37 research outputs found

    Diffusion MRI tractography for oncological neurosurgery planning:Clinical research prototype

    Get PDF

    Diffusion MRI tractography for oncological neurosurgery planning:Clinical research prototype

    Get PDF

    Generalizable deep learning based medical image segmentation

    Get PDF
    Deep learning is revolutionizing medical image analysis and interpretation. However, its real-world deployment is often hindered by the poor generalization to unseen domains (new imaging modalities and protocols). This lack of generalization ability is further exacerbated by the scarcity of labeled datasets for training: Data collection and annotation can be prohibitively expensive in terms of labor and costs because label quality heavily dependents on the expertise of radiologists. Additionally, unreliable predictions caused by poor model generalization pose safety risks to clinical downstream applications. To mitigate labeling requirements, we investigate and develop a series of techniques to strengthen the generalization ability and the data efficiency of deep medical image computing models. We further improve model accountability and identify unreliable predictions made on out-of-domain data, by designing probability calibration techniques. In the first and the second part of thesis, we discuss two types of problems for handling unexpected domains: unsupervised domain adaptation and single-source domain generalization. For domain adaptation we present a data-efficient technique that adapts a segmentation model trained on a labeled source domain (e.g., MRI) to an unlabeled target domain (e.g., CT), using a small number of unlabeled training images from the target domain. For domain generalization, we focus on both image reconstruction and segmentation. For image reconstruction, we design a simple and effective domain generalization technique for cross-domain MRI reconstruction, by reusing image representations learned from natural image datasets. For image segmentation, we perform causal analysis of the challenging cross-domain image segmentation problem. Guided by this causal analysis we propose an effective data-augmentation-based generalization technique for single-source domains. The proposed method outperforms existing approaches on a large variety of cross-domain image segmentation scenarios. In the third part of the thesis, we present a novel self-supervised method for learning generic image representations that can be used to analyze unexpected objects of interest. The proposed method is designed together with a novel few-shot image segmentation framework that can segment unseen objects of interest by taking only a few labeled examples as references. Superior flexibility over conventional fully-supervised models is demonstrated by our few-shot framework: it does not require any fine-tuning on novel objects of interest. We further build a publicly available comprehensive evaluation environment for few-shot medical image segmentation. In the fourth part of the thesis, we present a novel probability calibration model. To ensure safety in clinical settings, a deep model is expected to be able to alert human radiologists if it has low confidence, especially when confronted with out-of-domain data. To this end we present a plug-and-play model to calibrate prediction probabilities on out-of-domain data. It aligns the prediction probability in line with the actual accuracy on the test data. We evaluate our method on both artifact-corrupted images and images from an unforeseen MRI scanning protocol. Our method demonstrates improved calibration accuracy compared with the state-of-the-art method. Finally, we summarize the major contributions and limitations of our works. We also suggest future research directions that will benefit from the works in this thesis.Open Acces

    Investigation of late time response analysis for security applications

    Get PDF
    The risk of armed attack by individualā€™s intent on causing mass casualties against soft targets, such as transport hubs continues. This has led to an increased need for a robust, reliable and accurate detection system for concealed threat items. This new system will need to improve upon existing detection systems including portal based scanners, x-ray scanners and hand held metal detectors as these all suffer from drawbacks of limited detection range and relatively long scanning times. A literature appraisal has been completed to assess the work being undertaken in the relevant field of Concealed Threat Detection (CTD). From this Ultra-Wide Band (UWB) radar has been selected as the most promising technology available for CTD at the present. UWB radar is provided by using Frequency Modulated Continuous Waves (FMCW) from laboratory test equipment over a multi gigahertz bandwidth. This gives the UWB radar the ability to detect both metallic and dielectric objects. Current published results have shown that it is possible to use the LTR technique to detect and discriminate both single objects isolated in air and multiple objects present within the same environment. A Vector Network Analyser (VNA) has been used to provide the Ultra-Wide Band (UWB) Frequency Modulated Continuous Wave (FMCW) radar signal required for the LTR technique. This thesis presents the application of the Generalized Pencil-of-Function (GPOF), Dual Tree Wavelet Transform (DTWT) and the Continuous Wavelet Transform (CWT), both real and complex valued, in Late Time Response (LTR) security analysis to produce a viable detection algorithm. Supervised and unsupervised Artificial Neural Networks (ANN) have been applied to develop a successful classification scheme for Concealed Threat Detection (CTD) in on body security screening. Signal deconvolution and other techniques have been applied in post processing to allow for extraction of the LTR signal from the scattered return. Data vectorization has been applied to the extracted LTR signal using an unsupervised learning based ANN to prepare data for classification. Classification results for both binary threat/non-threat classifiers and a group classifier are presented. The GPOF method presented true positive classification results approaching 72% with wavelet based methods offering between 98% and 100%

