yD1}, XS 1, YR, YD1, ŶR, ε > 0
Output: Pr {ŷR|yR}, Pr{xS 1|ŷR}, (I(r), r)

1 initialize Pr {ŷR|yR}(0) according to MOE
2 k ← 1
3 Pr{ŷR}(0) ← ∑

yR
Pr{yR}Pr {ŷR|yR}(0)

4 Pr{ŷR, yD1}(0) ← ∑
yR

Pr{yR, yD1}Pr {ŷR|yR}(0)

5 Pr{ŷR|yD1}(0) ← Pr{ŷR,yD1}(0)

Pr{yD1}
6 Pr{xS 1|ŷR, yD1}(0) ← 1

Pr{ŷR,yD1}(0)∑
yR

Pr{xS 1, yR, yD1}Pr {ŷR|yR}(0)

7 d(0)(ŷR, yR)← DKL

(
Pr{xS 1|yR, yD1}||Pr{xS 1|ŷR, yD1}(0)

)
8 find, ∀yR, ŷ∗yR

= argminŷR
d(0)(ŷR, yR)

9 Pr {ŷR|yR}(1) ← 1ŷR=ŷ∗yR

10 while |Pr {ŷR|yR}(k) − Pr {ŷR|yR}(k−1)|/(|YR| · |Z|) ≥ ε do
11 Pr{ŷR}(k) ← ∑

yR
Pr{yR}Pr {ŷR|yR}(k)

12 Pr{ŷR, yD1}(k) ← ∑
yR

Pr{yR, yD1}Pr {ŷR|yR}(k)

13 Pr{ŷR|yD1}(k) ← Pr{ŷR,yD1}(k)

Pr{yD1}
14 Pr{xS 1|ŷR, yD1}(k) ← 1

Pr{ŷR,yD1}(k)∑
yR

Pr{xS 1, yR, yD1}Pr {ŷR|yR}(k)

15 d(k)(ŷR, yR)← DKL

(
Pr{xS 1|yR, yD1}||Pr{xS 1|ŷR, yD1}(k)

)
16 find, ∀yR, ŷ∗yR

= argminŷR
d(k)(ŷR, yR)

17 Pr {ŷR|yR}(k+1) ← 1ŷR=ŷ∗yR

18 k ← k + 1
19 end
20 Pr {ŷR|yR} ← Pr {ŷR|yR}(k)

21 r(β)← ∑
yR,ŷR

Pr {ŷR|yR}Pr{yR} log2

(
Pr {ŷR |yR}

Pr{ŷR}
)
−∑

yD1,ŷR
Pr {ŷR|yD1}Pr{yD1} log2

(
Pr {ŷR |yD1}

Pr{ŷR}
)

22 I(r(β))← ∑
xS 1,yD1,ŷR

Pr {xS 1|ŷR, yD1}Pr {ŷR, yD1} log2

(
Pr{xS 1 |ŷR,yD1}

Pr{xS 1 |yD1}
)

Algorithm 4: Iterative IB algorithm that delivers deterministic quantizer mapping while con-
sidering side information, where 1 is the indicator function.
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G Joint Decoding for Compress and Forward

Similarly as in App. D, a symbol-by-symbol MAP decoder delivers2

L(ûl) = log
Pr{ul = 0, yD1, ŷR}
Pr{ul = 1, yD1, ŷR} (G.23)

for the final decision. As these joint distributions are not directly accessible, the set of all
possible code words is divided into two subsets Γ

(1)
l and Γ

(0)
l containing code words c whose lth

information bit is ul = 1 and ul = 0, respectively.

L(ûl) = log

∑
c∈Γ(0)

l
Pr{c, yD1, ŷR}∑

c∈Γ(1)
l

Pr{c, yD1, ŷR} (G.24a)

= log

∑
c∈Γ(0)

l
Pr{yD1, ŷR|c}Pr{c}∑

c∈Γ(1)
l

Pr{yD1, ŷR|c}Pr{c}

= log

∑
c∈Γ(0)

l
Pr{yD1|c}Pr{ŷR|c}Pr{c}∑

c∈Γ(1)
l

Pr{yD1|c}Pr{ŷR|c}Pr{c}

= log

∑
c∈Γ(0)

l

n−1∏
i=0

Pr{yD1i |ci}Pr{ŷRi |ci}
k−1∏
j=0

Pr{u j}

∑
c∈Γ(1)

l

n−1∏
i=0

Pr{yD1i |ci}Pr{ŷRi |ci}
k−1∏
j=0

Pr{u j}

= log

∑
c∈Γ(0)

l

n−1∏
i=0

e−(L(yD1i |ci)+L(ŷRi |ci))ci
k−1∏
j=0

e−L(u j)u j

∑
c∈Γ(1)

l

n−1∏
i=0

e−(L(yD1i |ci)+L(ŷRi |ci))ci
k−1∏
j=0

e−L(u j)u j

. (G.24b)

The first exponential term in (G.24b) represents information about the code bits from the chan-
nels (S → D, S → R) and the second exponential term a priori knowledge about the information
bits. Both will be given as input to an appropriate decoder like the Bahl Cocke Jelinek Raviv
(BCJR) [BCJR74]. It becomes clear that the decoder itself needs not to be modified. Solely,
the LLRs L(ŷRi |ci) have to be found and added to the LLRs L(yD1i|ci) which are delivered by the
demapper.

2Indices to distinguish u1 and u2 are dropped such that u and c in the following refer to u1 and c1 of Fig. 6.6.
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Figure H.3: IBG for explicit equalization using different quantizers on each sub carrier depend-
ing on effective SNR.

H Explicit Equalization with Effective SNR and Full Side In-
formation

Theoretically, it is possible to design an individual quantizer for each subcarrier according to
its SNR after equalization as shown in Fig. H.3. The drawback, which makes it infeasible in
practice, is however that the quantizer rate depends as well on the SNR of the respective subcar-
riers. Hence, different channel realizations lead to different compression rates with restriction
to deterministic quantization. In this case, it is not possible to find a general setup for a practical
implementation. Furthermore, time slot parameter τ is directly connected to the compression
rate. This problem could be solved by applying general random quantization by fixing the rate
for each subcarrier in the design process which requires bisection method explained in Sec. 6.1.
Anyhow, the complexity to do this is infeasibly high due to the bisection search. Hence, the
scheme with deterministic quantization will be only considered as reference scheme for com-
parison to the other schemes. The required input pmf for the IB algorithm is

Pr{x′S 1, ȳ
′
R, ȳ

′
D1, |hS D|} = Pr{ȳ′R|x′S 1}Pr{ȳ′D1|x′S 1, |hS D|}Pr{|hS D|}Pr{x′S 1} (H.25)

where pmfs Pr{ȳ′R|x′S 1}, Pr{ȳ′D1|x′S 1, |hS D|}, and Pr{|hS D|} have to be appropriately sampled from
N

(√
PS 1x′S 1,

|hS R |
2

)
,N

(√
PS 1x′S 1,

|hS D |
2

)
, and R

(
d−αS D

)
. Furthermore, |hS R| is fixed for the quantizer

realization in contrary to |hS D| which is a variable in the pmf. In particular, the resulting quan-
tizer holds for a specific effective SNR according to the instantaneous channel |hS R| and not for
an ensemble of all possible values of |hS R| which is why Pr{x′S 1, ȳ

′
R, ȳ

′
D1, |hS D|} is not a function

of |hS R|. The complexity for this pmf is 23·lad+ m
2 . Although the complexity of this scheme is less

than that of schemes which are valid for the ensemble of channel coefficients hS R, the overall
simulation effort is much higher because a lot more quantizers have to be designed due to de-
pendence on SNR per carrier in combination with the SNR of the direct link (side information).
The complexity is further increased because source coding rate r depends on the instantaneous
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vector channel for an OFDM symbol and thus, has to be averaged over an appropriate num-
ber of statistical realizations. Hence, simulation results in Fig. 7.12 are obtained for a coarser
resolution compared to the other plots.
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