    The politics of loving blackness in the UK

    Get PDF
    Can ā€˜loving blacknessā€™ become a new discourse for anti-racism in the UK and the broader black diaspora? This thesis will critically assess the concept of ā€˜loving blackness as political resistanceā€™ as outlined by the African American feminist bell hooks (1992). The thesis will show the ways in which blackness has been both negated and denigrated in western cultures and thus constructed in opposition to notions of love and humanness. Conversely, love and blackness are also rehabilitated in different ways by Black diasporic populations in Britain through the transnational space. The transnational space can provide opportunities for constructing, networks of care, love and anti racist strategies that affirm the value of blackness and Black life. However, the transnational space can also be fraught with risks, dangers and exclusions providing Black and migrant populations with uneven forms of citizenship and belonging to western neo-liberal states. Loving blackness within a transnational context can help to create a dynamic space to affirm blackness against racial exclusions and dominations whilst providing a lens to suggest alternative ways of being human

    Unmet goals of tracking: within-track heterogeneity of students' expectations for

    Get PDF
    Educational systems are often characterized by some form(s) of ability grouping, like tracking. Although substantial variation in the implementation of these practices exists, it is always the aim to improve teaching efficiency by creating homogeneous groups of students in terms of capabilities and performances as well as expected pathways. If studentsā€™ expected pathways (university, graduate school, or working) are in line with the goals of tracking, one might presume that these expectations are rather homogeneous within tracks and heterogeneous between tracks. In Flanders (the northern region of Belgium), the educational system consists of four tracks. Many students start out in the most prestigious, academic track. If they fail to gain the necessary credentials, they move to the less esteemed technical and vocational tracks. Therefore, the educational system has been called a 'cascade system'. We presume that this cascade system creates homogeneous expectations in the academic track, though heterogeneous expectations in the technical and vocational tracks. We use data from the International Study of City Youth (ISCY), gathered during the 2013-2014 school year from 2354 pupils of the tenth grade across 30 secondary schools in the city of Ghent, Flanders. Preliminary results suggest that the technical and vocational tracks show more heterogeneity in studentā€™s expectations than the academic track. If tracking does not fulfill the desired goals in some tracks, tracking practices should be questioned as tracking occurs along social and ethnic lines, causing social inequality

    Sensors, measurement fusion and missile trajectory optimisation

    Get PDF
    When considering advances in ā€œsmartā€ weapons it is clear that air-launched systems have adopted an integrated approach to meet rigorous requirements, whereas air-defence systems have not. The demands on sensors, state observation, missile guidance, and simulation for air-defence is the subject of this research. Historical reviews for each topic, justification of favoured techniques and algorithms are provided, using a nomenclature developed to unify these disciplines. Sensors selected for their enduring impact on future systems are described and simulation models provided. Complex internal systems are reduced to simpler models capable of replicating dominant features, particularly those that adversely effect state observers. Of the state observer architectures considered, a distributed system comprising ground based target and own-missile tracking, data up-link, and on-board missile measurement and track fusion is the natural choice for air-defence. An IMM is used to process radar measurements, combining the estimates from filters with different target dynamics. The remote missile state observer combines up-linked target tracks and missile plots with IMU and seeker data to provide optimal guidance information. The performance of traditional PN and CLOS missile guidance is the basis against which on-line trajectory optimisation is judged. Enhanced guidance laws are presented that demand more from the state observers, stressing the importance of time-to-go and transport delays in strap-down systems employing staring array technology. Algorithms for solving the guidance twopoint boundary value problems created from the missile state observer output using gradient projection in function space are presented. A simulation integrating these aspects was developed whose infrastructure, capable of supporting any dynamical model, is described in the air-defence context. MBDA have extended this work creating the Aircraft and Missile Integration Simulation (AMIS) for integrating different launchers and missiles. The maturity of the AMIS makes it a tool for developing pre-launch algorithms for modern air-launched missiles from modern military aircraft.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore