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ABSTRACT 

The risk of armed attack by individual’s intent on causing mass casualties against soft 

targets, such as transport hubs continues. This has led to an increased need for a robust, 

reliable and accurate detection system for concealed threat items. This new system will 

need to improve upon existing detection systems including portal based scanners, x-ray 

scanners and hand held metal detectors as these all suffer from drawbacks of limited 

detection range and relatively long scanning times. 

A literature appraisal has been completed to assess the work being undertaken in the 

relevant field of Concealed Threat Detection (CTD). From this Ultra-Wide Band (UWB) 

radar has been selected as the most promising technology available for CTD at the present. 

UWB radar is provided by using Frequency Modulated Continuous Waves (FMCW) from 

laboratory test equipment over a multi gigahertz bandwidth. This gives the UWB radar the 

ability to detect both metallic and dielectric objects. 

Current published results have shown that it is possible to use the LTR technique to detect 

and discriminate both single objects isolated in air and multiple objects present within the 

same environment. A Vector Network Analyser (VNA) has been used to provide the Ultra-

Wide Band (UWB) Frequency Modulated Continuous Wave (FMCW) radar signal 

required for the LTR technique.  

This thesis presents the application of the Generalized Pencil-of-Function (GPOF), Dual 

Tree Wavelet Transform (DTWT) and the Continuous Wavelet Transform (CWT), both 

real and complex valued, in Late Time Response (LTR) security analysis to produce a 

viable detection algorithm. Supervised and unsupervised Artificial Neural Networks 

(ANN) have been applied to develop a successful classification scheme for Concealed 

Threat Detection (CTD) in on body security screening. Signal deconvolution and other 

techniques have been applied in post processing to allow for extraction of the LTR signal 

from the scattered return. Data vectorization has been applied to the extracted LTR signal 

using an unsupervised learning based ANN to prepare data for classification. Classification 

results for both binary threat/non-threat classifiers and a group classifier are presented. The 

GPOF method presented true positive classification results approaching 72% with wavelet 

based methods offering between 98% and 100%.  
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Aims and Objectives of the Research Program 

The aim of this project is to investigate the application of the Late Time Response (LTR) 

method to develop an algorithm that will reliably detect concealed objects in security 

environments. The objectives of this research are 

 To develop a reliable method of detecting the LTR of a target in isolation and to 

develop a suitable algorithm for processing the test data. Work towards the 

completion of this objective has been presented in "Investigation of LTR 

analysis for Concealed Object Detection" at the Manchester Metropolitan 

University Science and Engineering day in 2013. 

 To develop a system for detecting the LTR of multiple objects. Work towards 

the completion of this objective has been presented in “Investigation of LTR 

analysis for detection of multiple concealed objects” [1]. 

 To determine the capabilities of the LTR method in detecting concealed objects 

in different environments, such as with a larger complex geometric object in the 

background. Work presenting the completion of this objective has been 

submitted for publication in IEEE Microwave Theory and Techniques, title “A 

Morlet Based Continuous Wavelet Classification Regime” and Progress In 

Electromagnetic Research, title “Continuous versus complex wavelet analysis, 

a study in optimizing LTR security screening”. 
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Contribution to knowledge and novelty of the work 

The contribution to knowledge outlined in this work will include: 

 The application of non-linear deconvolution, the CLEAN algorithm to improve 

Generalized Pencil-of-Function (GPOF) based LTR signal recovery in a noisy 

environment. 

 The application of the Richardson-Lucy non-linear deconvolution algorithm to 

Continuous and Complex Wavelet Transform based LTR analysis. 

 A study on the effects of multiple objects detected at the same range in the radar 

beam and the discrimination of one object from the other. 

 A novel algorithm using Principal Component Analysis techniques leading to 

successful classification of targets using GPOF based LTR. The classification is 

performed using Artificial Neural Networks (ANN). 

 A novel algorithm using Continuous and Complex Wavelet Transforms with 

Self Organizing Maps (SOM) and ANN for successful classification of LTR data 

with improved results over GPOF based LTR. 

 A feasibility study on the application of the Dual Tree Wavelet Transform LTR 

analysis for successful classification for increased computational efficiency 
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Chapter 1  
 

Background and Introduction 

 

Preview. 

This chapter aims to provide an overview of the field of security screening, specifically 

with reference to current standoff techniques and technologies. Signal processing 

approaches are discussed with reference to the techniques presented in the work to follow 

along with a discussion of the current progress of Late Time Response (LTR) analysis 

covering publications and application. The aims and objectives of the research program are 

presented along with a discussion of the contribution and novelty of the work. 

1.1. Literature Appraisal 

Preview 

The following literature appraisal will provide a comprehensive review of the current 

and historical fields of interest in the area of Concealed Threat Detection (CTD) with an 

emphasis towards Radio Detection and Ranging (RADAR) based techniques. Starting with 

an overview of the history of RADAR systems, the appraisal will consider the techniques 

and the hardware required to implement existing Concealed Threat Detection (CTD) 

systems then move on to the signal processing methods currently of interest. Finally the 

appraisal will consider the use of Complex Natural Resonances (CNR), Late Time 

Response (LTR) techniques, techniques for estimation of signal parameters and the 

classification techniques available. 

1.1.1. Background 

The origins of RADAR development begin with the publication of James Clerk 

Maxwell’s (1831-1879) seminal 1865 paper “A dynamical theory of the electromagnetic 

field” [6] [7] [8] where he demonstrated that electrical and magnetic fields could propagate 

as waves through space moving at the speed of light. This work was followed up by 
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Heinrich Hertz’s (1857-1894) experiment in 1887 which confirmed that radio waves could 

be generated experimentally and were reflected by metallic objects. 

It took until the turn of the 20th century for these principles to be implemented in practice 

when Christian Hulsmeyer (1881-1957) [9] used them to build and patent a simple device 

for detecting and avoiding ships in fog. This was not a true RADAR in the terms of being 

able to both detect and determine the range of the target as it did not provide a range, though 

it is the first commercial system to use radio waves to detect the presence of an object. 

In 1922, Guglielmo Marconi (1874-1937) published a paper [10] recounting a set of 

experiments and a speech he presented on the Salisbury plain in 1899. This intervention by 

a titan of industry in the form of Marconi sparked a wider interest in the development and 

applications of RADAR systems. 

With the realization that war with Germany was a real possibility in the mid 1930’s the 

British government set up a committee to look into the development of air defence systems. 

This committee founded a new establishment whose superintendent Sir Robert Watson-

Watt (1892-1973) was to pioneer many significant developments in RADAR systems, 

including the 37MHz chain home air defence RADAR system which is credited with 

helping the RAF to emerge victorious from the battle of Britain. 

Following the Second World War RADAR systems continued to develop for air defence 

applications. By the 1970’s new techniques to improve the detection of fast moving targets 

using Moving Target Indication [11] had been developed. Also identification of RADAR 

targets was now a possibility due to the development of CNR detection techniques [12]. 

RADAR systems can be classified into four distinct types. These are monostatic, 

bistatic, synthetic aperture and array based systems. These types determine the footprint of 

the system and the processing required to obtain the data. A monostatic system is a RADAR 

where the transmitting and the receiving antenna are the same, with the antenna switching 

between transmit and receive modes. Figure 1 presents an example of a monostatic radar 

system. 
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Figure 1: Example of a monostatic radar system 

A bistatic RADAR is a RADAR where the transmitting and receiving antennas are 

separated by a distance roughly equivalent to that of the range to the target. Figure 2 

presents an example of a bistatic RADAR system. Most early RADAR systems were of 

monostatic or bistatic design [13]. 

 

Figure 2: Example of a Bistatic radar system [14] 

Synthetic Aperture RADAR is a more complex system that requires the use of a moving 

antenna to synthesize a larger aperture for the antenna than can be obtained using the static 
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antenna. Multiple RADAR scans are taken at multiple locations and signal processing is 

used to build a RADAR image from this data (see Figure 3). [15]. Applications of SAR 

RADAR systems include for military aircraft detection and planetary geosciences.  

 

Figure 3: Example of a Synthetic Aperture Radar (SAR system) [16] 

Array based RADAR systems involve the use of a larger number of transmitting and 

receiving antennas. These systems are commonly known as phased array systems as they 

use the phase difference (also known as the time difference) in the receipt of the RADAR 

signal at different receiving antennas to build the RADAR image. These systems can 

provide greater power in the RADAR beam but have a larger footprint and require greater 

signal processing. Many modern advanced RADAR systems, such as the Samson RADAR 

found on the Royal Navy’s type 45 Daring class air defence destroyers along with the SPY 

RADAR found on US navy Ticonderoga class cruisers and Arleigh Burke class destroyers 

are phased arrays systems (see Figure 4). 
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Figure 4: Example of a phased array radar system [17] 

Frequency bands were developed as a way to separate the electromagnetic spectrum. 

The bands of specific interest for the field of radar range from the Ultra High Frequency 

(UHF) band to the X band. Many frequencies bands exist above this range although the 

utility of these higher frequency bands in practical radar applications is only starting to be 

realised. Table 1 outlines the specific frequency ranges comparable to each bandwidth. 
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Table 1: IEEE standard Electro-Magnetic frequency band designations 

Band designation Frequency Range Wavelength(λ)  

(m) 

ELF 3 – 30 Hz 100000000 - 10000000 

SLF 30 – 300 Hz 10000000 - 1000000 

ULF 300Hz – 3 kHz 1000000 - 100000 

VLF 3 – 30 kHz 100000 - 10000 

LF 30 – 300 kHz 10000 - 1000 

MF 300 kHz – 3 MHz 1000 - 100 

HF 3 – 30 MHz 100 - 10 

VHF 30 – 300 MHz 10 - 1 

UHF 300 MHz – 1 GHz 1 – 0.3 

L 1 – 2 GHz 0.3 – 0.15 

S 2 – 4 GHz 0.15 – 0.075 

C 4 – 8 GHz 0.075 – 0.0375 

X 8 – 12 GHz 0.0375 – 0.0250 

Ku 12 – 18 GHz 0.0250 – 0.0166 

K 18 – 27 GHz 0.0166 – 0.0111 

Ka 27 – 40 GHz 0.0111 – 0.0075 

V 40 – 75 GHz 0.0075 – 0.0040 

W 75 – 110 GHz 0.0040 – 0.00273 

Millimetre 110 – 300 GHz 0.00273 – 0.0010 

Terahertz 300 GHz+ λ< 0.0010 
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1.2. Existing Concealed Weapon Detection methods 

1.2.1. Introduction  

Since the turn of the millennium, world events have taken on an increasingly unstable 

and often violent nature. Due to this the development of new technology for detecting and 

classifying concealed threat objects to combat this threat has come to the forefront of 

security applications. In particular, high profile mass casualty terrorist attacks have led to 

an increase in the demand for effective methods to assist security personnel in screening 

for concealed weapons in high-risk environments. Among the many current screening 

methods found at transport hubs and secure sites such as airports and government 

installations there are some substantial limitations in their ability to detect and classify 

threat items.  

Current technologies used for personnel screening at security points in airports and other 

secure installations include portal based metal detection systems and in some locations 

millimetre wave scanners. These methods suffer from limitations, for example, the metal 

detector has only limited capacity for differentiating between threat and non-threat items. 

It also has no capability to detect non-metallic items, while the millimetre wave scanners 

image the human body leading to privacy issues, both perceived and real.  

A method that has shown promise in the detection and classification of concealed 

objects is the use of LTR analysis. Military units first exploited the LTR technique in order 

to allow the detection and classification of missiles and aircraft by ground and air based 

radar systems. Current systems that use LTR are large and incapable of detecting small-

concealed objects within the urban environment and use power levels far too great to be 

safely applied in personnel screening. As a result, it would be desirous in the fields of 

policing and security to have a non-ionizing, non-imaging Concealed Threat Detection 

(CTD) technique. This research sets out to investigate the exploitation of LTR techniques 

for personnel screening in high-risk security environments. 
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1.2.2. Infra-red and Data Fusion based methods 

Infra-red (IR) waves are electromagnetic waves that sit in a frequency bracket between 

300 GHz and 400 THz with wavelengths ranging from 1 mm to 0.7 µm. Commonly IR 

technologies can be found in night vision goggles and other items of surveillance 

equipment. All objects emit IR radiation at different temperatures and its use as a 

surveillance technology is well established. Early research into possible applications of IR 

technologies was performed by military services, in particular the United States of America 

Department of Defense (DoD) for the purpose of early warning detection of ballistic 

missile launches, detection of chemical weapons in the atmosphere, precision guidance of 

smart weaponry systems and surveillance [19]. IR waves also have the capability to 

penetrate adverse weather conditions such as fog, which are opaque to the visible spectrum 

[20].  

 In 1995 the National Institute of Justice (NIJ) in the United States of America, working 

with the Air Force research laboratory funded a weapons detection program. The aim of 

this program was to develop and eventually deploy concealed weapon detectors capable of 

automatic detection and recognition [21]. Work has been progressed within the field of 

CTD using IR techniques as demonstrated in [22] looking into the capability of IR 

techniques to penetrate clothing in particular. 

As with other detection technologies, achieving a viable standoff distance has presented 

a technical challenge. Hanton et al [23] investigate the effectiveness of the use of super 

resolution image reconstruction techniques as well as deconvolution methods in improving 

standoff infra-red images. The results of [23] conclude that a combination of super-

resolution and resolution enhancement techniques show considerable improvement in the 

apparent image quality. 

A number of signal decomposition methods have also been considered as methods for 

improving apparent image quality. The use of multi-resolution Wavelet decomposition 

with image fusion is discussed in [24] as a possible method for clutter reduction and 

increased detection rates while [25] look at a number of decomposition methods, 
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concluding that visual and IR signal fusion can be used for concealed object detection 

though there are limitations dependent on the method applied.  

The prevalence of data fusion methods using IR signals and data from another sensor 

show that IR on its own, due in part to its difficulty in penetrating clothing and the poor 

discrimination between body and object when the temperature difference is small [26] 

show that IR sensing with data fusion may have promise. The limitations of IR sensing 

alone however means that a viable weapons detection system is unlikely. 

1.2.3. Acoustic 

Acoustic methods for Concealed Threat Detection (CTD) have shown some promise in 

the laboratory. The systems developed have focused on the use of ultrasound which sit in 

a frequency range between the upper limit of human hearing 20 kHz and 20 MHz [27], 

which is used by some medical ultrasound devices. In their work [28], DuChateau and 

Hinders tested four different frequencies of ultrasound to determine the optimal frequency 

at which ultrasound could penetrate fabric and return an acceptable resolution. The 

frequencies tested were 41 kHz, 50 kHz, 120 kHz and 200 kHz. They discovered that as a 

result of increased frequency, effective range decreases leading to a compromise between 

range and resolution, eventually settling on using 50 kHz for their experiment. The 

conclusions presented show that it is possible to detect concealed objects on the human 

body though identifying what has been detected presents a further challenge. 

In their work [29], Achanta et al discussed the concept of using non-linear acoustic 

detection for CWD in order to improve the effectiveness of clothing penetration and reduce 

the number of false positive detections caused by specular reflections using standard 

ultrasound techniques. The system designed was tested for standoff detection at ranges up 

to ~5 m using a number of potential concealed weapons such as guns, knives and tools.  

Vadakkel, in his thesis [30] discusses the development of a practical acoustic Concealed 

Threat Detection system. The areas identified as important for research and development 

are cost, ability to detect metallic threats, effectiveness of detecting non-metallic threats, 

standoff range and ease of manufacture. Resonant Acoustic Spectroscopy (RAS) [30] was 
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used to extract the signature of the targets detected and a neural network was used to 

classify the targets. An acoustic camera was also used alongside the resonant acoustic 

spectroscopy technique to generate images of the target in real time for the system operator. 

Existing Acoustic wave CWD systems available today come in two forms, hand held 

close range detectors that trigger an alarm when a weapon is detected and the Luna 

innovations system discussed in [29] which identifies targets at greater range [30]. 

Vadakkel concludes that although there is a substantial amount of interest in 

electromagnetic detection methods, the representation of acoustic systems is insufficient in 

the body of research. 

In summary, the acoustic systems currently available have shown capability to detect 

concealed weapons though reflection from clothing and atmospheric attenuation of the 

signal still present technical issues that will require solving for a viable commercial product 

to be produced. 

1.2.4. Magnetic field 

Metal detectors are a mature technology with the first known use of them dating back 

200 years in China where a doorway made of a metal 'attractor' was constructed at the 

entrance to the emperor’s chambers [31]. This system was to ensure that anyone carrying 

a ferrous object into the emperor’s presence would find themselves impeded by the 

attraction of the metal object to the doorway. Modern day detection systems come in two 

forms, portal or portable [32] and can be found in high security areas of major transport 

hubs and secure facilities throughout the world [32]. 

Conventional metal detectors come in two forms. These are based around eddy current 

sensors or magnetic perturbation sensors but come at the cost of a high false positive 

detection rate and slow scan times. As with all portal based systems, these systems are 

considered to be slow as they require a person to pass through a portal or have a security 

officer physically scan them using a handheld device. The high false positive detection rate 

comes from the presence of ferrous metals in many different everyday items. An 

unfortunate consequence of these slow scan times is the creation of bottlenecks with large 

numbers of people crowded into a small space. This can make security checkpoints a 
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primary target for Person Born Improvised Explosive Devices (PBIED's). An attempt to 

improve upon scan times can be found in [32] with the development of the Wide Area 

Metal Detection System (WAMDS). This system is intended for use as a crowd pre-

screening device, to highlight targets of interest for further checks. Attempts have also been 

made to resolve the high false alarm rate by use of advanced signal processing techniques 

and lower frequency metal detectors [30]. This allows for better resolutions of up to 1 inch 

and provides extra information to the system. 

In their work [33], Kotter et al discuss the use of pattern recognition, neural networks 

and joint time frequency analysis to both increase detection rates while reducing false alarm 

rates. The impediments to a viable commercial system mentioned are the limited range 

available due to the passive nature of metal detection systems, although within the envelope 

of detection provided by the eddy current sensors discrimination of threat and non-threat 

using these signal processing techniques is shown to be possible.  

The effectiveness of magnetic field based detection systems is heavily dependent on 

cooperation of the person to be scanned and the presence of ferrous metal in the threat item. 

Common knowledge of their use in security environments has led to attempts to circumvent 

these capabilities as shown by the advent of liquid based Improvised Explosive Devices 

(IED’s) being smuggled onto aircraft. The need to be in proximity to the person being 

scanned is a risk for security personnel and the bottlenecks they create add a vulnerability 

which can be exploited by IED’s. For mass screening these devices provide limited 

detection capabilities to security forces though additional support, in the form of pat down 

checks and alternative security scanners is required. 

1.2.5. Portal and back scattering x-ray scanners 

Portal scanners can include a number of the technologies discussed in this review such 

as eddy current detection, Millimetre wave and X-ray technologies. Newer generation 

portals have high detection and low false alarm rates [34]. Portals in development are able 

to analyse vapours and particles which will allow for increased explosive and drug 

detection capability [34].These systems use techniques such as ion mobility spectrometry, 
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chemiluminescence and electron capture detection [34]. As discussed by Tillery in [35], 

design of portals can protect both the operator and those outside the chamber though the 

issue of bottlenecks still remain.  

Current commercial portal scanners at security hubs are dominated by the L3 Provision 

millimetre wave body scanner [36] and the Smith’s detection Enhanced Metal Detector for 

magnetic, non-magnetic and mixed alloy weapons detection. 

Body scanners have featured in news articles with regards to potential privacy and 

perceived health issues [37] [38]. Back scattering X-ray transmission systems are used 

extensively for luggage screening in particular at airports. [39]. More recently human body 

scanning X-ray based systems have been developed. The issues presented by these systems 

focus mainly on cost, safety and privacy issues. X-ray based systems can cost many 

thousands of US dollars making it prohibitively expensive alongside which X-rays are 

ionizing radiation which can be harmful. Privacy is also an issue as the systems create an 

image of the human body showing distinct anatomical features which is viewed by an 

operator [40]. Other issues presented for X-ray systems are that they require close 

proximity to the subject being scanned [35] and that they may miss objects that are of low 

density where low density objects are considered to have low absorption coefficients [39]. 

X-ray systems are active systems [41] therefore do not suffer from the indoor contrast 

issues prevalent in passive systems. 

The technologies developed by American Science and Engineering have led to three 

commercial X-ray based systems one of which, the body search system could have been 

found in trial usage at Manchester and London airports [30]. 

Scanners such as the L3 provision have considered the privacy issues by offering a 

number of privacy options to avoid the potential issues highlighted in the press, while 

scanners such as the Smiths Detection Enhanced Metal Detector do not image the body, 

providing an audio output when detection occurs and so do not have the same issue.     

1.2.6. Millimetre wave and Microwave technology 

Millimetre and Microwave technologies represent some of the most heavily researched 

areas of security scanning technologies in recent years. Millimetre waves have frequencies 
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form 30 GHz to 300 GHz and wavelengths from 10 mm to 1 mm while microwaves have 

frequencies from 0.3 GHz to 300 GHz with wavelengths of 1 mm to 1 m [42]. Studies have 

shown that some clothing materials can be considered completely transparent at millimetre 

wave frequencies [43] while metals and plastics will appear opaque. Non-imaging 

millimetre wave RADAR systems with the ability to probe for concealed objects through 

clothing do require a method for identifying the target that has been detected as no image 

is produced. Analysis of the scattered return of the RADAR signal and processing through 

machine learning techniques has shown itself to be sufficient to meet this requirement [44]. 

Millimetre wave technology, although seemingly highly suitable for CWD due to the 

characteristics of millimetre waves does have some hurdles to overcome. First among these 

is the issue with privacy that has become apparent with imaging based systems. As with 

the X-ray based systems millimetre wave systems reconstruct an image of the body 

showing distinct anatomical features which require user input to classify [45]. In an effort 

to overcome this, algorithms have been created [46] which replace the reconstructed image 

with a neutral silhouette of the human body. Another issue that is impeding progress in the 

millimetre wave arena is the high cost of equipment that can be used at these frequencies 

[47]. Korneev goes on to discuss issues of clutter caused by millimetre wave emissions 

from the human body and the long exposure time required to build an image. Further 

difficulties occur with imaging based systems when attempting to adapt the technique to 

standoff ranges. Due to the tight spatial resolution requirements required when constructing 

an image from a MMW based system, the standoff ranges achievable with an imaging 

based system are considerably shorter than those achievable with a non-imaging based 

system [44].  

For security applications both active and passive systems at 35 GHz have been 

developed [48]. At higher frequencies such as the ‘W’ band from 75 GHz to 110 GHz 

prototype active systems with an effective range of 25 m that analyse the back scattered 

return of a W band signal have been developed [49]. These systems have shown the ability 

to detect thin layers of dielectric materials making them effective at detecting Person Borne 

Improvised Explosive Devices (PBIED’s) as well as conventional concealed weapons such 

as guns and knives [50]. 
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Passive systems analyse the thermal emissions of the target while active systems provide 

their own illumination [51]. Passive millimetre wave systems also suffer from poor contrast 

when used indoors. This can be solved by use of cooled detectors [52]. A short pulse active 

30 GHz millimetre wave system is discussed in [53]. This system uses pyramidal horn 

antenna with a bandwidth of 26 GHz to 32 GHz as the active scanning element. Results for 

targets such as an absorber and metallic objects are presented and discussed. Consideration 

is also given to the results from an optimised hybrid micro-strip/horn antenna developed 

for this application. 

1.2.7. Terahertz and Sub-millimetre wave technology 

There has also been research into the sub-millimetre band which sits between the 

frequencies of 300 GHz and 3 THz. These signals produce wavelengths between 1 mm and 

100 µm. This area of the EM spectrum has been subjected to only limited study and is 

known as the Terahertz gap [54]. Sub-millimetre wave signals have shown the potential to 

be able to identify materials such as explosives [48]. The current state of research into 

Terahertz spectroscopy as an explosive detection technique is reviewed in Gao et al [55], 

concluding that although a number of challenges still exist, over the 15 years prior to the 

publication the spectra of more than 20 explosives and compounds have been investigated 

demonstrating the potential of the technique for Concealed Threat Detection (CTD) . An 

example of a terahertz imaging RADAR for personnel screening can be found in [56]. This 

system operates in the atmospheric window that can be found at 675 GHz and they 

conclude that although this system works well under laboratory conditions, for real world 

applications a suite of sensors may be more suitable. Further active terahertz imaging 

schemes are presented in [57] and [58]. The scheme presented in [57] demonstrates a 

proposed design for a quick scanning fan beam based terahertz personnel screening system 

with the intention to create a 0.2 THz proof of concept system for rapid personnel 

screening. Arusi et al [58] discuss the design and development of a 0.33 THz based system 

for security applications using a synthesized linear FM signal within the X-band and with 

a bandwidth of 200 MHz multiplied up to the terahertz range concluding that the early 

experiments performed show promise for future security applications. 
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Further discussion of the area focuses on the need for standoff detection common to all 

security applications. As published in Appleby & Wallace [59], to have a good chance of 

surviving the blast from a non-shrapnel based typical PBIED one must be more than 5 m 

away. Appleby & Wallace [59] go on to state that if the device is shrapnel based, this 

survival range should be increased to as much as 100 m. Appleby then proceeds to consider 

the effects of atmospheric attenuation and the sky temperature on the attenuation of the 

system. 

In his work [60], Kemp presents a wide ranging discussion on the practicality of 

implementing a terahertz based CTD system. It is stated that due to the high levels of 

attenuation present in the signal that become more significant as the frequency increases 

and the weak returns from the spectral features of the explosives, a viable detection system 

in this frequency range is unlikely. 

1.3. Signal processing techniques 

Signal processing plays a significant role in many applications within the field of 

CWD/CTD. These can range from filtering of the raw signal to classification of datasets. 

A number of the techniques relevant to data processing are summarised here in this section. 

1.3.1. Continuous wavelet transform based methods  

The Continuous Wavelet Transform (CWT) is a joint time-frequency signal analysis 

method that has found applications in the fields of CTD including LTR analysis [61]. A 

method developed in the 1980’s [62] as a potential replacement to the Fourier transform, 

the wavelet transform offers better resolution in the time domain at lower frequencies while 

giving better resolution in frequency at higher frequencies [63]. This adaptability makes 

the wavelet a very useful tool in signal analysis. 

A large number of wavelets have been developed for use with signal analysis including 

the Daubechies [64], Morlet/Gabor [65], Gaussian and Shannon wavelets. Each wavelet 

type is suitable for a different data set, the challenge being selecting the correct wavelet for 

the task at hand. 
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Wavelet analysis has found applications in a wide field of disciplines, the most 

appropriate of which to this work are landmine detection [66] [67] and specifically in the 

field of Concealed Object Detection. 

Within the field of LTR analysis there has been research conducted into the application 

of the CWT to CTD. In his work [68], Atiah performed initial experiments presenting 

images of the CWT output for several targets.  

1.3.2. The complex continuous wavelet transform 

The first example of the Complex Continuous Wavelet Transform (ℂCWT) arose with 

the development of the real valued Morlet/Gabor wavelet in 1984 [62]. This wavelet was 

presented as a method to be used with seismology, optimizing the analysis of datasets in 

the field. Developed from the Gabor transform, a special case of the STFT [69], the 

Morlet/Gabor wavelet also offered the opportunity to perform complex data analysis on a 

given dataset. This complex version of the Morlet/Gabor wavelet is sometimes known as 

the Gabor wavelet. 

Since the development of the Morlet/Gabor wavelet transform, a number of wavelets 

have been designed to allow for the optimized processing of complex data using the CWT. 

These families are too numerous to list, though a selection of the ones relevant to this work 

include the complex Gaussian, Shannon and Frequency B-Spline [70].  

1.3.3. The dual tree wavelet transform  

The Dual Tree Wavelet Transform (DTWT) arose from attempts to improve the 

capabilities of the DWT when processing complex datasets. A full description of the 

principles behind the DTWT can be found in [71]. With particular relevance in shift 

invariance and directional filters [72], the DTWT shows great promise as a computationally 

efficient approach to the analysis of complex datasets using wavelet analysis.  

The DTWT works by using two separate DWT decompositions divided into two trees 

(tree A and tree B). These trees can have differently designed filters applied to them in 

order to allow the DWT performed on tree A to calculate the real valued result of the 
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transform and the DWT performed on tree B to calculate the imaginary result of the 

transform. This can be visualized as per the block diagram in Figure 5. 

 

Figure 5: Dual Tree Wavelet Transform Filterbanks 

There are many applications presented where the use of the DTWT can provide an 

improvement in the use of the discrete wavelet transform, for example in medical imaging 

[73]. Most importantly the introduction of the DTWT allows for the use of the DWT in 

feature extraction, an approach to which the real valued DWT alone is very limited [74] 

[75]. This use in facial feature extraction indicates that the DTWT may be a suitable method 

for decomposing a signal in security screening. 
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1.3.4. Empirical methods  

Adaptive signal processing methods such as the Hilbert Huang Transform (HHT) [76] 

have been developed for improving the detection rates and the ability of signals to adapt to 

noisy environments. Comprising an amalgamation of the Empirical Mode Decomposition 

(EMD) and Hilbert Spectral Analysis (HSA) the HHT has found applications in areas that 

require nonlinear and non-stationary data analysis techniques [77]. An analysis of the 

benefits of the wavelet to that of the EMD can be found in the work of Grispino [78]. The 

greatest uptake of the EMD has been in combining the method with Independent 

Component Analysis (ICA) for biomedical signal processing applications [79]. These 

applications range from offering the ability to perform source separation of signals on 

single channel recordings to automatic detection of cardiac abnormalities [80]. 

EMD has also been studied in the field of communication security [81] where the EMD 

algorithm is used to separate the useful data in a signal from a dummy signal. EMD has 

also been considered for applications in SONAR [82] showing that the range of potential 

applications for this technique are large although within the field of CTD its usage so far 

has been very limited. 
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1.4. Use of late time response in concealed weapon detection 

Another area of significant research in the area of CTD using microwave radiation is to 

use an ultra-wideband (UWB) RADAR pulse to attempt to excite the resonant frequencies 

of a concealed target. These Complex Natural Resonances (CNR) are unique to the target 

in question and as such can be used to identify the target [83], [84]. This technique has 

been used since the 1970s in the area of detection and identification of missiles and aircraft 

[12]. The effort to adapt these CNR extraction techniques to the area of on-body CTD is a 

more recent development though difficulties have been encountered when attempting to do 

so [84]. These difficulties arise mainly from the effect of the body, both in concealing the 

resonant frequencies and the complex residues of the threat by altering the dielectric 

environment surrounding the object [84]. 

The CNR pole extraction technique offers a number of benefits to the security researcher 

and there has been substantial research into overcoming the issues stated previously [85], 

[86], [87], [88]. When analysed  the time resolved signal presents itself in the form of the 

Early Time Response (ETR) comprising the immediate return from the target  and the 

induced Late Time Response which is a time delayed aspect independent property of an 

UWB RADAR pulse used to illuminate a conductive object [86]. The LTR takes the form 

of an exponentially damped sinusoidal waveform which comprises the unique signature of 

the target [89]. Figure 6 presents the LTR waveform of a 6.5 cm needle, with the ETR to 

the left of the dashed line and the LTR to the right.  
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Figure 6: LTR waveform for a 6.5 cm needle  

Its aspect independence gives this method an advantage over a number of the other 

methods presented in this review. A further advantage of the LTR technique is the low 

power levels required to excite the resonances of the target object. This will ensure that 

any commercial system is kept within recommended RF exposure safety levels [90]. 

The frequencies at which the resonances of the targets can be found can be approximated 

using the formula in Equation 1 [1]: 

 
𝑓𝑟 = 

𝐴𝑐

2𝐿
 

Equation 1 

 Where fr is the resonant frequency, c is the speed of light, L is the longest geometric length 

of the object and A is a dimensionless parameter based on the shape of the object. Due to 

the size of target objects such as pistols and knives, this leads to the bulk of targets of 

interest sitting in a frequency range below 2.5 GHz [87]. An example calculation for a 6.5 

cm needle leads to: 

 
𝑓𝑟 = 

0.85 ∙ 𝑐

2 ∙ 0.065
  

Equation 2 
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For the purposes of this calculation, variable A was determined experimentally to be 

0.85. The value of this variable is affected by the geometric properties of the target being 

scanned. The values used for both c and L are in metres and metres/second. Rearranging 

Equation 2 indicates that in order for the frequency of the fundamental LTR pole to be 

above 2.5 GHz the object would need to be smaller than 5 cm in length.  

The presence of the fundamental resonances in the low GHz region of the EM spectrum 

leads to a requirement to use large antenna, reducing the feasibility of creating a portable 

system [87]. 

Even with the substantial amount of research that has been performed into LTR analysis 

there are still gaps that need to be addressed. Reduction in the scale of the hardware 

required to operate a successful CTD system, improved signal deconvolution, 

improvements in signal processing methods and improved classification methods all need 

to be addressed. A recent paper presents the application of using the Total Least Squares 

Matrix Pencil Method (TLSMPM) [91] to improve clutter reduction in the signal. This has 

shown it is possible to separate the threat from the body.  

Further work has been performed on the use of the Hankel Total Least Squares method 

coupled with Learning Vector Quantization neural networks by Vasalos et al [92]. The 

work presented includes a feasibility study on whether the frequencies of weapons overlap 

those of the human body and if a neural network can be used to classify targets including 

a grenade and S&W revolver. The Hankel total least squares algorithm is used to extract 

the LTR data. Vasalos et al [92] conclude it is possible with data presented to detect and 

classify the two targets. Learning Vector Quantization neural networks have been used 

which were a precursor to Self-Organising maps, both methods were developed by Teuvo 

Kohonen. 

1.4.1. Estimating Signal parameters 

Methods such as Prony’s method [93], the E-pulse method [93] the Singularity 

Expansion Method (SEM) [94], and the Generalised Pencil of Function (GPOF) [95] have 

been applied to estimate the poles of the resonant signal. The SEM has been used 



22 

 

 

extensively on antenna characterization [96] and [97], though to a lesser extent in the field 

of security applications. The E-pulse method and Prony’s method have found initial 

success in the area of analysis of UWB RADAR signals for security applications though 

the vulnerability of these methods to noise does pose challenges [98], [99] and [100].  

Though these methods have proven to be reliable in extracting the required data, the 

GPOF method has been acknowledged as the least sensitive to noise in the signal [93], 

[101] and [96]. Due to this improved immunity to noise, the GPOF method is optimal for 

use in applications such as GPR [102] and detecting the CNR’s of objects obscured by 

dielectric materials [103]. This indicates that the GPOF method is likely to be an effective 

method to apply to pole extraction methods in LTR analysis. 

1.4.2. Other Applications of LTR 

The applications available for use of CNR or LTR based techniques have become more 

numerous in current years. These applications are still theoretical in many cases, although 

a small number of the techniques described have found practical real world applications. 

In their work [104], Harmer et al consider the feasibility of using a radar based CNR 

approach to identify hostile fire in an urban campus/city environment. Harmer et al [104] 

present the results of LTR detection of projectiles in flight in order to identify the projectile 

and assist in locating the firing position of, for example a sniper. Harmer et al [104] go on 

to consider the bandwidth of the radar system that would be necessary to identify standard 

sizes of small arms projectiles in the range 5.56 mm to 13 mm. The effects of the motion 

of the projectiles are also considered. 

Another of the available applications for LTR based systems is in the use of GPR. Chen et 

al [105] present LTR for identifying underground unexploded ordnance, in particular with 

a focus on the first few CNR’s available in the signal. Chen et al [105] go on to discuss the 

requirement in GPR based systems not only for detection but also accurate identification 

of the detected target. An SVD based total least squares algorithm is used to process the 

datasets presented and consideration is given to Prony’s and its use in improving the SNR 

of the received signal. 
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Kolba & Jouny [106] discuss the application of GPR to land mine detection. Though 

encountering many of the same problems as those discussed in [105], the approach of [106] 

is also to use Prony’s method for optimising the SNR. Kolba and Jouny [106] then go on 

to discuss using comparisons of the CNR scans taken to a known database of objects for 

classification purposes with consideration given to detectors based at different distances. 

The earliest examples of the application of LTR based systems is in the use of airborne 

radar and has been well covered in the literature [107] [108] [13] [15]. The use of these 

techniques to identify incoming aircraft and missiles is well documented and further 

potential applications have been discussed. 

Several non-defence applications for LTR systems have been reviewed in the literature. 

One example of this type of application of LTR based systems is presented in [109].  This 

concept work presents the results of 26 GHz radar system using CNR to identify bolt plates 

from scattered EM return. This novel use for a CNR based system is intended to allow for 

automated recognition of mining infrastructure, such that an automated navigation system 

could be employed. This CNR based system would operate as an external reference to 

assist existing methods that are currently available. Hargrave et al [109] go on to present 

results of a simulation of the target identification process. 

Another non-defence application for LTR systems is in the field of design of non-chip 

based RFID tags. In their work Rezaisarlak & Munteghi [110] present the use of CNR 

information derived from the structural parameters of the tag as a method of storing 

information on a non-chip based RFID tag. This allows for a low profile, high density 

storage RFID tag with the data encoded as CNR’s associated with the devices structure to 

be developed. This novel approach to information storage has advantages in cost reduction 

due to removal of the microchip but does come at the cost of strict design parameters in 

order to ensure accurate presentation of the CNR’s. 

Another major field of application for LTR/CNR based systems is in medical 

applications. This is derived from the ability of the LTR/CNR based systems to detect 

dielectric objects as well as conductive objects. The challenges in this are great though, as 

due to the small RCS that is inherent with dielectric based returns to LTR systems and the 

requirement to keep power levels low for safe application to human targets, many obstacles 
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still remain to be overcome. Two of the major applications for these techniques in the 

medical field will be discussed. The first of these is the identification of cardiac arrhythmias 

using CNR’s. As presented by Bani-Hasan et al [111] an ECG system using Prony’s 

method to calculate the complex resonant frequencies is considered. The poles and 

frequencies developed are evaluated for 5 different types of arrhythmias and the results of 

these are evaluations are discussed. 

The second major application in the medical field for LTR/CNR based systems is in the 

detection of breast tumours. This is a very active field of research due to the import that 

has been given to breast cancer treatment in recent times. 

Davis et al [112] discusses the feasibility of a 1-11 GHz based system to identify the 

features of a dielectric target. This work is performed with consideration given to 

identifying the size, shape and depth of potentially cancerous growths as a potential 

alternative to the existing methods used to characterize the architectural features of such 

growths. 

Work on the use of LTR/CNR based techniques for breast cancer applications are 

presented in Hong [113]. In their dissertation [113] Hong gives consideration to the process 

by which illuminating a tumour at its resonant frequency would increase the coupling of 

the signal and therefore the rate of absorption of microwave energy resulting in a greater 

increase in temperature. A concept microwave based CNR system for screening is then 

considered. 

 Further work in this area presented by Bannis et al [114] takes a similar approach to 

that presented in [105] [106] [111] in using Prony’s method to extract the CNR frequencies 

of the target object. Discussion is given to the effect of the tumour size, shape and depth 

on the CNR fields extracted, with the extracted CNR’s used to identify the size shape and 

depth of the tumour. Of potentially greater implication is the possibility of using the method 

to identify a malignancy in a tumour. Current breast screening methods are painful and 

require a somewhat uncomfortable approach for the patient. The ability to identify breast 

tumours and potential malignancy using non-invasive LTR based methods would present 

a potential leap forward in breast screening.   
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1.5. Definition of Aims and Objectives 

The aims and objectives of the research performed will now be discussed in greater 

detail. The aim of the research project was to develop a reliable algorithm for detecting 

concealed objects in security environments. The algorithm was required to be reliable with 

high successful detection rates as misclassifications would diminish confidence in the 

technique and in practical terms could have severe consequences. The security 

environments considered are locations such as transport hubs, stadia and secure sites. To 

meet this aim there are three distinct objectives involved. 

The first objective involved development of a method for detecting the LTR of a target 

in isolation and a suitable algorithm for processing the data. This was necessary as in order 

to identify targets of interest on body, it is first required that the LTR characteristics of 

those targets without interference are known.  

Once completed this led to the second objective of developing a method for detecting 

the LTR of multiple objects in the same scene. This is an important step in the development 

of a reliable algorithm as it is highly unlikely in a real world detection scenario that the 

person being scanned will have only a threat item on their person. The ability to 

discriminate between objects present in the same scene would allow for this to be taken 

into account. 

Upon completion of the second objective it became possible to begin work on the third 

objective. This objective of determining the impact of the LTR method in detecting 

concealed objects in different environments, such as with a larger complex geometric 

object in the background led to the final result of this research program allowing for 

detection of concealed threat objectives secreted on the human body. 

1.6. Summary 

The literature appraisal presented above provides a review of the current state of CTD 

using IR, acoustic and microwave based techniques. These techniques have shown promise 

across a broad spectrum of capabilities though also come with limitations some of which 

are inherent to the technology, while others are issues of public perception and 
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implementation in a real world environment. The ever changing security threat shows the 

increasing necessity of the systems described above that, though limited can save lives. 

Improvements to these existing systems and development of new ones to improve on their 

capabilities is a global necessity that shows no sign of reducing severity in the foreseeable 

future. Although there are many systems available to detect a threat item there is a 

significant gap in the ability to determine what threat item has been detected. This presents 

a problem because if the detected threat item is a hand held weapon, such as a knife, 

security personnel may be able to approach with only limited risk to themselves and others. 

On the other hand if the detected item is a fragmentation based PBIED then approaching 

the individual carrying the item presents significant risk of harm to both security personnel 

and the wider public [59]. The ability of an LTR based security system to discriminate 

between objects and provide more information as to the potential threat detected is a viable 

approach to fill this gap and could provide both support to and replacement of many of the 

existing systems covered. 

 

Discussion 

In chapter 1, an introduction to the research project that has been performed has been 

presented. A literature survey discussing existing security scanning methods, signal 

processing applied to security scanning and the application of LTR to multiple scenarios 

has been presented. The aims and the objectives of the research has been outlined along 

with the contribution to knowledge as a result of this work. The following chapters will 

endeavor to present the techniques and results of work performed that meet the aims and 

objectives outlined.  

Chapter 2 will present an overview of RF safety, LTR radar system and the experimental 

setup. Chapter 3 presents a discussion of clutter reduction, linear and non-linear 

deconvolution and classification techniques. Chapter 4 presents the results of LTR analysis 

using frequency analysis techniques. Chapters 5 and 6 present the results of LTR analysis 

using real and complex valued wavelets with chapter 7 presenting a final discussion and 

conclusions. 
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Chapter 2  
 

LTR Experimental setup and Optimization 

Preview. 

This chapter provides an overview of the radar system and the experimental setup used 

for the work presented, covering both the practical setup of the experiments and some of 

the basic principles of LTR. The results of objects in isolation and a discussion of multiple 

objects present at the same range are presented.    

2.1. RF emission safety 

When using any transmitting Radio-Frequency (RF) device it is important to consider 

safe exposure levels. Although all life on earth has evolved to live in a low energy RF 

environment such as those transmitted by the sun, the biological effects of the introduction 

of man-made EM fields  with much higher intensities in different parts of the RF spectrum 

are still not completely understood. 

Radio-Frequencies sit in the range 10 k𝐻𝑧 − 1 𝑇𝐻𝑧 and are classified as nonionizing 

radiation because the frequency is too low for there to be sufficient energy in the photons 

to remove an electron from an atom as it passes through it thereby ionizing the atom [115] 

unlike ionizing radiation which has sufficient energy to do this. Nonetheless at sufficiently 

high intensities they can pose certain health risks due to RF induced heating of objects 

known as thermal effects. Also there is some evidence that at frequencies below those that 

induce thermal effects, magnetic fields can cause biological changes that are the focus of a 

considerable body of research. Ionizing radiation consists of alpha particles, beta particles, 

gamma rays and X rays while nonionizing radiation comprises low frequency radio waves, 

microwaves and visible light. 

Safe exposure levels are determined by the incident power density on contact with the 

body. A number of attempts have been made to quantify a set level for this, for example 

with the IEEE standard on “Safety Levels with Respect to Human Exposure to Radio 

Frequency Electromagnetic Fields (300 kHz to 100 GHz)," [90] and the “ICNIRP 

Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic and 
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Electromagnetic Fields (up to 300 GHz),” [116]. Table 2 shows the Basic Restrictions (BR) 

as outlined in the IEEE standard for frequencies from 100 kHz to 3 GHz. This Specific 

Absorption Rate (SAR) is measured in W/kg averaged over the entire body, see Table 2 

for details. a 

Table 2: Basic Restrictions for frequencies 100 kHz – 3 GHz [90] 

  Action levela 

SARb (W/kg) 

Persons in 

controlled 

environments SARc 

(W/kg) 

Whole-body 

exposure 

Whole-body 

average 

0.08 0.4 

Localized exposure Localized (peak 

spatial average) 

2c 10c 

Localized exposure Extremitiesd and 

pinnae 

4c 20c 

aBR for the general public when an RF safety program is unavailable 
bSAR is averaged over the appropriate averaging times 

cAveraged over any 10g of tissue 
dThe extremities are the arms and legs distal from the elbows and knees respectively 

 

The appropriate averaging time for the frequencies covered is 6 minutes [90]. Below, 

Table 3 defines the pyramidal horn antennas used in these experiments as the gain of the 

horn must be factored in when calculating the power density. 

Table 3: Pyramidal horn antennas used 

Start 

Frequency(GHz) 

Stop 

Frequency(GHz) 

Gain (dB) Description Aperture 

dimensions 

(mm) 

0.5 3 3.00 AtlanTec 

AS5749 

430x260 

1 18 3.73 AtlanTec 

Double ridged 

horn 

240x138 

 

The transmission power was set to -2 dBm. This value was determined experimentally 

to be effective at allowing for the detection of an LTR signal, while ensuring that power 
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levels are kept to a safe value. Given that the transmission power at the source was set to -

2 dBm and that the shortest range to target used was 0.6 m we can use the radar equations 

to calculate the power density at the target. All values presented are to three significant 

figures. 

First the power of -2 dBm in Watts must be determined as per Equation 3. 

 
𝑃𝑡𝑥 = 10

(−2−30)
10 = 631 × 10−6𝑊 = 631 𝜇𝑊 Equation 3 

Assuming an isotropic antenna (an antenna that radiates evenly in all directions) the 

power density at 1 metre range is shown in Equation 4: 

 𝑃𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐 = 
𝑃𝑡𝑥

4𝜋𝑅2
 =  

0.000631

4𝜋(1)2
= 50.21 × 10−6 𝑊𝑚2  Equation 4 

Where Ptx is the transmitter power and R is the range to target. Taking into account the 

gain of the horn antenna as 3 dB the power density with gain 𝑃𝑑𝑔, Equation 5 becomes: 

 (50.21 × 10−6𝑊𝑚2)  × 103/10 = 1.00189 × 10−4 𝑊𝑚2 Equation 5 

Given that the beam pattern from the transmitter measures approximately 90 cm tall by 

60 cm wide at 1 metre range the power density assuming no losses would be as per 

Equation 6: 

 
𝑃𝑑 = 

𝑃𝑑𝑔

𝐴𝑟𝑒𝑎
=  
0.000100189

0.6 ∙ 0.9
= 0.1855 × 10−3 𝑊𝑚2  Equation 6 

The IEEE guidelines specify the maximum safe power limit for uncontrolled 

environments between 300 MHz and 3 GHz to be 2 mW/cm2. Over 1 metre squared this 

limit is 20 W/m2 and so this calculated figure of 0.1855 mW/m2 is comfortably within the 

safety requirements. 

  



30 

 

 

2.2. The Radar System 

2.2.1. Ultra-Wideband Radar 

Ultra-Wideband (UWB) signals are signals defined as having a bandwidth greater than 

500 MHz or 20% of the center frequency. The traditional applications for UWB radar have 

been in non-cooperative radar imaging and UWB radar is described in a number of books 

[117] [118]. It is particularly useful for LTR scanning as in order to induce a resonance on 

the target object it is necessary to illuminate it using a signal of the correct frequency. A 

multi gigahertz sweep will increase the chance of successfully transmitting the correct 

frequency and inducing the required surface current. 

2.2.1.1. The Radar equation 

 

The simple form of the radar equation relates the characteristics of the transmitter, 

receiver, target, antenna and environment to the range of the radar system. If we assume a 

lossless isotropic antenna (an antenna that radiates uniformly through 360°) is used to 

radiate the transmission power Ptx, the power density at range R (PDR) measured in W/m2 

will be equal to the radiated power divided by the surface area of a sphere of radius R 

presented in Equation 7 [15]: 

 
𝑃𝐷𝑅 = 

𝑃𝑡𝑥
4𝜋𝑅2

 
Equation 7 

The gain of an antenna can be defined as the increased power density in a given direction 

provided by a directional antenna (PDU) when compared to the power density of an 

isotropic antenna given the same power input therefore Equation 8 [15]: 

 
𝐺 = 

𝑃𝐷𝑈

𝑃𝐷𝑅
 

Equation 8 

This leads to the power density of a transmitting directive antenna taking into account 

its gain via Equation 9 to be [15]: 

 
𝑃𝐷𝑈 = 

𝑃𝑡𝑥𝐺

4𝜋𝑅2
 

 

Equation 9 
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The target will only couple to and re-radiate a percentage of the incident waveform 

illuminating it.  This scattering effect is determined by the Radar Cross Section (RCS) of 

the target, denoted by σ, and as it is only the power re-radiated in the direction of the 

antenna that is useful the power at the receiver taking the RCS into account can be 

determined by Equation 10 [15]: 

 
𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑃𝑜𝑤𝑒𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  

𝑃𝑡𝑥𝐺

4𝜋𝑅2
∙
𝜎

4𝜋𝑅2
 

Equation 10 

 The power received by the radar in Prx in watts is determined by the Incident Power 

Density (IPD) times the effective area of the antenna (Aef). See Equation 11 where [15]: 

 𝐴𝑒𝑓 = 𝜌𝑎𝐴 Equation 11 

And 𝜌𝑎is the aperture efficiency of the antenna. This allows the received signal power 

to be determined by Equation 12 to be [15]: 

 
𝑃𝑟𝑥 = 

𝑃𝑡𝑥𝐺

4𝜋𝑅2
∙
𝜎

4𝜋𝑅2
∙ 𝐴𝑒𝑓 

Equation 12 

This can be simplified, as per Equation 13 to [15]: 

 
𝑃𝑟𝑥 = 

𝑃𝑡𝑥𝐺𝐴𝑒𝑓𝜎

(4𝜋)2𝑅4
 

Equation 13 

The maximum distance at which a target can be successfully detected (Dmax) occurs 

when Prx approaches the minimum detectable signal level (Smin). Smin is the point at 

which the SNR is sufficient to allow for the detection of useful information in the signal. 

To calculate this value use Equation 14 which represents the radar equation in its 

fundamental form [15]: 

 

𝐷𝑚𝑎𝑥 = [
𝑃𝑡𝑥𝐺𝐴𝑒𝑓𝜎

(4𝜋)2𝑆𝑚𝑖𝑛
]

1
4

 

 

Equation 14 

2.2.1.2. Maximum unambiguous range for pulse radar systems 

 

Using pulse based radar systems requires that once a signal has been transmitted, 

sufficient time must be given for the echoes of the signal to be detected before the next 

pulse is sent. This is to prevent the antenna in a monostatic (single antenna used for both 

transmission and receiving) system from switching to transmission mode before the 
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previously transmitted signal has been fully received. The maximum unambiguous range 

(Rmur) for a pulse radar is calculated using Equation 15 [119]: 

 
𝑅𝑚𝑢𝑟 = 

𝑐𝑇𝑝

2
=
𝑐

2𝑓𝑝
 Equation 15 

Where Tp is the pulse repetition period which is equal to 1/fp and fp is the pulse repetition 

frequency. 

Standard Continuous Wave (CW) radar systems are not able to measure range in this 

method as there is no gap or pulsing of the signal. This leads to the requirement for the use 

of FMCW radar. 

2.2.1.3. Frequency Modulated Continuous Wave radar 

 

FMCW radar is similar to Continuous Wave radar in that the signal radiates at a 

continuous transmission power level. In contrast to the CW radar, FMCW radar can change 

its frequency mid-measurement allowing for frequency modulation of the signal. In this 

case to determine range requires that the waveform be marked in order to allow the 

propagation time to and from the target to be measured. The distance to the target object is 

determined by [15]: 

 
𝑅 = 

c ∙ |Δ𝑡|

2
=  
c ∙ |Δ𝑓|

2 ∙ (
𝑑𝑓
𝑑𝑡
)
 

Equation 16 

Where c is the speed of light, Δ𝑡 is the delay time, Δ𝑓is the measured change in 

frequency, df/dt is the frequency shift per unit of time (the step size of the sweep) and R is 

the range to target. 

2.2.1.4. Range resolution 

 

Radar Range resolution is the ability of a radar system to distinguish between two 

objects located on the same bearing. This can be defined as the minimum separation 

between two objects required for a radar system to be able resolve them as separate objects. 

It is determined by the operating bandwidth of the transmitted signal. The equation for 

range resolution in terms of signal bandwidth is [119]: 
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 𝑅𝑅 = 
𝑐

2Δ𝑓
 

Equation 17 

Where RR is range resolution, c the speed of light and Δ𝑓is the effective bandwidth of 

the signal. For example at 1 GHz the range resolution would be 15 cm. 

One potential issue that must be accounted for in the experiment is the potential for 

movement of the target within the beam. The maximum allowable movement can be 

controlled by adjusting the sweep time per point. The maximum movement distance 

allowable before the signal loses resolution can be determined by comparing the sweep 

time to the period of time the signal will cover. For example if the time resolution is 

determined to be 0.5 ns and the sweep time is 25 ms the maximum allowable movement 

before the movement will affect the signal is 75 mm [13].  

2.2.2. VNA based LTR and scattering parameters 

A Network Analyser (NA) is an advanced item of laboratory test equipment designed 

to measure the network parameters of electrical networks. Commonly NA’s measure 

complex S-parameters which represent the elements of a scattering matrix describing the 

characteristics of electrical networks when excited by electrical signals. Two types of NA 

are commonly available. These are: 

 The Scalar Network Analyser (SNA) – This is capable of measuring the 

amplitude properties of a network. 

 The Vector Network Analyser – This is capable of measuring both the amplitude 

and phase properties of a given electrical network. 

The ability of the VNA to measure electrical properties of a network is very useful, even 

more so as when an antenna is attached to the VNA it becomes a very versatile, broadband 

capable radar system. The flowchart representing the structure of a VNA based radar 

system can be found in ‘Fundamentals of Vector Network Analysis’ [120]. 

As the signal transmitted by a VNA propagates towards a target and then reflects from 

it, two major components of the waveform can be determined. These are the incident wave, 

which is the transmitted signal and the reflected wave, which is the waveform reflected and 

travelling in the opposite direction to the incident wave. The VNA separates these at the 
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test port with one being fed to the measurement channel and the other the reference channel. 

These are known as wave quantities [120] and S-parameters can be determined as the ratio 

between the transmitted incident and received reflected waveforms. The parameter S21 is 

the S-parameter collected and used for this work. S-parameters for S11 and S21 can be 

determined by Equation 18 [120]: 

 
𝑆11 = 

𝑏1
𝑎1
→𝑎2=0; 𝑆21 = 

𝑏2
𝑎1
→𝑎2=0 

Equation 18 

Where the transmitted incident power is |𝑎|2and the received reflected power is |𝑏|2, a1 

is the transmitted incident power on port 1, a2 is the transmitted incident power on port 2, 

b1 is the received reflected power on port 1 and b2 is the received reflected power on port 

2. S12 and S22 can then be determined using [120]: 

 
𝑆12 = 

𝑏1
𝑎2
→𝑎1=0; 𝑆22 = 

𝑏2
𝑎2
→𝑎1=0 

Equation 19 

 

The scattering matrix can then be represented by using the scattering parameters and the 

wave quantities as: 

 
[
𝑏1
𝑏2
] = [

𝑠11 𝑠12
𝑠21 𝑠22

] [
𝑎1
𝑎2
] 

Equation 20 

 

Therefore the amplitude of the S-parameter is determined by the amplitude ratio of the 

wave quantities while the phase of the S-parameter is determined by the phase difference 

between the two wave quantities. 

The work presented will include elements of both time and frequency domain analysis. 

If a dataset is represented on a graph with the signal plotted against an X axis measuring 

time then this is considered to be time domain analysis. Conversely if the given signal is 

comprised of the amplitude of extracted sinusoids from the signal and plotted against an X 

axis measuring frequency then this is frequency domain analysis. 
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2.3. Experimental Algorithm 

 

Figure 7. Block diagram outlining data flow 
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The block diagram in Figure 7 presents the data flow for the work performed. This 

includes the laboratory setup to take the data, transformation of the raw data into a dataset 

that can be processed and then decomposition of the data for further analysis. The data 

output from this process is further processed to be used in classification. For step 2 see 

Figure 8, Figure 9 and Figure 10 for a diagram of the experiment. 

2.3.1. Setting up the experiment 

When using a VNA to perform wideband radar experiments a number of settings must 

be considered. These are: 

- The transmitted power level. This must be determined in advance in order to satisfy 

both RF safety requirements and be sufficient to successfully illuminate the targets 

presented. For all the work that has presented the power level at the source has been 

set to -2 dBm which is 6.3 × 10−4W. Experiments have been successfully 

performed using a range of power levels from a maximum of 2 dBm down to a 

minimum of -4 dBm with no noticeable effects up to the maximum test range of 3 

m. 

- The IF bandwidth. This Intermediate Frequency (IF) is a frequency to which a 

carrier frequency is shifted during transmission or reception. It is mixed with a local 

oscillator signal in order to create what is known as a heterodyne signal. This allows 

for the frequency of the signal to be down converted to a more manageable level. 

This is useful because at very high frequencies, signal processing circuitry is not as 

effective and can perform badly. By reducing the frequency of the signal, devices 

such as transistors which suffer from very low gain at high frequencies can perform 

more effectively thereby favourably increasing the Signal to Noise Ratio (SNR). 

This also has the added advantage of reducing the cost of the components required 

to capture a signal. Limiting the size of the bandwidth of the IF frequency also 

improves the SNR. For all the work presented the IF bandwidth was set to 8 kHz in 

order to give the best compromise between scan speed and SNR. This leads to a total 

sweep time of 256 ms. 
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- Sampling Criteria. This includes both the number of points and the sweep. As 

discussed above the total sweep time for 2048 data points is 256 ms. This equates to 

125 μS per data point. The number of data points chosen can affect the unambiguous 

range of the system. Controlling this can reduce clutter/noise present in the signal. 

This is discussed further in the following point. 

-  Maximum unambiguous range of the system. This is an important consideration as 

the range at which the system is set to scan will help determine the power settings 

required in order to successfully illuminate the target as well as having an effect on 

the SNR. For example this can be calculated using a bandwidth of 2.5 GHz and 1023 

sample points in Equation 21: 

-  
𝑅𝑎𝑛𝑔𝑒 =  

𝐶

(2 ∗ 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ)
∙ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 =  

3 × 108

5 × 109
∙ 1023 = 61.38 

Equation 21 

 

This range is far greater than that required for the experiments performed and as 

such can be controlled by either increasing the bandwidth of the frequency sweep 

or reducing the number of points/samples taken. It is preferable to increase the 

bandwidth of the sweep as a reduction in the number of points/samples taken could 

lead to loss of useful information. For example if the bandwidth were increased to 

the maximum available sweep range the VNA would allow of 39.5 GHz then the 

maximum unambiguous range would become 3.88m. This is more appropriate to 

the range over which the scans are being conducted, though it does introduce 

problems during signal deconvolution as the bandwidth of the sweep would be 

greater than the antenna is capable of providing, thereby deconvolution would in 

places be essentially dividing by zero. This issue and a solution are discussed 

further section 3.1.1. 

2.3.2. Single and multiple target detection in isolation 

2.3.2.1. Methodology 

 

For each experiment the antenna were placed in a pseudo-monostatic arrangement with 

the VNA behind them. The VNA was connected to a PC running MatLab via a General 
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Purpose Interface Bus (GPIB) cable. Ten sweeps were performed on each target. The 

number of points taken varied depending on the experimental requirements. For 

experiments that require improved signal to noise ratio (SNR) a larger number of points 

were used but this comes at the cost of an increased sweep time. The data was filtered to 

reduce clutter, deconvolved to remove the transmission signal, decomposed to reduce the 

effect of the ETR and run through the GPOF method in post processing to extract the LTR 

poles. 

Sweep time is determined by a balance between IF bandwidth and the noise floor. The 

lower the IF bandwidth, the slower the sweep time will become allowing for an improved 

noise floor. For the purposes of the experiments performed in this work an IF bandwidth 

of 8 kHz has been chosen [121]. 

Optimally the antenna gain would be flat across the measurement bandwidth. In 

practical terms this is very hard to achieve as most antennas resonate at a particular 

frequency themselves. Double ridged horn antennas in two frequency bands have been 

used. These bands are 0.5 GHz – 3 GHz and 1 GHz – 18 GHz. As is apparent, the smaller 

geometry horns in the 1 - 18 GHz range are not capable of seeing some of the larger objects 

due to their fundamental LTR frequency being lower than 1 GHz. For example the poles 

of a 12 cm steel rod, the results of which will be discussed in the results section, are located 

around the 0.8 GHz mark and so the these horns would miss it. On the other hand, the 

larger dimension horns with the 0.5 – 3 GHz bandwidth would be able to detect this item 

but suffer from the drawbacks of excessive size and a smaller available bandwidth. 

2.3.2.2. Single object detection 

 

The experimental setup involved the use of a VNA to transmit a wideband Frequency 

Modulated Continuous Wave (FMCW) [13] radar pulse through a horn antenna with a 

frequency range of 500 MHz to 3 GHz. The objects presented from practical testing include 

a 12cm steel rod and a 6.5 cm needle. The target was placed 1.5 m from the transmitting 

and receiving antenna, suspended in free space using a non-reflective string. A block 

diagram of the experimental setup is shown in Figure 8. 
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Figure 8. Block diagram for the single object in isolation experiment 

2.3.2.3. Multiple object detection 

 

The objects used for practical testing include two 12 cm steel rods, a 6 cm steel rod with 

an 11 cm steel rod, a kitchen knife with the replica Olympic starting pistol, the 13 cm 

kitchen knife with the replica .44 caliber magnum revolver and a replica Olympic starting 

pistol with the replica semi-automatic pistol. 

The experimental setup involved the use of a VNA to generate and transmit a wideband 

FMCW radar [120] pulse through a horn antenna with a frequency range of 500 MHz to 3 

GHz. The antennas were arranged as with the single object experiment and the range kept 

the same. The targets were suspended in free space using a non-reflective rope. The targets 

were separated from each other in increments to determine the separation required at which 

both targets could be resolved [1]. A block diagram of the experimental setup for the range 

resolution experiment is shown to the left in Figure 9 while the multiple objects at  

the same range is shown to the right in Figure 9.  
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Figure 9. Block diagram for the range resolution and discrimination of two objects at the same range 

experiment 

2.3.4. Detection of targets attached to larger objects 

These experiments involved the use of a 70 cm water butt filled with saline as the larger 

object upon which a number of targets were attached. These targets included the 11 cm 

rod, the 13 cm kitchen knife, the replica Olympic starting pistol, the replica .44 caliber 

magnum revolver and the replica semi-automatic pistol. 

The experimental setup is shown in Figure 10 below with a water butt placed behind 

and in contact with the target. As before these experiments used the VNA to produce a 

FMCW radar pulse with an increased frequency range of 500 MHz to 40 GHz giving a 

bandwidth of 39.5 GHz. The increased bandwidth allowed for greater control of the 

maximum unambiguous range as discussed in section 2.2.1.2. Maximum unambiguous 

range for pulse radar systems. For these experiments a maximum range to target of 3 m 

was chosen allowing for the maximum unambiguous range of the system to be calculated 

using [122] 

 𝑅𝑎𝑛𝑔𝑒 =  
𝑐

(2 ∗ 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ)
∙ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 

Equation 22 

 

For this experiment the maximum unambiguous range is 
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 3 ×  108

(2 ∙ (39.59))
∙ 750 = 2.85𝑚 

Equation 23 

 

This allows for greater control of the extent of the beam pattern and reduces the clutter 

detected. It is important to note that a frequency sweep of 39.5 GHz is greater than the 

available sweep range presented by the antenna. This can lead to problems of its own such 

as leading to the signal being divided by 0, as discussed in section 3.1.1. Signal 

deconvolution. The calculation in Equation 22 can be rearranged determine the number of 

points required. The number of points was selected to be 750 as this gives a range close to 

the 3 m required and allows for sufficient detail to be extracted. 

 

Figure 10. Block diagram for detection of objects attached to larger objects experiment 

The results of the work presented with the threat object placed on the water butt showed 

the potential for a threat object to be isolated from the larger geometric object on which it 

was placed. This allowed for further work on CTD to continue.  
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2.4. Simulation procedures 

Simulations of targets in isolation have been performed to ensure that the theoretically 

calculated expected resonant frequency of an object matches that of the simulation and the 

practically tested object. The formula for the theoretical calculation of the fundamental 

resonant frequency can be found in Equation 1. A list of targets versus theoretical, 

simulated and practical resonant frequencies is presented in Table 4:  

Table 4: Fundamental Resonant Frequencies of Simulated and Practical targets 

Target Theoretical 

resonant 

frequency 

(GHz) 

Simulated 

resonant 

frequency 

(GHz) 

Practical resonant 

frequency (GPOF 

result)  

(GHz) 

6.5 cm needle 1.961 1.89 1.92 

Steel rod 1.1 0.96 1 

Replica .38 revolver 0.76 0.742 0.75 

Kitchen knife 0.98 1.04 1.35 

 

In Table 4, the theoretical result is obtained using Equation 1, the simulated result was 

obtained by using computer based Finite Element Analysis and the practical result was 

obtained experimentally. 

The results presented in Table 4 match well for theoretical, simulated and practical 

results of the first three objects. The knife is the exception, with the simulated result 

showing a considerable difference between itself and the other two results. This is likely 

due to the blade of the knife extending into the handle by an undetermined distance. The 

estimate of this distance used must be greater than that practically. Therefore the practical 

test observes a smaller distance over which the surface currents are generated and so shows 

as a higher resonant frequency.  

All simulations for single and multiple object detection were performed with a uniform 

set of parameters to allow for accurate comparison of the results. The software used is the 

Finite Element Analysis (FEA) package COMSOL. The workspace in which the simulation 
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was performed was a volume of air in which the targets were located surrounded by a 

Perfectly Matched Layer (PML). A PML is a domain within the simulation which simulates 

a waveform propagating off to infinity and does not reflect any signal. Illumination was 

provided by a plane wave orientated in the X-axis and propagating in the direction of the 

negative Y-axis. The reflection from the target then returns along the positive Y-axis. The 

result of this is then divided with the background electric field in order to create a simulated 

S parameter for comparison with the data taken practically using a VNA. This was then 

recorded for the vertical polarization (co-polar) and the horizontal polarization (cross-

polar) to compare with the practical results S11 and S21. Post processing in MatLab has 

been used to extract the pole data. 

The simulation comprised a finite element analysis of the meshed target object and 

surrounding volume. A tetrahedral based mesh shown in Figure 11 was used to map the 

volume.  

 

Figure 11. Meshed volume for simulation of a 11 cm length, 1.2 cm diameter steel rod 

The number of elements involved in this simulation created by the use of meshing was 

~100000. The bandwidth of the sweep covered 500 MHz to 2 GHz with measurements 

taken every 10 MHz totaling 150 points of measurement. The number of points was chosen 

to be adequate for an accurate solution to the problem, though it is not the same as the 

practical measurements taken with 1001 points with an approximate bandwidth of 200 Hz 

between points. Due to the limitations in the processing power available for the simulation, 

Y 

axis 

Z 

axis 
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producing a full simulation of 1001 points is computationally prohibitive for reasons of 

solving the much more detailed mesh at higher frequencies. The alternative method used 

is to perform a simulation of 150 points correct for the difference by using Time-gating in 

post processing. 

As is shown in Figure 12 below the scattered electric field strength of the steel rod 

illuminated by a plane wave drops off rapidly over distance. The volume of air within the 

perfectly matched layer measures 1.5 m in the Y axis by 0.6 m in the X and Z axis.  

 

Figure 12. Simulated relative electric field results for an 11 cm length, 1.2 cm diameter steel rod at 960 MHz 

Simulations of the individual targets in isolation have been completed with acceptable 

results as shown by the comparison of theoretical, simulated and practical results in Table 

4.  Objects on body are a more complex issue as the required meshing would be so dense 

as to render a simulation on the hardware available impossible. Consideration was given 

to the creation of a Debye model of the complex dielectric response of the human body in 

order to reduce the computational complexity of the mesh. This was unsuccessful as the 

mesh was still far too dense to be solved successfully.2.5. EM propagation and scattering 
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Electromagnetic waveforms and their interaction with the physical world are governed 

by Maxwell’s equations [6]. The propagating EM waveform presented in Figure 12 is a 

FEA example of this. The received signal then becomes dependent on the RCS of the target 

being illuminated. The size of the RCS of the target relative to the wavelength of the EM 

waveform illuminating will determine the scattering properties of the signal. This process 

allows for a direct analogy with the Rayleigh scattering regime. At higher frequencies, 

~0.5-1 GHz, where free-space wavelengths (60-30 cm) are commensurate with the size of 

metal objects such as handguns and knives, the radar cross section of these objects display 

an oscillatory character analogous to the Mie scattering regime. This well understood 

process is also known as the resonant regime and therefore can be used to represent the 

scattering properties of LTR signals. 

Discussion 

The preceding chapter has presented an overview of RF emission safety with reference 

to IEEE standards and discussion of how that applies to this work. The experimental setup 

has been considered along with different target configurations. Finally the simulation 

procedures used have been presented. This experimental setup is standardized throughout 

the results presented. The data extracted from the experiments and simulations is in a raw 

format and needs to be processed to extract the useful LTR data. Techniques to facilitate 

this are discussed in the following chapter. 
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Chapter 3  
 

Clutter Reduction, Deconvolution and Classification Techniques 

Preview. 

This chapter will discuss clutter reduction using three types of filter alongside linear and 

non-linear deconvolution techniques. Clutter reduction in RADAR systems is necessary as 

most scenes will have unwanted objects present within them. The filters to be discussed 

will be the discrete and continuous wavelet filter, the Savitsky-Golay smoothing filter and 

the Time-Gating technique. A brief introduction to both the CLEAN non-linear 

deconvolution algorithm and the wavelet transform have also been provided.  

3.1. Signal Deconvolution 

3.1.1. Signal deconvolution 

One of the major problems encountered with RADAR signal processing is the 

convolution of the antenna response with the useful data. Convolution is a mathematical 

operation on two functions, producing a third function that is a modified version of the first 

function as presented in section 3.1.2. Linear deconvolution. This is a problem particularly 

in LTR analysis as the received power level of the useful LTR data is of considerably 

smaller magnitude than the Antenna Response. One solution to this is to perform a signal 

deconvolution. Signal deconvolution can be considered to be analogous to division of the 

two signals in the frequency domain as presented in [87]. This solution works in the case 

where the absolute value of the complex number 𝑔̂ is not equal to zero. In the case of signal 

deconvolution, 𝑔̂  can be considered to be the unwanted clutter that has been convolved 

with the valuable signal. In some cases, such as when the frequency sweep used is of greater 

bandwidth than that of the horns used to improve frequency resolution, this could approach 

zero. 

 To resolve the issue of when the absolute value of 𝑔̂ approaches zero a selection of non-

linear deconvolution techniques have been developed, particularly in the area of radio 

astronomical imagery. These include the CLEAN algorithm [123] and the Burg algorithm, 
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more commonly known as the Maximum Entropy Method (MEM) [124]. The CLEAN 

algorithm is the most commonly used non-linear deconvolution method with a number of 

alternative versions such as the Clark CLEAN algorithm [125] being developed for 

imaging purposes. More recently, the possibility of applying the CLEAN algorithm to non-

imaging RADAR systems has been considered as an alternative to the matched and Wiener 

filters [13] [126]. Algorithms such as coherent CLEAN, sequence CLEAN and lean 

CLEAN have been implemented and tested on standard RADAR based systems. 

The process of developing the CLEAN algorithm suitable for radar systems started with 

the coherent CLEAN method published in Tsao and Steinberg ‘Reduction of sidelobe and 

speckle artefacts in microwave imaging: The CLEAN technique’ [127] concluding that the 

CLEAN technique allows for the improvement of both image contrast and dynamic range. 

This built on the work published by Clark [125] which used the Fast Fourier Transform 

(FFT) to reduce the computational intensity required to complete the CLEAN algorithm. 

In 2002 Bose developed the sequence CLEAN algorithm as an improvement to the 

coherent CLEAN algorithm [128]. In over 100 different cases the sequence CLEAN 

algorithm provided equal to or better performance than that of the coherent CLEAN 

algorithm. Bose’s sequence CLEAN algorithm has also been applied to Inverse Synthetic 

Aperture Radar (ISAR) images of aircraft with promising results. Further work 

investigating the application of CLEAN to radar systems can be found in the work of 

Martorella [129] where a Gaussianity test (GT) was performed and a probability of false 

alarm determined to improve the performance of the CLEAN algorithm. 

To address some of the performance issues identified in the CLEAN deconvolution 

algorithms the lean CLEAN algorithm was introduced by Bose [130]. This version of the 

CLEAN algorithm detects and discards any spurious peaks within the signal and so corrects 

for some of the problems with coherent CLEAN. This led to the development of the active 

CLEAN algorithm [131] to improve the detection of closely spaced targets. 

The CLEAN algorithms application to security scanning systems is a current area of 

research. Techniques such as multi-frequency synthesis, the CLEAN algorithm and the 

Maximum Entropy Method, also known as the Burg algorithm for the application of 

vehicle scanning at ports of entry have been considered with an aim to reducing the cost of 
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large antenna arrays [132]. This work was followed up with a measure of the level of 

improvement provided by these techniques [3]. 

 

3.1.2. Linear deconvolution 

Signal convolution of the antenna response with the useful data presents one of the 

major problems encountered with radar signal processing. The convolution theorem in the 

time domain is shown in Equation 24 below: 

 ℎ̂ = 𝑓 ∗ 𝑔̂ Equation 24 

Where ℎ̂ is the experimentally obtained signal, 𝑓 is the useful signal to be recovered and 

𝑔̂ is the signal with which 𝑓 has been convolved. 

This is a problem particularly in LTR analysis as the useful LTR data is of considerably 

smaller magnitude than the frequency variation of the antenna response. One solution to 

this is to perform a linear signal deconvolution. As stated previously, in its simplest form, 

linear signal deconvolution is equivalent to division of the two signals in the frequency 

domain for example: 

 𝑓 = ℎ̂/𝑔̂ Equation 25 

This solution only works in the case where the absolute value of the complex number 𝑔̂ 

is not equal to zero. To account for the potential for the transmission signal values to 

approach zero, an offset determined as a percentage of the maximum magnitude of the 

transmission signal has been added to the transmission signal in order to ensure that the 

value cannot reduce to zero. This results in the deconvolution equation becoming: 

 𝑓 = ℎ̂/(𝑔̂ + (𝑔𝑚𝑎𝑥 ∗  𝑔0) 
Equation 26 

Where 𝑔0is the fixed offset which can have a value between 0 and 1. The reference 

signal 𝑔 is obtained experimentally by measuring the output of the horn antenna with the 

transmitting and receiving antenna aimed towards each other and free space in between. 
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Figure 13: 6.5 cm needle original data grabbed by VNA, no signal processing, frequency domain, real part 

shown 

Figure 13 above presents the data in the form of the horizontally polarised S21 scattering 

parameter (S parameter) grabbed by the VNA, with the greatest magnitude peak 

corresponding to the LTR. These S parameters represent the elements of a scattering matrix 

for a target object illuminated by a propagating planar EM waveform and contain 

information on both the magnitude and phase properties of the received signal. This 

information is presented in the complex frequency domain in Figure 14. 

The 6.5 cm needle is used as a representative target for this as its resonant frequency 

sits close to 1.9 GHz and it provides a relatively high resonant response. This means that 

in LTR terms the signal decays over several nanoseconds, making for an object that is 

comparatively simple to detect. The smooth damped sinusoid produced by the needle is 

also very close to the ideal representation of an LTR waveform and presents a good 

example of the type of data that can be expected to be extracted. 
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Figure 14: 6.5 cm needle original data grabbed by VNA, no signal processing, time domain, real part shown 

Figure 14 represents the same 6.5 cm needle after the signal has been transformed into 

the time domain using the inverse FFT. At this point no further signal processing has been 

performed. The relative magnitude of the largest peak in the plot compared to the 

transmission signal of 0 dBm is approaching 8 × 10−4 and is located just after point 100. 

Further peaks of lesser magnitude can be found between points 300 and 400. This shows 

the antenna response saturating the signal and potentially masking the useful information 

that LTR can provide. This level of transmission characteristics contained within the signal 

mean that without further processing the data would be unsuitable for the work to be 

performed. Therefore, deconvolution of the signal is a necessity and is the next stage of 

processing to be performed. 
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Figure 15: 6.5 cm needle data grabbed by VNA, deconvolved, time domain, real part shown 

Figure 15 presents two plots of the deconvolved signal from the 6.5 cm needle. The plot 

to the left provides a representation of the deconvolved signal over the same axis as those 

in Figure 13 and Figure 14. For ease of analysis the plot to the right in Figure 15 shows the 

same dataset zoomed on the features of interest. In the left plot the signal shows a sharp 

decay with a smaller tail, while when zoomed in it is apparent that the signal has a more 

damped sinusoidal appearance. The first point of note is that the maximum relative 

magnitude of the deconvolved signal is now 3 × 10−4 of the transmitted 0 dBm signal in 

this case. This magnitude of this signal is dependent in the antenna gain as well as 

attenuation of the signal caused by range to target. This occurs at ~point 130 which when 

compared to figure 8 shows itself to be within the high magnitude antenna response. This 

indicates that as this feature is of smaller magnitude than the antenna response at this point, 

without the application of signal deconvolution the feature may be missed. This presents a 

good example of one of the major issues that presents itself when attempting LTR analysis. 

In effect if the deconvolution of the signal is unsuccessful/not possible then the ability to 

use the LTR method to obtain useful target information in general terms is essentially zero. 
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Figure 16: Pole plot results for 6.5 cm needle only with signal deconvolution 

The extracted pole values using the standard Generalised Pencil Of Function (GPOF) 

method for the same 6.5 cm needle are presented in Figure 16. The GPOF method will be 

discussed in detail in section3.1.3. GPOF and Singular Variable Decomposition. As 

mentioned previously the frequency of the fundamental poles for the needle can be 

expected to occur at values approaching 1.9 GHz. The plot to the left in Figure 16 shows 

the signal decay time against the frequency of the poles while the plot to the right presents 

the energy of the pole against frequency. The spurious poles located at ~1.6 GHz have 

much lower energy than those at ~1.9 GHz and so can be safely discounted. Without 

deconvolution the results can be a little different. The 6.5 cm needle was chosen for this 

test as it is the only object tested that presents frequencies close to that of the deconvolved 

signal with no deconvolution. It is apparent that these frequencies are still different though, 

therefore for classification purposes the needle data without deconvolution is useless.  
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3.1.3. GPOF and Singular Variable Decomposition 

The Generalised Pencil of Function is used as a reliable method for estimating the 

parameters of a signal. It is used to find a set of complex coefficients when given a set of 

discrete data. The method requires the solution of a generalised Eigenvalue problem in 

order to find the poles. When compared to Prony’s method and other Pencil-of-functions 

which obtain the information in two steps, the GPOF method is less sensitive to noise and 

computationally more efficient. A full discussion and derivation of the GPOF method can 

be found in Hua and Sarkar’s seminal 1989 paper [95]. 

The first step of the GPOF algorithm used for this work involves determination of a 

pencil parameter from the dataset for use in estimating the data. This requested model order 

is then checked against this parameter to ensure that the model order does not exceed the 

size of the pencil parameter. For this work the pencil parameter has been set to half the 

length of the data set. 

This algorithm presented in [95] allows the extraction of frequency, decay time and 

amplitude pole data. This data is then used to reconstruct the original signal to allow the 

standard error between the input data and the processed data at various model orders to be 

calculated. 

Use of this extracted standard error data allows for the determination of the correct 

model order. Once this has been determined, the algorithm can be run again with the correct 

model order. 

Singular Variable Decomposition (SVD) is a method used for transforming correlated 

variables into a set of uncorrelated ones that better demonstrate the relationships between 

the data points while identifying and ordering the dimensions of the data along which there 

is the most variation.  

The SVD is based on the fundamental theorem of linear algebra as presented by [133] 

that states a matrix can be broken down into three matrices - orthogonal matrix U, diagonal 

matrix S and transpose matrix V as shown in Equation 27 [133]. 

 𝐴𝑚𝑛 = 𝑈𝑚𝑚𝑆𝑚𝑛𝑉
𝑇
𝑛𝑛 Equation 27 
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It is necessary to perform SVD on the data to obtain the three components stated in 

Equation 27. These components are used to solve the eigenvalue problem used by the 

GPOF method in order to extract the poles of the data. 

 

 

Figure 17: Pole plot results for 6.5 cm needle only without signal deconvolution 

The differences between the results for the 6.5 cm needle with and without 

deconvolution presented in Figure 16 and Figure 17 are quite small although still 

significant enough to cause errors in classification. For example where the deconvolved 

signal finds the resonant frequency of the needle to be 1.9 GHz and decay time to be ~2 ns, 

the non-deconvolved signal gives ~1.8 GHz and ~1.3 ns. The energy levels present in the 

useful poles are also lower, while the spurious poles are stronger. Due to its highly resonant 

nature the 6.5 cm needle is capable of providing a response even without signal 

deconvolution, although not a particularly accurate one. For objects of a less resonant 
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nature it becomes progressively more difficult to extract any usable information without 

application of signal deconvolution. 

The results presented in this section show the value of linear deconvolution techniques 

to a radar based LTR security system. As mentioned this approach is not without its 

limitations therefore alternative methods of signal deconvolution, in particular non-linear 

deconvolution techniques have been explored as a method to support or even potentially 

replace linear deconvolution.  

3.2. Non-Linear deconvolution: The CLEAN approach 

Non-Linear deconvolution techniques are an approach that has been applied in the field 

of radio astronomy to improve the fidelity of images obtained using interferometric antenna 

arrays [123]. As with radar systems, radio astronomers discovered that the presence of 

unmeasured regions in the Fourier plane resulted in an undefined result for that particular 

pixel, therefore rendering standard linear deconvolution techniques inadequate to the task. 

Non-linear deconvolution, in particular the CLEAN algorithm first presented in [123] 

presented a potential solution to this. Variants of the CLEAN algorithm include the original 

Hogbom, Clarke and Cotton-Schwab algorithms. 

Outside of the radio astronomy community the CLEAN algorithm has found 

applications in a number of areas due to the feature extraction capabilities of the technique. 

A number of applications in radar signal processing have been attempted ranging from 

imaging and Linear Frequency Modulated Continuous Wave (LFMCW) radar systems to 

improving detection of helicopters [128] [130] [131] [134] [135] [136]. 

3.2.1. 1D signal analysis: The CLEAN algorithm 

The CLEAN algorithm requires two major components to function. The first of these is 

known as the dirty map. This is the dataset that the CLEAN algorithm is intended to 

improve, in this case the horizontally polarised S21 data. The second component required 

is the Point Spread Function (PSF) of the signal. In the case of a 1 dimensional non-imaging 

radar system this can be considered to be the Impulse Response Function (IRF) of that 
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system and is estimated by computing the IFFT of the signal and centering the result at the 

origin. 

The operation of the CLEAN algorithm determines the location of assumed point 

sources within the dirty map. In the case of a 1 dimensional LTR signal these point sources 

can be assumed to be the major peaks within the signal. The algorithm then determines the 

point of maximum correlation within the dataset, the PSF is shifted to match and then 

subtracted from the image. This subtracted data is used to create a delta function with peak 

intensity and location equal to that of the subtracted data. This is then saved to a separate 

dataset and is known as a CLEAN component. An example of this process is shown in 

Figure 18. The process is then repeated until a predetermined threshold is reached. 

 

Figure 18: The CLEAN deconvolution technique applied to a 1D signal for creating the CLEAN components 

[3] 

The iterative approach to this method builds up a set of CLEAN components in the 

separate dataset created whose peak intensity and location equate to the location of the 

point sources within the dirty map. Once the stopping criteria has been met, the CLEAN 

components are then convolved with the CLEAN PSF. This CLEAN PSF is an ideal 

Gaussian function fitted to the central maximum of the PSF. The residual dataset left over 

from the iterative subtraction is then added to this to create the final CLEAN image.  

The benefits to the use of the CLEAN algorithm in this application are in its ability to 

separate out the peaks within a given signal. This allows for smaller peaks that may have 
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been suppressed within the original data to be brought into focus and there effect on the 

dataset to be analysed. When used in support of the linear deconvolution approach the 

CLEAN algorithm allows for improved detection of poles with the downside that in order 

for it to be performed correctly the threshold must be very accurately determined a priori. 

 

Figure 19: CLEANed LTR signal for 6.5 cm needle 

The CLEANed LTR signal is presented in Figure 19. This represents itself as a peak 

occurring 2.4 ns into the signal, followed by several much smaller peaks spread over the 

following ~2 ns. This data is then processed using the GPOF and the pole plots are 

presented in Figure 20. 
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Figure 20: Pole plots for CLEANed 6.5 cm needle only 

As the poles for the 6.5cm needle have been calculated to occur at 1.961 GHz, it is 

apparent when Figure 20 is compared to Figure 16 that the CLEAN algorithm has removed 

the unwanted poles that occurred at 1.6 GHz using the original FFT and GPOF approach. 

This has come with the cost that some of the useful poles to be found around 1.9 GHz have 

also been removed from the signal. 

The modified CLEAN algorithm used in this work comprises the following steps: 
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Figure 21: Flowchart of CLEAN non-linear deconvolution process 

This method allows for the lesser magnitude components of a signal to be separated 

from their larger cousins, potentially reducing the effect of the Early Time Response (ETR) 

on the signal. 
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3.3. Filtering and Clutter reduction 

Filtering and clutter reduction techniques are an important part of any signal processing 

approach. High frequency noise and unwanted features in a signal are commonplace and 

can provide significant disruption to a signal. Three types of filtering/clutter reduction have 

been applied to the datasets to improve Signal to Noise Ratio (SNR). 

3.3.1. Introduction to wavelets and the wavelet transform 

The wavelet analysis approach is used to decompose a given signal, be it sound, image 

or radar return, into components of varying durations which are known as wavelets. These 

components or wavelets contain localized features of the analysed signal over dilated and 

translated wavelets and can be used for a broad range of signal processing tasks. One of 

the tasks that can be performed using wavelet analysis is noise/clutter reduction of the 

signal.  Wavelets can also be used to perform accurate signal compression and it is by 

applying this capability for compression that filtering of the signal using wavelets can be 

performed. 

A wavelet is a function that satisfies at least the two following criteria [137]; 

1. The integral of the function 𝜓(𝑥) over all 𝑥 is 0. 

 
∫ 𝜓(𝑥)𝑑𝑥 = 0
∞

−∞

 
Equation 28 

2. The square of 𝜓(𝑥) has integral 1. 

 
∫ 𝜓(𝑥)𝑑𝑥 = 1
∞

−∞

 
Equation 29 

To meet the first criterion the wavelet must have an equal area above and below the X 

axis. The second criterion requires that as the function approaches towards positive and 

negative infinity that the function decays to zero. As this means the function will decay as 

it moves away from the origin as opposed to infinite sinusoidal waveforms, the signal 

duration is finite and is therefore a wavelet as opposed to a wave. 

The first and simplest of the wavelet transforms made available is based around the Haar 

wavelet which was used for analysis of discrete signals. A representation of the Haar 

wavelet can be found in Figure 22 [137];  
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Figure 22: The Haar wavelet with the scaling function (phi) and the mother wavelet (psi) which uses this 

scaling function [138] 

As this transform can only be applied to discrete signals, it is necessary to define what 

a discrete signal is. Therefore a discrete signal can be defined as a function of time with 

values occurring at discrete intervals. We shall express discrete signals in the form: 

 𝑑𝑓 =  𝑑𝑓1, 𝑑𝑓2, … . , 𝑑𝑓𝑛 Equation 30 

Where n is a positive even integer which equates to the length of ‘df’. If n has an odd 

value a zero must be appended to the end of the signal to make the length of ‘df’ even. The 

values of ‘df’ are the measured values of a given signal ‘g’ measured at different points in 

time ‘tn’ therefore the values of s are: 

 𝑑𝑓1 = 𝑔(𝑡1), 𝑑𝑓2 = 𝑔(𝑡2),… . , 𝑑𝑓3𝑛 = 𝑔(𝑡𝑛) Equation 31 

The Haar transform as with all wavelet transforms decomposes the signal presented to 

it. This decomposition results in two subsignals, half the length of the original being 

generated.  These subsignals are known as the trend (a running average) and the fluctuation 
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(a running difference). The trend is calculated by averaging pairs of values through the 

signal, for example; 

 𝐴1 =
𝑑𝑓1+𝑑𝑓2

2
 , 𝐴2 =

𝑑𝑓3+𝑑𝑓4

2
 , … . , 𝐴𝑛 =

𝑑𝑓𝑚+𝑑𝑓𝑚+1

2
   

Equation 32 

Where m is an integer value. The fluctuation is then calculated using: 

 
𝐷1 =

𝑑𝑓1 − 𝑑𝑓2

√2
 , 𝐷2 =

𝑑𝑓3 − 𝑑𝑓4

√2
 , … . , 𝐷𝑛 =

𝑑𝑓𝑚 − 𝑑𝑓𝑚+1

√2
 

Equation 33 

Therefore the first level Haar transform will be: 

 𝑑𝑓
𝐻1
→ (𝐴1¦𝐷1) 

Equation 34 

To decompose the discrete signal ’df’ into its trend (A1) and fluctuation (D1) 

components. This process can be reversed, allowing for the original signal to be retrieved 

from the two components of the transformed signal using Equation 35: 

 
𝑓 =  (

𝐴1 + 𝐷1

√2
 ,
𝐴1 − 𝐷1

√2
 , … ,

𝐴𝑁
2
+ 𝐷𝑁

2

√2
 ,

𝐴𝑁
2
− 𝐷𝑁

2

√2
) 

 

Equation 35 

The major advantage of this particular form of transform is shown by the result of the 

trend and fluctuation subsignals. The trend subsignal will be similar in form to the original 

signal, although with increased magnitude while the fluctuation subsignal will normally 

have a large number of values around zero. The small fluctuations feature of the Haar 

transform lends itself to signal compression which in turn is very valuable for noise 

reduction in the signal. 

The CWT is also capable of performing compression and filtering of a signal. To define 

the CWT we use the analyzing function 𝜓(𝑥), the definition of which is shown in Equation 

36 [137]; 

 
𝜓(𝑥) =  2𝜋𝑤

−1
2 [1 − 2𝜋 (

𝑥

𝑤
)
2

] 𝑒−𝜋(
𝑥
𝑤
)
2

, 𝑤 =
1

𝑛
 

Equation 36 

This is the well-known Mexican hat representation which is a 2nd order Gaussian 

wavelet with width parameter ‘w’, shown in Figure 23 below: 
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Figure 23:  Gaussian4 / Mexican hat wavelet 

By altering parameter ‘w’ it is possible to dilate or constrict the wavelet for use in 

analysis. For example the smaller the value of ‘w’ the more of the energy contained within 

the wavelet is contained over a smaller spread of the x axis and vice versa. 

Once an analyzing wavelet has been determined, the CWT of discrete signal ‘f’ is 

determined by calculating the correlations of the signal with discrete samplings of function 

𝜓𝑠(𝑥) as determined by: 

 
𝜓𝑠(𝑥) =  

1

√𝑠
 𝜓 (

𝑥

𝑠
) , 𝑠 > 0 

Equation 37  

where the s parameter is the scale parameter. When the signal is sampled at discrete 

time values 𝑡1, 𝑡2, … , 𝑡𝑛, where n is the length of signal ‘f’ then the discrete signal 𝑔𝑠 will 

be generated: 

 𝑔𝑠 = (𝜓𝑠(𝑡1), 𝜓𝑠(𝑡2), … , 𝜓𝑠(𝑡𝑛)) Equation 38 
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The results for the CWT are now a collection of discrete correlations. By making careful 

choices as to the width and scale parameters it becomes possible to perform a very finely 

detailed time-frequency analysis on the signal presented. Results of the application of the 

CWT can be found in section 5.1. Real valued wavelet analysis. The same method is used 

to calculate the complex ℂCWT with one difference, when calculating the correlations of 

the imaginary component the CWT reuses the real valued wavelet while the ℂCWT uses 

the imaginary component of the complex wavelet. 

Walker [137], presents an example of how to calculate the wavelet coefficients 

effectively. For example in order to calculate the coefficients for the CWT a mother 

wavelet is selected. This is then constricted or dilated in order to create a windowed mother 

wavelet for use in calculating the correlations. 

In order to successfully complete this process the range of scales required must be 

known, along with choice of a mother wavelet that matches as closely as possible to the 

waveform being analysed. 

Choosing the correct wavelet is very important when approaching wavelet analysis. 

Two of the fundamental types of wavelet that have been tested in this work are the 

Morlet/Gabor wavelet as shown in Figure 24 and the Gaussian/Mexican hat wavelet 

presented in Figure 23.  
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Figure 24: Morlet wavelet 

The equation representing the analyzing Complex Gabor wavelet is [137]: 

 
𝜓(𝒙) = w

−1
2 e−π(

x
w
)
2

e
i2πvx
w  

Equation 39 

Where ‘v’ represents the frequency/scale parameter and ‘w’ is the width parameter. As 

this wavelet is complex valued the real component is known as the Morlet wavelet and is 

represented by: 

 
𝜓𝑅(𝑥) =  w

−1
2 e−π(

x
w
)
2

cos (
2πvx

w
) 

Equation 40 

The imaginary component is: 

 
𝜓𝑅(𝑥) =  w

−1
2 e−π(

x
w
)
2

sin (
2πvx

w
) 

Equation 41 
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3.3.2. Threshold filtering with the wavelet transform 

For the wavelet transform approach to LTR scanning the wavelet based threshold filter 

was selected to perform the next stage of filtering. The use of wavelet threshold filtering 

in audio signals analysis is a well-known practice [137]. This can be performed using either 

the discrete or continuous wavelet transforms. As with the wavelet transform, the first 

wavelet filter to be produced was based around the Haar wavelet for discrete signal 

filtering. With the progression of wavelet analysis to the continuous form, continuous 

wavelet filters based initially around the Daubechies wavelet family [64] became available. 

The steps required to perform wavelet filtering of a signal are as follows. Firstly, a CWT 

is performed on the signal using a specified wavelet. Next a threshold value must be chosen 

for which any values below this threshold can be removed and any points within the 

transformed signal below this value are set to zero. Finally an inverse CWT is performed 

ideally leaving behind a perfect representation of the original signal with clutter removed 

from it. An example of this will now be presented. 
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Figure 25: Initial 10 GHz signal with no noise 

The signal generated and presented in Figure 25 was a damped sinusoidal waveform 

with a maximum amplitude of 2 and a frequency of 10 GHz. The signal was designed to 

last for a total of one nanosecond and attenuates down to approach zero in 0.6 nanoseconds. 

This signal is without noise and makes for a good example of the sort of idealized signal 

that would be expected with an LTR response, albeit in practice LTR signals will have a 

considerably higher frequency. For example a highly resonant object, such as the 6.5 cm 

needle that has been tested has a similar form of response with a frequency of 

approximately 1.9 GHz. 

To statistically analyse the advantage of using the filtering methods the correlation 

between the input and the outputs has been calculated using linear regression. Correlation 

is a statistical measure that measures the relationship between two different signals with 

respect to each other. If the value of correlation is 1, the relationship between the two 

datasets is known as a perfect correlation, i.e. when variable X goes up, variable Y also 
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goes up in a perfectly linear fashion. If the value of correlation is -1 the relationship 

between the two variables is a perfect anti-correlation, i.e. when variable X goes up, 

variable Y goes down in a perfectly linear fashion. If the value of the correlation is 

approaching zero there is no relationship between the variables. 

3.3.2.1. Linear Regression using least squares 

 

Linear regression is a powerful tool in statistical analysis. It allows for the modelling of 

the relationships between a dependent and one or more independent variables. The least 

squares method is considered the standard mathematical approach to solving a linear 

regression problem. This involves creation of a least squares regression line which 

minimizes the sum of the squared residuals of the data points from the regression line with 

the goal to find the equation of a straight line  which would best fit the data points. The 

regression coefficient ‘r’ can then be used to calculate the correlation between the two 

datasets and is found using Equation 42: 

 
𝑟 =  

∑ (𝑥𝑗 − 𝑥̅)(𝑦𝑗 − 𝑦̅)
𝑘
𝑗=1

√∑ (𝑥𝑗 − 𝑥̅)
2
∑ (𝑦𝑗 − 𝑦̅)

2𝑘
𝑗=1

𝑘
𝑗=1

 
 

Equation 42 
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Figure 26: Signal with added Gaussian white noise 

Figure 26 presents the same artificially generated 10 GHz signal in the presence of 

additive Gaussian white noise. This noise was generated using MatLab’s built in AWGN 

(Add White Gaussian Noise) function. Signal processing considers additive Gaussian 

white noise to be a signal with uniform power across the frequency bands, with a normal 

distribution in the time domain that averages to zero. It is known as additive as it can be 

added to a given signal to mimic the effect of natural processes on the signal. The noise 

added to the signal in this case has a Signal to Noise Ratio (SNR) of 10 dB.  

In the case of the signal with added Gaussian white noise the cross-correlation between 

the original and noise added signals is 0.8175. 
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Figure 27: CWT of noisy signal 

The intermediate step of converting the signal using the CWT is presented in Figure 27. 

The two plots presented in Figure 27 show this data in two different formats. To the left 

the plot shows each of the results of the analysis at different scales as an individual 

waveform. In this particular example, the CWT has been performed over 14 scale points. 

Even with such a limited number of scale points the plot has become very difficult to read 

therefore an alternative method of presenting the data is necessary. The plot on the right is 

an example of a suitable alternative. This plot is a filled contour map of the complex data 

created by the CWT. Thresholding is then applied to the dataset and an inverse CWT is 

performed. The threshold level was determined by calculating the standard deviation of a 

section of the signal known to contain only noise, then multiplying this by two to ensure 

that any noise components in the signal are eliminated as per [137]. 
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Table 5: Table of wavelet components with correlation values 

Scale 

Component 

number 

Original signal 

to wavelet 

correlation 

Noisy signal to 

wavelet 

correlation 

Recovered 

signal to wavelet 

correlation 

1 0.5388 0.5239 0.5463 

2 0.7962 0.6516 0.8097 

3 0.9018 0.6847 0.9170 

4 0.9387 0.6927 0.9527 

5 0.9452 0.6879 0.9672 

6 0.9107 0.6552 0.9205 

7 0.7193 0.5090 0.7259 

8 0.3604 0.2572 0.3752 

9 0.2148 0.1733 0.2544 

10 0.1558 0.1528 0.2243 

 

Table 5 shows the correlation of the first 10 wavelet components against the original clean 

signal, the original signal with additive noise and the recovered signal. The correlation 

between the wavelet components and the original/recovered signals is greatest around a 

scale factor of 5 in this case. As the scale factor increases beyond 5 the correlation begins 

to drop off, with a particularly large decrease between scale factors 6, 7 and 8. The 

correlation between the original signal with no noise and the recovered signal after filtering 

is very high at 0.9726. 
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Figure 28: Reconstructed signal after wavelet filtering 

This process leads to the filtered signal presented in Figure 28 after the application of a 

Savitzky-Golay (SG) filter. SG filters are explained in detail in the next section. With the 

application of this filter type to the wavelet filtered data the cross-correlation between the 

original signal and the filtered data was measured at 0.9813 while without the application 

of the SG filter this value becomes 0.9170. This shows that the wavelet filter is of value 

when applied to a signal on its own, although improvements can be achieved by merging 

this with other techniques. 

3.3.3. Savitzky-Golay Filters 

The SG filter, first proposed in 1964, is a digital filtering technique that uses Linear 

Least Squares (LLS) polynomial approximation to remove high frequency noise from a 

given signal. It has the effect of smoothing the data provided to it therefore increasing the 

SNR while limiting the amount of distortion that the method introduces into the signal. The 
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method was first publicized in [139] and since then has become one of the most influential 

publications in the Journal of Analytical Chemistry, lending some credence to the statement 

"it can be argued that the dawn of the computer-controlled analytical instrument can be 

traced to this article" [140].  

In their seminal work, Savitzky and Golay showed that by fitting a polynomial to a set 

of inputs, the result evaluated at a single point is equivalent to a discrete convolution of the 

two discrete time signals with a fixed response to an impulse input.  

The SG filter acts on a vector of input samples x(k) to produce a smoothed signal y(k). 

This is done by selecting a window of 2𝑀 + 1 samples from the x(k) dataset. A best least 

squares fit of a polynomial vector 𝑝(−𝑀),… , 𝑝(𝑀) with an even order ‘N’ is then applied 

to the data. The output y(0) is equal to the value p(0) at the centre of the window. The 

window is then shifted by k time steps and the same process applied for 

𝑥(𝑘 − 𝑀),… , 𝑥(𝑘 + 𝑀). 

If the vector of input samples is defined as:  

 𝑥 = (𝑥(−𝑀),… , 𝑥(−1), 𝑥(0), 𝑥(1),… , 𝑥(𝑚))𝑇 Equation 43 

and the value of the polynomial coefficients ‘a’ can be represented as: 

 𝑎 =  [𝑎0, 𝑎1, … , 𝑎𝑁] 
𝑇 Equation 44  

This gives: 

 𝐵𝑎 =  𝐴𝑇𝐴𝑎 =  𝐴𝑇𝑥 Equation 45 

The solution of the polynomial coefficients Cn for use in the application of the filter are 

then determined by: 

 𝐶𝑛 = (𝐴
𝑇𝐴)−1𝐴𝑇𝑥, Equation 46 

Where 𝐴 =  𝛼𝑛,𝑖,  𝛼𝑛,𝑖 = 𝑛
𝑖, −𝑀 ≤ 𝑛 ≤ 𝑀 𝑎𝑛𝑑 𝑖 = 0,1,2… , 𝑁, the inverse of A, 𝐴𝑇 = 

𝛼𝑖,𝑛, and the product matrix 𝐵 =  𝐴𝑇𝐴. Derivations of how to obtain the equation shown in 

Equation 46 above along with example code can be found in [141]. Together with the 

wavelet filter, the Savitzky-Golay filter is applied to wavelet based LTR methods to allow 

for signal processing to be successfully performed. 
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3.3.4. Background subtraction 

The first stage in filtering of the signal collected by the VNA is a background 

subtraction. This method involves using the VNA, sweeping through the same frequency 

bandwidth that is intended for use during scanning of targets, to take scans of a known 

environment in which the system is to be placed and then subtracting this result from future 

scans taken. This is a very valuable technique in reduction of clutter in signals as it allows 

for a known environment to be removed from the signal and considerably reduces potential 

clutter. This does not come without a potential drawback though which is that if the 

background/environment within which the system is placed were to change in some 

manner, for example a piece of furniture were to be moved, the background subtraction 

would become invalid and could present spurious signals to the operator. In the event that 

something such as this were to occur a new background scan would need to be taken 

therefore operators of the system would need to be trained in order to do this. To avoid this 

situation the system should be placed in a controlled or known environment in order to 

function optimally.  

3.3.5. Windowing of the signal 

In many cases it is important to know the range at which the initial return from a radar 

target occurs and ends. If this is known then it is possible to screen out all clutter that occurs 

outside the area of interest within the signal. This is done with a time-gating filter in the 

time domain. Time domain signals are signals which vary over a period of time, in the case 

of the measurements taken here, these signals are time vs amplitude. An example time 

domain signal with additive Gaussian noise is shown in Figure 29:  
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Figure 29: Time domain 10 Hz signal with additive Gaussian noise 

Figure 29 shows that although it is possible to locate the start of the useful part of the 

signal with peak finding or by inspection, locating the end of the signal presents a 

significantly greater challenge. Time-gating the signal is a solution for this as by locating 

the initial peak of the useful component of the signal, then estimating how long the signal 

will last large segments of the clutter are removed. This is presented in Figure 30:  
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Figure 30: 10 Hz noisy signal with Time-gating applied 

Figure 30 shows that this is a very effective method for eliminating clutter outside of 

the range of interest. When coupled with the Savitsky-Golay filter for the removal of high 

frequency noise within the range of interest this filtering regime is very effective and allows 

for the GPOF method to function effectively, as without knowing a priori the useful part 

of the signal the GPOF method will not function. 

3.3.5.1. Locating the start of LTR 

 

Locating the start of the LTR signal is of great importance in particular for the GPOF 

method as mentioned previously. Two methods have been applied to attempt to 

successfully locate the start of the LTR signal. The first of these methods is to use peak 

finding after the signal has been deconvolved. This involves searching through the time 
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domain signal after it has been deconvolved to locate the peak with the greatest magnitude 

within a specified region of the signal defined by a minimum and maximum range. This 

should be the ETR of the target object that is being scanned for. Once this short lived signal 

has been located, a small time delay is added and the LTR is measured from that point. 

This is an effective approach, although it does suffer from the downsides that if the 

estimated time delay after the LTR is set to too great a length, some of the LTR may be 

missed as well. 

The second approach is to use the spectral norm of the impulse response data matrix, 

also known as the Hankel matrix to locate the start of the LTR signal [142].  The method 

presented requires the use of the Matrix Pencil Method (MPM) [143] in order to function. 

This method was compared directly to the previous peak finding method with a delay and 

found to have minimal benefit for the extra computational time required. Using the 

example of the 6.5 cm needle, at a range of 1 metre the peak finding method calculated a 

start for the LTR to occur at 506 points into the signal which is 13.29 ns after 

commencement of the scan. The Hankel method calculated that the LTR started earlier, 

457 points into the signal which corresponds to a time of 12 ns after the commencement of 

the signal. Although this difference in time equates to more than a nanosecond, or a 

distance of 33.19 cm travelled by the propagating wave the resulting extracted frequencies 

are very similar, although the decay times are different due to the different windows used 

to measure the energy in the signal. See Figure 31 for the plots of the extracted poles from 

the two methods. 
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Figure 31: Results of GPOF analysis on the 6.5 cm needle using the two presented methods for locating the 

star of the LTR with the 1-18G Hz horns. Decay time against frequency is on the left and amplitude against 

frequency on the right 

For the expected decay times the original extracted waveform which when plotted 

against time, will indicate the more accurate of the two plots. Figure 32 represents this data. 

 

Figure 32: Waveform of the grabbed data for the 6.5 cm needle against both time and number of points axis 

 Figure 32 above represents the needle waveform plotted against both a time and points 

axis, it can be observed that the damped sinusoidal signal lasts for a total of 98 points which 

is approximately 2.5 nS. This shows that the peak finding method has slightly 
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underestimated the decay time, approximately by 16% while the Hankel method has 

considerably overestimated this by approximately 68%. This shows that both of the 

methods are not without flaws, although in balance the peak finding method can be 

considered to be the more accurate of the two. 

3.3.6. Supervised artificial neural networks 

There are two main types of Artificial Neural Network (ANN) that have been used in 

this work. These are supervised and unsupervised networks. Unsupervised learning based 

neural networks, in this case the SOM attempts to organize an input dataset into a map 

where nearby locations on the map represent inputs with similar characteristics. This is 

useful for both data vectorization and feature identification in large, unlabeled datasets. 

The supervised ANN, in this case the feedforward, backpropagation neural network works 

differently, as it is given a labeled training set informing it what should be considered a 

target and what should not. This network then attempts to extrapolate this learned data onto 

new datasets presented to it. The result of the use of both of these methods is a significant 

reduction in data size while maintaining the characteristic features of the dataset which can 

then be classified as per the training set. The three training functions analysed for this 

application are: 

The first method attempted was the Levenberg-Marquardt. This algorithm is capable of 

learning to classify the data provided but training is very slow compared to the other 

methods used and it does become trapped by local minima. Due to this slow training speed 

an alternative was required. 

The second method attempted was the variable learning rate approach. This is where an 

adaptive learning rate is applied to the training method by calculating new weights at biases 

at each new epoch. This allows for an increase in the learning rate but is limited by the 

stability of the algorithm. If the learning rate is increased too much it can cause the 

algorithm to oscillate and lead to a neural network that will not train correctly. 

The third method the conjugate gradient descent training algorithms come in four 

different types. These are the Fletcher-Reeves update, Polak-Ribiere update, scaled 
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conjugate gradient and Powell-Beale restarts. All of the algorithms follow the same steps 

for the start of the process which is [144]: 

- Search in the steepest descent direction on the first iteration. 

 𝑃0 = −𝑔0 Equation 47 

- Perform a line search to determine the optimal distance to move along the current 

search direction: 

 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑃𝑘 Equation 48 

- Determined the next search direction that is conjugate to previous search 

directions.  

 𝑃𝑘 = −𝑔𝑘 + 𝛽𝑘𝑃𝑘−1 Equation 49 

This is the point at which the algorithms begin to differ defined by the method in which 

𝛽𝑘 is calculated. In particular for the Powell-Beale reset version the value is calculated 

using: 

 
𝛽𝑘 =

∆𝑔𝑘−1
𝑇 𝑔𝑘

𝑔𝑘−1
𝑇 𝑔𝑘

 
Equation 50 

This is the same method by which the Polak-Ribiere algorithm is calculated, the benefit 

in the Powell-Beale restart algorithm comes with how it resets. Like all conjugate gradient 

methods the search direction is periodically reset to the negative direction the difference 

with the Powell-Beale algorithm being that it will reset the weight values when a 

predetermined gradient value is reached. This is what allows it to avoid becoming trapped 

by a local minima. 

 

Discussion 

Successful deconvolution of the horizontally polarised S21 data is critical in order to 

allow the LTR method to function. The linear deconvolution approach of measuring the 

antenna response and bitwise dividing this from the signal is an effective technique with 

some limitations. These limitations come from imperfect measurement of the antenna 

response and the potential for certain points within the signal to approach zero. One of 

these can be overcome by using an adaptive offset in the transmission signal calculated as 

a percentage of the magnitude of the transmission signal to prevent the signal from 
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approaching zero. The imperfect measured antenna response presents a greater challenge. 

Optimised experimental setup would be the ideal solution, though as this is not always 

possible non-linear deconvolution can be used to deconstruct and rebuild the signal while 

preserving the features that the LTR technique relies on. 1D CLEAN algorithms have 

shown that it is possible to do this, though determining the required threshold a priori 

presents a significant challenge and impediment to any operational LTR security system. 

The clutter reduction and filtering techniques presented are used to condition the signal 

to allow for further processing of the LTR data after deconvolution. Clutter reduction using 

background subtraction, the wavelet and SG filters is of critical importance as any spurious 

signal located within the return could mask a significant component of the LTR 

contribution. These methods do not come without drawbacks such as the SG filters need 

for an accurately sized window over which to process the signal, though properly used the 

benefits outweigh the downsides. Time-gating is also a very valuable technique, though 

the need to calculate the start of the LTR without knowledge of the target beforehand can 

pose a challenge. Both of the two techniques for locating the start of the LTR presented 

have shown themselves to be valid in detecting the LTR and its frequencies, though due to 

its lesser computational complexity and slightly better accuracy in determining the signal 

decay times the post deconvolution peak finding method was selected as the appropriate 

method to apply. 
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Chapter 4  
 

Frequency Analysis techniques 

Preview. 

This chapter will discuss Fourier transform based techniques for LTR analysis. First the 

Fourier transform itself will be presented, followed by the application of the Generalized 

Pencil-Of-Function for signal decomposition and feature extraction. In order to perform 

classification on this decomposed data, Principal Component Analysis is necessary and so 

will be discussed. 

4.1. Signal decomposition 

4.1.1. Fourier 

An inverse Fourier transform is used to convert frequency based data to time based data 

and vice versa. The Discrete Fourier Transform is commonly used for data sampled at 

discrete times or frequencies. The formula for the DFT is [145] [146]: 

 
𝑓𝑛 = ∑𝐹𝑘𝑒

−2𝜋𝑗𝑘𝑛
𝑁

𝑁−1

𝑘=0

 , 𝑘 = 0,1, … ,𝑁 − 1 

Equation 51 

Where Fn is the transformed output signal required, Fk is the input signal to be 

transformed 

While the formula for the inverse DFT is [145] [146]: 

 
𝐹𝑘 =

1

𝑁
∑ 𝑓𝑛𝑒

2𝜋𝑗𝑘𝑛
𝑁

𝑁−1

𝑛=0

 , 𝑛 = 0,1, … ,𝑁 − 1 

Equation 52 

Where Fk is the transformed output signal required and fn is the input signal to be 

transformed. 

The Fast Fourier Transform is an algorithm that is commonly used to accurately 

compute the DFT and its inverse. The FFT performs this task more rapidly, as its name 

implies by factorizing the DFT matrix into a product of sparse factors, thereby decreasing 

the complexity of the required method for solution. The FFT is given by [147]: 
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𝑋(𝑘) =∑𝑥(𝑗)𝜔𝑁

(𝑗−1)(𝑘−1)

𝑁

𝑗=1

 , 𝑗 = 1,2, …, 

Equation 53 

Where X(k) is the required output signal, x(j) is the input signal to be transformed and 

𝜔𝑁  = 𝑒
(−2𝜋𝑖)

𝑁 . 

The Inverse Fast Fourier Transform (IFFT), used in this work to convert frequency 

domain S parameters taken by the VNA to time domain signals is derived from the FFT 

and given by [147]: 

 
𝑥(𝑗) =

1

𝑁
∑𝑋(𝑘)𝜔𝑁

−(𝑗−1)(𝑘−1)

𝑁

𝑘=1

 , 𝑘 = 1,2, …, 

Equation 54 

Where X(j) is the required output signal, x(k) is input signal to be transformed and 

𝜔𝑁  = 𝑒
(−2𝜋𝑖)

𝑁 . 

The Fourier transform and its cousins are critical to the ability to use the GPOF method 

on a set of data taken by a VNA. This is because the VNA records S parameters, which are 

strictly frequency domain measurements. In order to be able to process the data through 

the GPOF method the information must be in the time domain, therefore the IFFT’s ability 

to rapidly convert a data set from the frequency to the time domain is useful. Below is an 

example of the Fourier transforms capabilities. The signal below contains three 

components at 1500, 3000 and 4500 Hz with amplitudes of 0.4, 1 and 0.6 respectively. 

These signals have been corrupted by additive noise as shown in Figure 33. 
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Figure 33: Signal containing 3 components at 2000, 3000 and 4500 Hz corrupted by noise 

It is apparent that when the signals have been corrupted by noise it is very difficult to 

discern the individual components in the time domain. Although the three frequency 

components are still present in the signal they have become hopelessly lost in the additive 

noise. Once again without further processing of the signal, it would be virtually impossible 

to retrieve any useful data from the waveform. Conversion to the frequency domain via the 

Fourier transform presents the same data but with the components visible in the signal as 

shown in Figure 34. 
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Figure 34: Fourier domain representation of the signal corrupted by noise 

The three major peaks present at the correct frequencies show the ability of the Fourier 

transform to extract frequency data from the signal. Unfortunately due to the inherent 

assumption that all waves will continue on to infinity, small signals such as the damped 

sinusoidal waveforms that make up an LTR signal can be missed. More advanced 

techniques such as the Windowed STFT, GPOF, Continuous wavelet and Empirical Mode 

Decomposition must be considered for these types of signals [145] [76] [63]. 

4.1.2. Complex natural resonances and the late time response 

The transient late time response of a conducting object that has been illuminated by a 

wideband radar signal contains aspect independent poles that depend on the object 

geometry and its surroundings [148] [103]. The singularity expansion method can be used 
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to show that the LTR can be expressed as a sum of damped sinusoids [83]. The time domain 

data can then be represented by [87], 

 
𝑆[𝑛] =

1

2
∑(𝐶𝑚 exp(𝑍𝑚𝑛∆𝑡) + 𝐶𝑚

∗ exp (𝑍𝑚
∗ 𝑛∆𝑡)) + 𝑁[𝑛]

𝑀

𝑚=1

 
 

Equation 55 

when the signal is sampled at discrete intervals ∆t using a VNA to measure the returned 

scattered electromagnetic field. In Equation 55, M represents the model order and is the 

number of poles present in the signal, N is the noise corrupting the signal, 𝐶𝑚 is the 

complex amplitudes of the signal and 𝑍𝑚 = −𝛼𝑚 + 𝑗2𝜋𝑣𝑚 where αm is the damping factor 

and vm is the frequency of the aspect independent poles. 

Through practical experimentation it has been determined that only the first few CNR’s 

have sufficient amplitude to be observable. This coupled with the tendency of the higher 

order resonances to decay more rapidly means that to approximate the LTR signal, only 

the lower order modes make a significant contribution to the signal and need be taken into 

account. 

The noise N comprises contributions to the LTR from a number of sources not involving 

the re-radiation from the induced surface currents on the target. These noise sources such 

as electronic background clutter, can have a severe effect on the GPOF methods accuracy 

when extracting the signal poles [95]. 

The complex amplitudes of the signal are dependent on the orientation of the 

illuminating pulse but the re-radiated frequencies and their inverse lifetimes are 

independent of aspect and the illuminating waveform. The usefulness of the aspect 

independence of the poles has been displayed in the widespread use of this method with 

airborne radar to identify airborne targets such as aircraft or missiles [86]. 

For the purposes of this work the FFT has been used to convert the frequency data to 

time domain and then the CWT has been taken. The GPOF method has been chosen to 

extract the poles of the time domain signal. This mathematical algorithm for extracting the 

complex poles for an object with unknown model order is an area of interest within 

electromagnetic problems [95] [149]. 
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4.1.3. Model order 

The model order is of critical importance when performing LTR processing using the 

GPOF method. This is because if the model order is over estimated then the GPOF method 

will produce extra poles that do not correspond to the target in question while if the model 

order is underestimated then useful information for classification may be missed. 

The ability to determine the model order of a non-cooperative target presents quite a 

challenge. In this work the method used to overcome this lack of a priori knowledge is to 

test the target using a model order far greater than would normally be found, in this case 

10. An iterative approach is used with a reconstruction of the signal being performed at 

each model order up to 10 and the standard error between this and the signal is calculated. 

The point at which the standard error reaches its minimum and stabilises is then selected 

as the model order and the algorithm is rerun using this assumed model order. 

 

Figure 35: Plot of 6.5 cm waveform with reconstructions at different model orders 

Figure 35 shows the initial plot of the extracted LTR with blue crosses. The yellow line 

represents the lowest model order comprising one pole with zero frequency, the green line 

The original signal 

The lowest model order 

Second iteration reconstruction 

First iteration reconstruction 
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represents the reconstructed signal from the first iteration of poles while the red line 

represents the reconstruction from the second iteration. 

4.1.4. Principal Component Analysis 

Principal Component Analysis (PCA) was first introduced by Karl Pearson in 1901 

[150] and further developed by Harold Hotelling in 1933 [151], who is also responsible for 

naming the technique. PCA is a technique that as stated in the name, finds the principal 

components of a given dataset. It goes by a number of names in different fields of study 

such as the Karhunen-Loeve transform in signal processing and many others. The method 

uses an orthogonal transformation to convert a set of potentially correlated data variables 

into a set of linearly uncorrelated data variables. These principal components are the points 

which best explain the variance in the data and represent the underlying structure of that 

data. The value of PCA lies in its ability to be used as a dimensionality reduction technique 

in order to take a highly dimensional dataset and transform it into a smaller dimensional 

space. This is very often done in preparation to running machine learning algorithms on 

data such as clustering techniques and ANN. The benefits of using PCA are: 

1. Data reduction. PCA allows for the removal of data that does not meet a 

predetermined threshold for the value of its contribution to the dataset. This leads to 

a reduction in computational intensity ensuring that algorithms will run more 

efficiently, reducing the need for computer time. 

2. Data ordering. PCA orders the data by its contribution to the dataset allowing for the 

most significant principal components to be easily identified. 

3. Simplification of the dataset. Very complex datasets may overwhelm the capabilities 

of machine learning when attempting to process data. PCA improves the likelihood 

that the data will be processed correctly thereby reducing the probability of over or 

under classification. 

Conversely it must be noted that PCA does suffer from some weaknesses. These 

include: 
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1. PCA looks for linear combinations of the original features. If the dataset is non-

linear then the eigenvectors used may not describe the features as accurately as a 

non-linear approach could. 

2. PCA is a purely descriptive technique therefore it is not capable of predicting what 

future datasets may look like 

3. PCA gives uncorrelated components which are not necessarily independent 

components. 

PCA works by transforming the data presented to it into a new coordinate system where 

the first axis will correspond to the first principal component representing the data with the 

largest variance, the second axis will correspond to the second principal component 

representing the data with the second largest variance and so on. Each successive principal 

component is constrained by the rule that it must be orthogonal (uncorrelated) with the 

component that came before it. 

4.1.4.1. Eigenvalue decomposition 

 

An eigenvalue decomposition performed on the covariance matrix of the data can be 

used to mathematically calculate the principal components of a dataset. As covariance is 

defined as the measure of how much two variables change with relation to each other, a 

covariance matrix is a matrix whose element at the M, P position is the covariance between 

the Mth and Pth elements of the vector thereby measuring how the two matrices change with 

relation to each other. 

A covariance matrix can be calculated using Equation 56: 

 
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑀,𝑁) =  ∑

(𝑀𝑖 − 𝑀̅)(𝑃𝑖 − 𝑃̅)

(𝑁 − 1)

𝑁

𝑖=1

 

Equation 56 

Where N represents the number of scores in each dataset, 𝑀̅ is the mean of the N scores 

in the second dataset, 𝑀𝑖 is the ith score in the set, 𝑃̅ is the mean of the N scores in the first 

dataset and 𝑃𝑖 is the ith score in this set. 

In matrix form for a 3 dimensional dataset using M, P and R to represent the dimensions 

a covariance matrix would appear as follows in Equation 57 
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𝐶 = (

𝑐𝑜𝑣(𝑀,𝑀) 𝑐𝑜𝑣(𝑀, 𝑃) 𝑐𝑜𝑣(𝑀, 𝑅)
𝑐𝑜𝑣(𝑃,𝑀) 𝑐𝑜𝑣(𝑃, 𝑃) 𝑐𝑜𝑣(𝑃, 𝑅)
𝑐𝑜𝑣(𝑅,𝑀) 𝑐𝑜𝑣(𝑅, 𝑃) 𝑐𝑜𝑣(𝑅, 𝑅)

) 

Equation 57 

It is necessary to define eigenvectors and an eigenvalues. An eigenvector is a 

characteristic vector of a square matrix, in this case ‘K’ and is represented by Equation 58: 

 (𝐾𝑢 =  𝜆𝑢)
𝑜𝑟
→ (𝐾 − 𝜆𝐼)𝑢 = 0 

Equation 58 

Where u is the eigenvector of matrix K and 𝜆 is the associated eigenvalue. For example 

for the matrix K: 

 𝐾 = (
5 7
5 3

) 
Equation 59 

The normalized eigenvectors are: 

 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠 = (
0.8137 −0.7071
0.5812 0.7071

) 
Equation 60 

The corresponding eigenvalues are: 

 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 =  
𝜆1 = 10
𝜆2 = −2

 
Equation 61 

 The eigenvectors can then be stored in matrix U in which the columns of U represent 

the individual eigenvectors and the eigenvalues are placed in diagonal matrix Λ where the 

diagonal elements of the matrix are the Eigenvalues and the rest of the elements are zero. 

A summary of the PCA algorithm is as follows [152]: 

1. Take the whole dataset containing S dimensional samples. 

2. Calculate the mean for all dimensions in the dataset. 

3. Calculate the covariance matrix of the entire dataset. 

4. Calculate the Eigenvectors (U1, U2, U3,…,Un) and the Eigenvalues 

(𝜆1,  𝜆2, 𝜆3, … ,  𝜆𝑛 corresponding to these vectors. 

5. Sort the Eigenvectors by Eigenvalue. This should be done in order of decreasing 

magnitude of the Eigenvalue. Select the number of components required and 

take this number of the Eigenvectors starting with those with the largest 

eigenvalue. This is used to build the 𝑆𝑥𝑇 matrix, R where each column of the 

matrix represents one Eigenvector. 

6. Transform the processed data onto a new subspace using Equation 62 
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 𝑃𝐶𝐴𝑛𝑠𝑠 = 𝑅
𝑇 ∙ 𝑋 Equation 62 

Where PCAnss is the transformed sample in the new subspace and X is a 𝑆 ∙ 1 

dimensional vector of a single sample. 

4.1.5. GPOF Results and Classification 

A total of eight targets have been used in these experiments. These targets include both 

threat and non-threat items. Additionally the human body has been scanned in two postures 

to allow for the effect of the posture on the signal to be taken into account. The threat items 

used were a 6.5 cm needle, an 11 cm cylindrical steel rod with a diameter of 1.5 cm, a 13 

cm kitchen knife, a replica .38 caliber revolver, a wooden handled replica air pistol and a 

replica .44 magnum revolver. These items should present a range of frequencies from as 

low as 500 MHz to almost 2 GHz as per Table 8. The non-threat items were, a Fujifilm 

digital camera and a key ring with car, bike and house keys. Finally the two body postures 

used were the body with hands behind the back and the body with the hands at the side. 

The GPOF plots to follow will present the return from these targets individually and on the 

body. The boundaries for these datasets are 0.1 – 2.5 GHz frequency and 0 to 4 nS decay 

time. Any data outside this range is discarded. For a target with model order of 2 a total of 

6 poles will be presented. For a target of model order 4, a total of 14 poles will be present. 

This is due to each iteration of the model order plotting all of those that come before it as 

well. 

Figure 36 to Figure 44 all have the same structure. There are four plots in each figure 

with the two left hand plots representing one target scenario and the two right hand plots 

representing a second target scenario. The leftmost plot of each target scenario represents 

pole decay times in nanoseconds on the Y-axis and frequency in GHz on the X-axis. The 

second plot in each scenario represents normalized pole amplitudes on the Y-axis and 

frequency in GHz on the X-axis. 
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Figure 36: GPOF plots including model orders up to 4 with the body with hands at side to left and hands 

behind back to right 

The frequencies present for the body in two different postures can be found in Figure 

36 above. The body with hands at the side presents frequencies between 0.7 GHz and 1.6 

GHz with the bulk of them to be found between 1.5 and 1.6 GHz. These are the dominant 

component in the cross polar return, while another less dominant cluster can be found 

around 1.2 GHz. When compared to the body with the hands behind the back it is apparent 

that there is a greater cross polar return when the arms and hands are in the signal due to 

the return from the body with hands behind the back having a less clustered return. The 

frequencies across which data can be found are the same though, 0.7 GHz to 1.6 GHz. 
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Figure 37: GPOF plots including model orders up to 2 with the 6.5 cm needle only to the left and the 6.5 cm 

needle on body to the right 

The 6.5 cm needle presents a very interesting target to work with when performing LTR 

analysis. This is mainly due to its highly resonant nature which presents as a damped 

sinusoidal signal decaying over ~2 ns. When in isolation this object is very easy to detect 

but when another object is present its small radar cross section makes it very challenging 

to see. The plots of the needle in isolation shown to the left in Figure 37 present the 

frequencies of the needle at ~2 GHz while the plots to the right present the needle on the 

body. These frequencies are still present when the needle is placed on the body although 

both the amplitude of the poles at 2 GHz have been attenuated and have shifted slightly. A 

decrease in the decay time is also seen though this can be potentially be attributed to the 

very small window used to detect the needle as well as interference from the body. 
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Figure 38: GPOF plots including model orders up to 4 with the steel rod only to left and the steel rod on 

body to right 

The steel rod is another of the simple objects used to test the LTR system although 

unlike the needle in the case of most security environments a steel rod could be considered 

to be a threat. The useful poles for this target can be found around a frequency of 1 GHz 

as shown by the plot of the target in isolation in Figure 38. This can also be seen in the plot 

of the steel rod present on the body, though it must be noted that several of the poles located 

around this point can no longer be seen when the body is introduced to the scan. Of interest 

is the presence of poles located at ~1.6 GHz in both the object in isolation and the object 

on body. The poles with decay times below 0.5 ns at this frequency can be attributed to a 

portion of the body response remaining in the signal. 
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Figure 39: GPOF plots including model orders up to 4 with the kitchen knife only to left and the kitchen 

knife on body to right 

The frequencies presented by the small kitchen knife used as a threat object can be found 

in Figure 39. The useful, dominant poles in the signal can be found located around 1.35 

GHz. As the kitchen knife is a relatively simple object its model order is low, therefore not 

as many frequencies can be associated with it. When this is then applied to the presence of 

the target on body the same frequencies of approximately 1.35 GHz can be found. 

Interestingly the decay times for the target placed on the body are greater than those of the 

target in isolation. This could potentially be caused by a number of factors first among 

which is coupling of the signal to the knife. As the knife presents a large RCS when the 

flat of the blade is presented to the radar and a very small RCS when the edge of the blade 

is presented the orientation of the target is important for this target. Although LTR 

techniques are considered to be aspect independent in frequency, this only applies if the 

waveform can successfully induce a surface current on the object, therefore this part of the 

process is orientation dependent. A second possibility for the increased decay time is the 

introduction of multipath signals reflecting between the knife and the body. This would 
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have the effect of smearing the LTR return, making it appear to last for a greater period of 

time than is actually the case. 

 

Figure 40: GPOF plots including model orders up to 4 with the replica .38 calibre revolver only to left and 

the replica .38 calibre revolver on body to the right 

The GPOF results for the replica .38 calibre revolver can be found in Figure 40  above. 

Along with semi-automatic pistols, this target is one of the most significant threats that can 

be carried through a security environment as it is both very compact and allows for multiple 

shots to be fired in a short space of time. The majority of the frequencies of the target can 

be found at ~0.75 GHz. The short decay poles around 1.6 GHz are also present in this 

signal as previously, lending credence to these being the result of the characteristics of the 

system/hardware rather than the target itself. Once the body has been added into the signal 

as shown on the two plots to the right in Figure 40 further poles located around 1.6 GHz in 

frequency are present though these are much more significant due to their longer decay 

times. 
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Figure 41: GPOF plots including model orders up to 4 with the gas powered target pistol only to the left and 

the gas powered target on body to the right 

The resulting frequencies from the gas powered target pistol are presented in Figure 41. 

This is a larger target than the replica .38 revolver but simpler as it has less components 

and a wooden handle. Therefore the bulk of the resonances that will be detected emanate 

from the barrel which is a cylinder of the same diameter as the steel rod but slightly longer 

in length. This is evidenced by the presence of the dominant detected resonances located 

between 0.85 GHz and 0.95 GHz as opposed to those located around 1 GHz for the steel 

rod. Some information is located around 1.6 GHz though as there is a resonance of the horn 

located at this point, this information must be carefully considered before it can be used. 

When compared to the target on body the resonances are occurring in a similar range 

between 0.85GHz and 0.95 GHz. Additional data is also located around 1.3 GHz. This is 

most likely due to the interaction of the target with the body causing multipath signals and 

so these poles are of no use for classification purposes.  
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Figure 42: GPOF plots including model orders up to 6 with the replica .44 calibre revolver only to left and the 

replica .44 calibre revolver on body to right 

The result of the largest of the threat items tested, the replica .44 calibre revolver can be 

found in 



99 
 

 

Figure 42. This revolver stands at the limit of what could be potentially concealed on a 

person as its size is so great. This also presents a challenge when it comes to detecting this 

object as its extreme length means the expected frequency that it will resonate at is very 

low, approaching the minimum threshold of the antennas available. The dominant poles 

for this target can be found at ~0.65 GHz with a large number of resonance found at ~0.9 

GHz. When looking at the target located on the body the poles at ~0.9 GHz are still clearly 

present with the poles at 0.65 GHz having been attenuated and reduced in number. A 

number of poles are also located around 1.25 GHz for this target although they are few in 

number. 

 

Figure 43: GPOF plots including model orders up to 2 with the camera only to the left and the camera on 

body to the right 

The first of the non-threat items tested, a Fujifilm digital camera is presented in Figure 

43. A fairly simple object with a small number of resonant frequencies located from 0.95 

GHz to 1.35 GHz that can be seen when the object is in isolation. When the target is present 

on body only a small number of these poles are still present which can pose a problem 

when it comes to classification of the target. 
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Figure 44: GPOF plots including model orders up to 4 with the keys only to the left and the keys on body to 

the right 

The final target tested was a key ring with a number of keys on it. The results of this are 

presented in Figure 44. This is a more complex target to deal with as shown on the target 

in isolation as it may change its RCS due to the location of the keys and keyrings with 

relation to each other therefore there is a large spread of resonant frequencies in the signal 

stretching from 0.6 GHz to 1.7 GHz. This is emulated in the return from the target on body 

with no real clustering of the poles being present. 

4.2. GPOF classification results using Artificial Neural Networks 

The following section discusses the use of a trained neural network to classify the targets 

presented to it. The data fed into the ANN for training is the result of using GPOF based 

signal processing on experimental datasets comprising both threat and non-threat items. 
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Figure 45: GPOF output data for binary threat/non-threat classifier 

The plot presented in Figure 45 is the result of the network processing a target dataset. 

The 375 targets to the left of the dashed line are threat items and should therefore present 

a result of 1. The 300 targets to the right of the dashed line are non-threat items and should 

therefore return a zero. The Y-axis presents the result of the classification between 0 and 

one while the X-axis lists the number of target sets. A list of the targets used in order is 

presented in Table 8 although the 6.5 cm needle has not been used in this case. 
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Figure 46: GPOF classification for a binary threat/non-threat classifier 

Figure 46 presents the Receiver Operating Characteristic (ROC) curve for the 

probability of the true positive and false positive rates with the detection of concealed 

targets using the neural network method. In all ROC curves presented in this work the Y-

axis gives the true positive rate, the X-axis gives the false positive rate and the threshold 

value is given by the top axis. In Figure 46 the data has been fed directly from the GPOF 

method into the neural network and the classification rates presented. As labelled the X 

axis represents the probability of a false positive while the Y axis represents the probability 

of a true positive. The blue line represents the actual result of testing the dataset against 

thresholds ranging from a value of zero on the right of the X axis to 1 on the left of the X 

axis. The gray line represents a 50-50 guess therefore anything approaching the top left 

corner of the plot can be considered to be a valid classification technique while anything 
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to the right of the line would indicate the algorithm is not viable for use at that threshold. 

The closer the blue line approaches the top left corner of the chart, the better the 

performance of the classifier. 

The result presented in Figure 46 shows the technique of using the GPOF method to 

extract the poles of the data to be a valid technique for classification. Given the most 

challenging threshold available of one, the network is capable of providing a true positive 

classification rate of 70% without presenting any false positives. Keeping the false positive 

rate as low as possible is very valuable as false positives can degrade peoples trust in the 

utility of a security system and potentially in some cases could lead to severe consequences 

if an innocent individual was misidentified as a threat. 

Although 70% is not ideal for a successful classification rate, the ability to scan a 

potential target multiple times in under a second as the system is capable of taking data at 

greater than 4 Hz, can account for the deficit. It would therefore be ideal to scan a potential 

target at least three times in order to minimize the possibility of the system missing a threat. 
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Figure 47: GPOF PCA ROC curve results for a binary threat/non-threat classifier 

A small improvement on the true positive classification rate for the GPOF based 

algorithm has been presented in the ROC [153] curve in Figure 47. For this particular 

technique the optimal true positive classification rate at which the false positive rate is 0% 

presents as 73%. This improvement has been achieved by processing the data using PCA 

before running it through the trained ANN. This has allowed for data that does not 

significantly contribute to the dataset to be removed and then be reordered in the form of 

its principal components first. Another effect of using this method is additional smoothing 

of the curve, with the large jump located at a false positive rate of 0.45 in Figure 46 being 

removed from the data. This small increase in true positive classification rate is not 

significant enough to remove the need for the use of multiple scans of a target to improve 

the likelihood of detection but will help improve the overall accuracy of any system based 
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on the GPOF method. Table 6 presents the true positive classification rates for the 

individual targets when the false positive rate is zero while Table 7 represents the false 

positive rate for non-threat items. 

 

Table 6: True positive rates for individual threat items analysed using the GPOF method with and without 

PCA 

Target True positive rate 

without PCA% 

True positive rate 

with PCA% 

Steel rod 37.3 42.6 

Kitchen knife 56.3 65.3 

Replica .38 calibre 

revolver 

64.7 72 

Gas powered Target 

pistol 

82.6 84 

Replica .44 calibre 

revolver 

77.3 78.6 

 

Table 7: False positive rates for individual non-threat items analysed using the GPOF method with and 

without PCA 

Target False positive rate 

without PCA% 

False positive rate 

with PCA% 

Camera 0 0 

Keyring 3.9 0 

Body, hands at side 1.3 1.3 

Body, Hands behind 

back 

1.3 0 

4.2.1. Operating conditions and Data structure 

The data extracted from the GPOF method included three columns representing the 

frequency, amplitude and time data for the target. This data was normalized before being 
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passed across to the ANN for classification. The large 0.3 – 3 GHz horn antennas were 

used for all results presented in chapter 4. A model order of 6 was chosen to be used for all 

targets as it encompassed the model orders of all targets presented and allowed for a 

consistently sized dataset to train the neural network with. Hidden layers of 8 neurons were 

used for the binary threat non-threat classifier as this provided the best result through 

experimentation. As with the other sections a 9 object classifier was attempted with 60 

neurons in the hidden layer although in this case it was unsuccessful in classifying the data 

presented. 

The operating conditions required to perform GPOF LTR analysis experimentally are 

as follows: 

- The parameter to be extracted is the horizontally polarised S21 parameter. 

- The number of points required is by default 1001, although this can be adjusted 

to meet a required unambiguous range. 

- 10 scans of the target added together to form one sweep. 

- The frequency sweep must cover a range of 500 MHz to 2 GHz in order to 

extract useful target information. A lower start frequency than this should be 

used if antennas are available in order to perform this. 

- The total sweep time should be below 256 ms.  

- The range to target should be between 1 and 3 m. 

- The power level at the VNA used should be between 2 dBm and -4 dBm. 

- The antennas should be directional, with a gain of 3 dB or greater. 
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4.3. Overview of Algorithm 1: LTR using the GPOF method 

The final LTR algorithm based around the GPOF method is structured as follows in 

Figure 48: 

 

Figure 48: Flowchart of FFT GPOF based LTR algorithm 
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Discussion 

The preceding chapter has presented an initial solution to the problem of LTR security 

scanning using PCA and the GPOF method. From a discussion of the Fourier transform 

and the complex natural resonances, to a discussion of how to obtain the model order of a 

non-cooperative target and the GPOF method this chapter covers the algorithm developed 

in detail. The individual targets used have been presented with their pole plots. Table 8 

shows the targets with their known model orders and expected fundamental resonant 

frequencies. 

Table 8: Table of Targets vs model order and resonant frequencies 

Object Expected 

Classification 

value 

Model order Fundamental 

Frequency 

6.5 cm needle n/a 2 2 GHz 

11 cm steel rod 1 2 1 GHz 

13.5 cm kitchen 

knife 

2 2 1.35 GHz 

Replica .38 

revolver 

3 4 0.75 GHz 

Gas powered 

Target pistol 

4 4 0.85 GHz 

Replica .44 

revolver 

5 6 0.65 GHz 

Body with hands 

at side 

6 n/a n/a 

Body with hands 

behind back 

7 n/a n/a 

Fujifilm camera 8 2 0.95 – 1.35 GHz 

Keyring 9 Configuration 

dependent 2 - 6 

0.7 – 1.6 GHz 
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Some of the targets used present more of a challenge to an LTR security system than 

others. For example the very large revolver is very easy to detect due to the size of its RCS 

as the available wavelengths in the propagating EM used to excite the LTR range from 0.1 

– 0.6m. This places the revolvers relationship with the wavelength in the Mie [154] or 

resonant range and therefore should allow for a strongly resonant return from the target. 

The knife is more of a problem as depending on its orientation, the blades edge may be 

facing the propagating signal, causing a large proportion of the waveform to miss the object 

and not necessarily illuminate the knife with enough energy to induce a useful surface 

current. Finally the value of PCA to classification of this data has been covered. 

This PCA GPOF method provides good true positive classification rates of greater than 

70% while not presenting any false positives. For any viable LTR security scanning system 

keeping false positives as low as possible is a critical requirement to ensure trust in the 

robustness of the system. The results presented above are of use in development of an LTR 

system, though as the Fourier and GPOF methods only work on time or frequency data 

individually it is important to consider a method that can look at both of these domains at 

the same time. This will be covered in the following chapter. 
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Chapter 5   

 

Real Valued Joint Time Frequency Wavelet Analysis techniques 

Preview. 

This chapter will discuss wavelet based techniques for LTR security analysis. Real 

valued continuous wavelet techniques will be analysed and their value in classification of 

security data discussed. Application of the non-linear Richardson-Lucy deconvolution 

technique for clutter reduction and improvement of the Neural Network classification rates 

will also be considered. 

5.1. Real valued wavelet analysis 

5.1.1. Wavelet Families 

There are many different wavelet families available for use in processing datasets. The 

wavelets applied to this work come in to distinct categories, the real valued wavelets 

include the Morlet wavelet [62], which is the original wavelet used for continuous wavelet 

analysis. Its functionality allowed the field of continuous wavelet analysis to develop. The 

second real valued wavelet used is the Gaussian wavelet. Its 2nd order component, 

commonly known as the Mexican hat wavelet is one of the most easily recognised and 

commonly used wavelets. A discussion of the CWT can be found in section 3.3.1. 

Introduction to wavelets and the wavelet transform. Full details on the wavelets used can 

be found in the Matlab wavelet toolbox users guide [138] [137]. The following plots in 

section 5.1.1.1. The continuous real valued wavelet transform (CWT) all use the Gaussian 

‘4’ wavelet as the mother wavelet [137]. This wavelet is a derivative of a complex Gaussian 

function and takes the form [138]: 

 
Ψ𝐺(𝑡) = 𝐶𝑁

𝑑(𝑁)𝑒−𝜇𝑒−𝑡
2

𝑑𝑡𝑁
 

Equation 63 

 

 Where N is the model order and in this case is 4. This value denotes the initial shape 

and scale over which the mother wavelet occurs. If the value of N is even, then the wavelet 

will be symmetrical around the Y axis. If the value of N is odd then the wavelet will not be 
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symmetrical around the Y axis. Both the Morlet and Gaussian wavelet families have been 

tested with real valued wavelet analysis with the best result being provided by the Gaussian 

wavelet. The application of the CWT to 1 dimensional data is covered in section 3.3.1. 

Introduction to wavelets and the wavelet transform. Some basic properties of the wavelets 

used can be found in Table 9. 

Table 9: Table of basic wavelet properties  

Wavelet type Complex 

(Y/N) 

Symmetrical 

(Y/N) 

Length of mother 

wavelet  

Morlet N Y 256 points 

Gaussian 4 N Y 256 points 

Complex Morlet/Gabor Y Y 256 points 

Complex Gaussian 4 Y Y 256 points 

 

5.1.2. Real valued wavelet Transforms 

Figure 49 to Figure 57 all represent data in the same fashion. There are two plots in each 

figure with the left hand plot representing one target scenario and the right hand plot 

representing a second target scenario. The two plots share the same axis. The X-axis 

presents time in nanoseconds, the Y-axis presents wavelet scale and the Z-axis presents 

amplitude. 
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5.1.1.1. The continuous real valued wavelet transform (CWT) 

 

Figure 49: CWT of body hands at side to the left with body hands behind back to the right 

To locate the start of the LTR the same method of peak finding has been applied as that 

presented in section 3.3.5.1. Locating the start of LTR. Once located, zeroes have been 

added in front of the peak to allow for ease of readability in the surface plots. The surface 

plots presented in Figure 49 represent the radar return from the human body in two postures 

after the CWT has been applied. The plot to the left is representative of the human body 

with hands by the side while the plot to the right is the same body with hands behind the 

back. A broad spectrum of frequencies are covered by the return from the body, particularly 

towards the higher end of the scales. In the plot with the hands at the side the highest 

intensity of the signal occurs at approximately 10 nanoseconds. This peak sits at a similar 

frequency range to that where many of the threat objects could be located and is most likely 

a result of the interaction of the signal with the arms and hands as when compared with the 

plot with hands behind the back the peak intensity is located at a different scale. For this 

particular plot the peak intensity is located at a much higher scale, ergo a lower frequency, 

which lasts for a longer period of time. This is due to the return from the initial propagating 

wave as it makes contact with the contours of the body. 
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Figure 50: CWT of 6.5 cm needle only to the left with on body to the right 

Figure 50 presents the return from the 6.5 cm needle target using the CWT to process 

the data. The plot to the left shows the needle in isolation as a very sharply defined peak, 

representing the low model order of the needle. The needle return occurs at scale range 0.8 

- 1.7 at approximately 4 ns on the time axis. As shown in the GPOF data the needle can be 

expected to return a very narrow band of frequencies and the sharpness of this peak would 

lend credence to that. Looking towards the right hand plot which represents the needle on 

body it is still possible to visually locate the presence of the return from the needle in this 

plot, although the return from the body is approaching the same level of intensity and as a 

result may interfere with successfully extracting the needles resonances. This effect has 

shown itself to occur with a number of needles of varying sizes and so is most likely an 

effect of the very small RCS presented by objects of this type. The minimal coupling of 

the waveform to the target due to the RCS does not present the opportunity for the return 

from the target to dominate the signal in the way the return from some of the following 

targets does. 
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Figure 51: CWT of steel rod only to the left with on body to the right 

The next target, presented in Figure 51 is the 11 cm steel rod. This is a simple target as 

with the needle due to a low model order which allows a sharp peak to appear in the plot 

representing the target in isolation. The scale range for the steel rod is between 2 and 5.6 

at approximately 4 ns on the time axis. This is to be expected as during the experiments the 

range to target has been maintained as closely as possible. Looking towards the plot with 

the steel rod on body we can see that a similar effect to that of the needle has occurred, 

with the peaks from the body approaching the same intensity of that of the rod, although 

not quite to the same degree. Fortunately the highest intensity of the return from the body 

in this case is well separated from the return of the steel rod in scale and so it is simpler to 

discriminate between the two parts of the signal in the case of this target object. This 

separation in scale will be a result of the increased geometric dimensions of the rod and the 

return from the body is of a lower intensity due to the rods presence in this signal.  
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Figure 52: CWT of kitchen knife only to the left with on body to the right 

The kitchen knife, presented in Figure 52, is the last of the simple threat objects used to 

test the CWT based LTR algorithm. Like the needle and slightly more so than the steel rod 

this item presents as a sharply defined peak after processing by the CWT. Once again this 

is due to the items low model order. The greatest magnitude return from the knife occurs 

between scales 1.6 and 3.4 at approximately 4 ns on the time axis. Once the body is added 

into this scenario as shown in the plot on the right of Figure 52, it becomes less clear. The 

peak representing the knife is still present, though at very similar scale ranges are two more 

peaks separated in time. This is potentially a result of the interaction between the knife and 

the body as the planar structure of the knife blade would have the effect of causing the 

signal to bounce between the knife and the body. This shows that the knife could potentially 

be a problematic target to detect in some scenarios as if the range to target is not calculated 

accurately, one of these peaks approaching similar intensity values could cause confusion 

within the classification algorithm. 
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Figure 53: CWT of replica .38 revolver only to the left with on body to the right 

The more complex replica .38 revolver is presented in Figure 53. This target is a good 

example of a potential concealed threat due to its diminutive dimensions and simple, 

reliable operation. As can be seen in the plot of the object in isolation, the revolver has a 

greater spread over the scale range, thereby indicating a greater number of frequencies 

present in the signal and a higher model order as shown in Figure 40. This range of scales 

is 5.3 to 11.7 at approximately 4 nS on the time axis. This is interesting as this broader 

peak still maintains a very strong intensity in terms of LTR signals and also spreads into 

the range of frequencies that would be expected to be generated by the body. As a result of 

this it would be reasonable to assume that the body would interfere with and disrupt the 

return from the revolver. This though is not the case as presented in the right hand plot in 

Figure 53. When compared with the plot of the body only in Figure 49 it can be seen that 

small peaks are still occurring at locations where the return from the body should be located 

but the power levels of these components are so small as to potentially be insignificant. 

This indicates that the revolver is very effective at gathering and reradiating the transmitted 

signal to such a degree it masks large components of the body in the returned signal.  
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Figure 54: CWT of gas powered target pistol only to the left with on body to the right 

The gas powered target pistol presented in Figure 54 also shows a broad range of scales 

over which the return can be found. The return from this is mainly dominated by the barrel 

which as a cylinder with approximately the same length as the steel rod presents a challenge 

for any classification regime. When in isolation it is easily apparent as to the nature of the 

object, its distributed peak covering a large portion of the available scales with high 

intensity is similar to the revolver but when looking at the target presented on body an 

interesting characteristic emerges. This is the presence of a double peak in the signal, one 

of which is quite sharp while the other is more spread out over the scale range, occurring 

at the same point in time but with a different spread of scales for each peak. The scale range 

of the major peak is between 8 and 15.8 at approximately 4 ns on the time axis. It becomes 

apparent that the body is capable of having more effect on the return with the GP target 

pistol as well, due to one of the peaks for the region of the body having a significant 

intensity close to that of the threat and in the same scale range. 
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Figure 55: CWT of replica.44 revolver only to the left with on body to the right 

The large replica .44 caliber revolver is presented in Figure 55. Although this particular 

target has a high model order, the range over the scale axis in which these resonances occur 

is fairly small as shown in the left hand plot for the revolver in isolation in Figure 55. This 

shows that the individual characteristics of the target geometry will have a direct effect on 

the detected return, for example in the case of the large revolver many of its features 

dimensions are quite substantial but similar in length, indicating that the expected 

resonances should occur in a similar scale range to each other with the greatest magnitude 

being in the range 3.5 to 6.6 at approximately 4 ns on the time axis. When the target is then 

placed on the body it is still very prominent. As with the replica .38 revolver presented in 

Figure 53, the return from the revolver dominates the signal and suppresses the return from 

the body. In the case of the replica .44 revolver this effect is even greater than that of the 

replica .38 revolver, suppressing the return from the body to such a degree that it is nearly 

completely removed from the signal. For classification purposes this is very useful as there 

is only a very limited amount of detectable change in the signal between the threat item 

only and the threat item on body. This makes the large revolver a very easy object to detect. 

It is important to note that the size of this object ensures that the fundamental resonance is 
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right on the edge of the horn antennas lower sweep range and as a result, smaller features 

than the barrel such as the cylinder can become very important in identifying the target. 

 

Figure 56: CWT of camera only to the left with camera on body to the right 

The Fujifilm camera used as a non-threat object in Figure 56 is a representative example 

of the type of small digital camera that has become common in recent years. It can also be 

considered that its small dimensions and plastic casing would allow it to be representative 

of a number of smaller, commonly carried objects such as personal data assistants and some 

of the older, thicker mobile phones. When presented in isolation as in the plot to the left of 

Figure 56 it is apparent that the return from this particular camera has a small range of 

available scales, between 2.3 and 4.4 in which it can be found at approximately 4 ns on the 

time axis. As a relatively simple target with planar surfaces for the most part and very little 

metal to speak of, its return is not very resonant though when it is placed on the body an 

effect similar to that of the kitchen knife occurs where some secondary peaks in similar 

scale ranges with intensities approaching that of the useful data are present. The return 

from the body is also much more visible in the camera scenario than for the revolvers 

presented in Figure 53 where the body is partly suppressed and Figure 55 where the body 

is completely suppressed.  
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Figure 57: CWT of keys only to the left with on body to the right 

A keyring with a number of keys and various pieces connected to it is presented in 

Figure 57. As is shown in the plot to the left of the keyring in isolation, a very small number 

of frequencies are present in the signal. This is unexpected as the keys in the signal have 

varying lengths and geometries therefore it could be expected that they would present a 

broad range of resonances when illuminated. As this is not the case, it must be considered 

that the objects extremely close proximity to each other is causing the keys and the keyring 

to resonate as one very complex object in a scale range between 2.65 and 4 at 

approximately 4 nS on the time axis. This presents a potential limitation of the radar system 

as its wavelength is such that it will struggle to discriminate between metallic objects in 

close proximity. When on the body this particular target presents similar characteristics to 

the revolvers in that it suppresses the return from the body considerably. This indicates that 

great care must be taken to ensure that these particular characteristics do not lead to 

misclassifications in the algorithm as this would increase the false positive rate of the 

system. The features observed in Figure 49 to Figure 57 are used to train the ANN based 

classifier, though the volume of data produced by use of the CWT can overwhelm the 

ANN. Therefore it is necessary to find a way of reducing the size of the dataset while 
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maintaining the useful features in order to allow for successful processing. This led to the 

use of the Self Organising Map (SOM). 

5.2. Self Organising Feature Maps 

Self Organising Maps are a form of ANN that uses unsupervised competitive learning 

techniques to produce a lower dimensional dataset from an input dataset. This method was 

developed by Professor Teuvo Kohonen [155] to allow for visualization of complicated 

highly dimensional datasets in a simpler form. The history of the models used in these 

networks can be traced back to early morphogenesis models introduced by Alan Turing 

[156]. 

There are a number of very useful features available with SOM along with its ability to 

present highly dimensional data in a lower 1 or 2 dimensional space. This includes that the 

technique ensures that any topological relationship information is maintained and that 

regions within the data containing similar properties will be found adjacent to each other. 

More specifically to the LTR problem, using the SOM reduces the sensitivity of the signal 

to locating the start position of the LTR, thereby ensuring that only those features useful to 

the following analysis are extracted.  

The networks hidden layer is created from a 2 dimensional lattice of nodes each of which 

is connected to the input layer. Each of the nodes has a specific XY position and will 

contain its own weight vector. It is important to note that although all the nodes are 

connected to the input layer, there are no connections between the nodes themselves. These 

XY positions are used to create a grid that is overlaid on the dataset. The neighbourhood 

connections in the grid can be of any form from a square grid to the hexagonal grid used 

in this work. 

Unlike a feedforward backpropagation ANN, the SOM does not need to have a target 

vector presented to it in order to change. Instead where a node’s weights match those of 

the input vector the area of the grid at that point is optimized to more closely resemble the 

data. As it is an iterative process that starts with randomized weights, this can require a 

large number of iterations before the map becomes a collection of stable zones. Each of 

these zones can be considered to be identifying a feature of the input dataset. 
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The training process requires the following steps: 

1. Initialize the node weights for all nodes 

2. Select the initial value for the radius of the node region of influence. This is 

typically much larger than the actual result. 

3. Present a random vector from the training set to the grid. This is the input vector. 

4. All node weights are analyzed. The Euclidean distance between each node 

weight and the input vector is calculated. The node with the weights closest to 

the input vector by this definition is chosen and defined as the Best Matching 

Node (BMN) 

5.  Calculate the radius of the region of influence for the BMN. This value should 

reduce with each time step until it reaches a stable level. 

6. Each of the nodes within the BMN region of influence then has its weights 

adjusted to more closely resemble the BMN. 

 𝑊(𝑡 + 1) = 𝑊(𝑡) + Φ(𝑡)𝐿(𝑡)(𝑉(𝑡) −𝑊(𝑡)) Equation 64 

The closer the node to the BMN, the more its weights will be altered. 

7. Return to step 3 and repeat. 

The Euclidean distance between two vectors can be calculated using: 

 

𝐸𝑑𝑖𝑠𝑡 = √∑(𝑣𝑖 − 𝑤𝑖)
2

𝑖=𝑛

𝑖=0

 

 

Equation 65 

Where v is the training vector and w is the weight vector at the corresponding node. As 

the effect of the node distance from the BMN effects the amount of training applied to the 

nodes within its locality, phi has been selected to denote this and is calculated using: 

 
Φ(𝑡) = 𝑒𝑥𝑝

[−
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2

2𝜎2(𝑡)
]
 𝑡 = 1,2,3 

Equation 66 

Where distance is the distance a node is from the BMN and sigma is the width of the 

region of influence. The ability of the SOM to determine these regions of influence and 

then shrink them in size allows for the function to be used to reduce the size of the intensity 

maps that are provided by continuous wavelet based LTR techniques. In effect it allows 

for the BMN to be used as a centroid, identifying the feature with the most valuable 
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information. This location of these centroids can then be fed into a supervised neural 

network to allow for individual target classification. 

5.3. Algorithm 2: LTR using the wavelet method 

The final LTR algorithm formulated around the wavelet based methods is structured as 

follows in Figure 58: 

 
Figure 58: Flowchart of wavelet based LTR algorithm  
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5.4. Non-linear Deconvolved Wavelet Results 

5.4.1. Non-Linear Deconvolution: The Richardson-Lucy approach 

A second approach to non-linear deconvolution was considered for use with the real 

valued wavelet transforms, the Richardson-Lucy algorithm [157] [158]. The aim of using 

this method was to sharpen the edges of the extracted features, in order to provide a sharper 

representation of the scale range over which the features exist. This iterative process, 

developed for recovering better defined detail from blurred images is best known for its 

use on correcting for faults in the optics of the Hubble space telescope. When applied to 

the intensity maps generated by a CWT it presents the opportunity to further remove clutter 

and redundant information from the datasets before classification is performed. An 

example of the effect of Richardson-Lucy deconvolution on the targets used will now be 

presented. Figure 59 and Figure 60 have the same axis as Figure 49 to Figure 57.  

 

 

Figure 59: Replica .38 revolver in isolation to the left, Richardson-Lucy deconvolved signal to the right 

Figure 59 above presents the results of the replica .38 calibre revolver in isolation. To 

the left we have the result of the standard CWT with the result of the CWT combined with 

the non-linear Richardson-Lucy deconvolution algorithm applied presented on the right. 
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The target in isolation with no non-linear deconvolution has a scale range of 5.3 to 11.7 

while with non-linear deconvolution applied it has a range of 5.6 to 9.8.  The target return 

occurs as expected at ~4 ns on the time axis. It is apparent that when applied to a target of 

this nature in isolation the Richardson Lucy deconvolution algorithm is of limited value. 

The peak of the signal occurs at both the same time and scale range over both of the surface 

plots presented as expected. It is with the amplitude where some changes can be seen. If 

the maximum amplitude of the major peak of the two signals is compared directly it can 

be seen that the result presented by the Richardson-Lucy algorithm is of considerably 

greater magnitude than that of the CWT alone. Indeed the amplitude of the non-linear 

deconvolved signal is in the order of 100 times greater than that of the CWT alone. This 

potentially could be due to the data normalization process that is part of the Richardson-

Lucy algorithm. For detection purposes this is very useful though it does not come without 

drawbacks. Along with in effect amplifying the return from the target, certain sections of 

the clutter remaining have also been amplified as shown by the data beyond ~10 ns. 

 

Figure 60: Replica .38 Revolver on body to the left, Richardson-Lucy deconvolved to the right 

A similar effect to that discussed in Figure 59 can also be seen in Figure 60 above. This 

is the revolver presented on the body with the CWT alone in the plot to the left and the 

non-linear deconvolved signal in the plot to the right. Once again the time remains the 
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same, though the scale range has shrunken slightly leaving a more defined peak. In 

particular it is of note that a substantial percentage of the lower power return from the 

revolver on body, in the scale range 10+ has effectively been removed from the signal. This 

would make identifying the fundamental frequency simpler for classification purposes. 

Conversely the effect of the deconvolution method in increasing in power some sections 

of the return from the body could present issues for any system that is not able to 

completely remove them via filtering or training effectively to counter this. 

The Richardson-Lucy deconvolution algorithm has shown itself to be effective at 

removing some segments of the signal that are of no interest and of amplifying others, 

although for LTR purposes it has also removed some of the useful frequency information. 

Unfortunately due the above mentioned drawback and to the very close proximity of the 

target object and the body, coupled with the fact that the return from the body is substantial 

in intensity and the number of iterations required would need to be calculated a priori, it is 

impractical to use this algorithm in a viable LTR security system. 



127 
 

 

5.5. CWT classification results using Neural Networks 

 

Figure 61: Plot of all 9 target sets using CWT with value 1 as threat and value 0 as non-threat 

Figure 61 presents the results of a binary threat non-threat classifier using the CWT to 

process the dataset. All threat objects are expected to have a result of 1, while all non-threat 

objects are expected to have a value of zero. The targets are arranged as per Table 8 

although the 6.5 cm needle has not been included. In Figure 61, all points up to 750 on the 

X axis were threat objects and as such should present with a value of 1. All points above 

750 on the X axis are non-threat objects and as such should present with a value of 0. A 

total of 1350 sweeps are presented with the true positive classification rate for this 

particular classifier in Figure 62. The threshold value selected in order to allow a target to 

be successfully identified was ±0.3 around the target value. 

 

Missed 

classification 
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Figure 62: ROC curve split dataset CWT binary classifier 

The ROC curve in Figure 62 represents the results of a binary classification threat/non-

threat CWT based LTR algorithm. This curve was created by using one half of a given 

dataset to train the neural network and the other half of the dataset to test it. The blue line 

on the graph represents the probabilities of a true or false positive at a given threshold and 

this curve is a result for the test set. Figure 62 shows that in these circumstances the true 

positive classification rate at the highest threshold of 1 is very high, approaching 100% 

while the false positive rate can be seen to be 0%. This would be ideal for any real world 

system though this result would be close to impossible to recreate in a real world system. 

As before the gray line represents the point at which the system can be considered to be 
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working with points to the left of the gray line showing a successful classifier while those 

close to the gray line or to the right of it showing a classifier that is not viable for use. The 

ANN used to create this ROC curve had 1 hidden layer and a total of n-1 neurons or 8 in 

this case.  Table 10 presents the classification rates for each of the targets taken 

individually. 

Table 10: Table of individual target true positive classification rates using CWT for the binary classifier 

Target Correct classification rate (%) 

11 cm steel rod 100 

Kitchen Knife 100 

Replica .33 calibre revolver 100 

 Gas Powered Target pistol 100 

Replica .44 calibre revolver 99.33 

Body, hands at side  100 

Body, hands behind back  100 

Fujifilm Camera 100 

Keyring 100 
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Figure 63: CWT plot of all 9 target sets against their expected classification value 

Figure 63 presents the results of the 9 object group classifier. Each of the targets was 

assigned an individual value as per those specified in Table 8 with the needle not being 

used. The threshold value around the specified values was maintained at ±0.3. The 

misclassification at point 600 has been highlighted as this is a particularly serious error 

where the neural network has identified a threat in the form of a revolver as a camera. Each 

of the targets is represented with 150 sweeps and all targets have been given a positive 

integer value between 1 and 9, therefore any values found outside this range can be 

considered to be failed classifications. 
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Figure 64: ROC curve nine individual targets classified individually, split dataset 

The ROC curve in Figure 64 presents the classification results for a multiple object 

classifier using the CWT based LTR algorithm. This is a much more complex problem for 

the ANN to classify as it is now being asked to tell the user of the algorithm what of 9 

objects has been detected. As before the data used was a test set taken from splitting a large 

dataset in half and using one half to train the network, the other half to test the network. 

The true positive rate at a threshold of 1 in this case is still high at 83% for no false positives 

although when compared to Figure 62 it can be seen that this rate has fallen. The increase 

in the complexity of the problem required that a larger neural network be used to classify, 

in this case the network still has 1 hidden layer but that layer now consists of a total of 60 

neurons. Table 11 presents the results for each of the targets tested individually. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it

iv
e
 R

a
te

ROC



132 

 

 

Table 11: Table of individual target true positive classification rates using CWT for 9 object classifier 

Target Correct classification rate (%) 

11 cm steel rod 75.31 

Kitchen Knife 94 

Replica .33 calibre revolver 98.67 

 Gas Powered Target pistol 96 

Replica .44 calibre revolver 69.32 

Body, hands at side  86.71 

Body, hands behind back  86.71 

Fujifilm Camera 88.7110 

Keyring 85.33 
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5.6. Some classical problems with real valued wavelets 

The real valued wavelet transform has shown itself to be a powerful tool in analysing 

LTR datasets though it does have certain classical drawbacks that are not present when 

using the Fourier transform. These drawbacks are [71]: 

1. Time Variance: This is an occurrence when a small time shift of the signal will 

cause considerable disturbance in the wavelet coefficient patterns around 

singularities leading to the response of the signal being dependent on the time at 

which an event occurs 

2. Oscillations: The presence of oscillation in the signal around events considerably 

complicates the process of signal modelling and analysis using real valued 

wavelet based transforms. As a direct result of these oscillations it is possible for 

a wavelet overlapping an event to have coefficients approaching or equal to zero. 

This therefore would yield no useful information at these points. 

3. Aliasing: As with many signal processing approaches, real valued wavelet based 

analysis can find itself subject to aliasing. This can be caused by overly wide 

spacing of the wavelet coefficient samples or introduced via signal processing 

operations applied to the signal such as wavelet threshold filtering. This can result 

in the appearance of artefacts in the signal some of which may be substantial in 

magnitude and could lead to confusion over the validity of a target. 

4. A lack of directionality: The pattern produced by wavelets, unlike higher 

dimensional Fourier sinusoids which correspond to directional plane waves, is 

largely omni-directional. This lack of directivity causes issues when processing 

the edges of features in a given signal. 

Discussion 

The preceding chapter has presented real valued wavelet analysis as a potential solution 

to the LTR security scanning problem. From a brief discussion of the wavelet families 

relevant to this process through the results of the real valued wavelet transforms and then 

on to the application of non-linear deconvolution and potential problems with the approach, 

this chapter has attempted to give an overview of this novel approach to security scanning. 
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The results of the classification on the data presented in the surface plots show that a viable 

LTR system could be constructed using the CWT base method although certain technical 

issues specific to this method would need to be overcome. This is mainly the issue that the 

processing per sweep currently takes more than 30 seconds, this would mean that for 

example in an airport bottlenecks would be caused as people queued to be scanned. The 

Self-Organising feature map has been introduced and it utility in processing wavelet based 

LTR datasets considered. Finally potential problems with the real valued wavelet transform 

at a fundamental level have been specified. These problems can be overcome or reduced 

by changing to complex wavelets as described in the following chapters. 
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Chapter 6   

 

Complex Joint Time Frequency Analysis Wavelet techniques, a more 

accurate approach to LTR security screening  

Preview. 

This chapter will discuss complex wavelet based methods for LTR security scanning. 

Covering both the DTWT and the ℂCWT approaches, the relative benefits of using discrete 

or continuous wavelet methods for classification in both binary and multiple object 

classifiers is discussed. Finally the SOM for data clustering is considered and the benefits 

of differing numbers of neurons weighed. The complex valued wavelets considered for 

processing include the Gabor wavelet, which is the complex equivalent of the Morlet, The 

complex Gaussian wavelet, the Shannon wavelet and the Frequency B-spline wavelet. Full 

details on these wavelets can be found in the Matlab wavelet toolbox user’s guide [138] 

[137]. 

6.1. The Discrete Dual Tree Wavelet transform 

6.1.1. Overview 

The DTWT represents a discrete approach to complex wavelet analysis [71]. Developed 

to overcome four of the problems of real wavelets outlined in section 5.3, the DTWT is 

also intended to reduce the computational requirements over the ℂCWT. The DTWT 

functions by employing two real DWT’s, the first DWT provides the real component of 

the transform and the second DWT provides the imaginary component. Two sets of filters 

are used, one set for each of the DWT’s performed, and are designed to meet the conditions 

for a perfect reconstruction filter for that particular signal as outlined in [71]. The DTWT 

is invertible, therefore allowing the original signal to be retrieved after processing if 

necessary. When performed on a real signal, the result of the DTWT is a complex data set 

with real and imaginary components. When performed on a complex signal the result of 

the DTWT is two complex variables, one of which represents the result of the real 

transform and the other the result of the imaginary transform. Therefore the output vector 
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of the DTWT will always have twice as much data as the input vector. All of the following 

experimental results show only the first 3 levels of data handling of the signal performed 

by the DTWT. At each ascending level, the data is compressed by half so if the original 

signal had 2048 points, at level 1 it will have 1024, at level 2 it will have 512 points, at 

level 3 it will have 256 points and so on while the DWT attempts to maintain the features 

of the signal. The advantages of this are that the dataset generated is smaller than that 

generated by the CWT (see section 5.1.1.1. The continuous real valued wavelet transform 

(CWT)), allowing for easier processing and no need for the SOM. Conversely the 

disadvantage to this is that there is a finite limit on the number of the output levels and as 

the compression reaches greater and greater numbers of levels, some of the information 

can be lost. The following plots present the time domain response as processed by the 

DTWT with three levels of compression applied to the signal. The figures presented from 

Figure 65 to Figure 73 contain six separate plots covering two target scenarios. The three 

left hand plots present the level 1, 2 and 3 DTWT decompositions for the first target 

scenario with the three right hand plots presenting the same information for the second 

target scenario. The Y-axis on all plots is normalized amplitude and the X-axis is time in 

nanoseconds. 
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6.1.2. DTWT Results and Classification 

 

Figure 65: DTWT of body only, hands at side to the left and hands behind back to the right 

The body only is presented in the same two postures as previously discussed in Figure 

65. In the case of the DTWT of the body the three levels of compression of the signal by 

the wavelet transform show some similar characteristics. For example if the level 1 

compression of the signal is considered, multiple peaks are present indicating multiple 

features within the signal. This signal at level 1 compression will reduce the original signal 

length by half from 2048 to 1024 points although the step size between the individual points 

will be twice as large as in the original signal. Conversely the level 2 compression shows 

a damped sinusoid which is of a much more idealized representation of the nature of an 

LTR signal. This is particularly apparent with the body with hands behind the back 

indicating that the presence of the arms is returning a strong cross polar signal when the 

arms are placed at the sides of the body. This signal is reduced in length by half again to 

512 points. The level 3 compression of the signal is quite similar in both cases, therefore it 

will be difficult to identify individual features and tell one body posture from the other. 

This final signal is reduced in size to 256 points. 
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Figure 66: DTWT of 6.5 cm needle in isolation to the left and 6.5 cm needle on body to the right 

The first target that will be considered is the 6.5 cm needle. Given that this target is a 

very simple object, when in isolation as presented on the left in Figure 66 its features are 

clearly present in the first two levels of compression of the signal. When on the body as 

presented to the right in Figure 66, the presence of the body has begun to mask some of the 

return from the needle and although it can still be seen in the level 1 compression and the 

level 2 compression, the peak representing the start of the return from the needle is not as 

clear. In the level 3 compression a number of the peaks from the body are approaching the 

level of the peak from the needle. As a result unless the signal is windowed with a high 

level of accuracy, it would be very difficult to discern one from the other. 

 

Figure 67: DTWT of 11 cm steel rod in isolation to the left and on body to the right 

The 11 cm steel rod is very similar to the needle in a lot of respects. As can be seen in 

the plots to the left of Figure 67 there is a very clear peak present when the response from 
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the rod is introduced to the signal. This is consistent across all three levels of compression 

provided by the DTWT. When the body is introduced to the signal, as shown in the three 

plots presented on the right of Figure 67, this peak is still very clearly present in levels 1 

and 2. In level 3 as with the needle the peaks from the body are beginning to approach the 

same magnitude as those from the target, though in the case of the rod this is not as severe 

as with the needle.  

 

Figure 68: DTWT of kitchen knife in isolation to the left and on body to the right 

The kitchen knife, results of which are presented in Figure 68, is an excellent target for 

this particular LTR scanning method. When the knife is presented in isolation, as in the 

three plots on the left of Figure 68, the peak caused by its presence in the signal is very 

clear in all three levels of compression. It is important to note there is some clutter still 

present in the level 3 compression, although this signal is approximately a third of the size 

of the threat objects and so does not have too much effect. When the body is introduced 

into the signal though, there are a few things to note. Firstly there is a distinct double peak 

present in the first 2 levels of the signal. In the level 1 compression this secondary peak is 

60% of the primary and so must be taken into account when processing. Moving on to level 

2, this secondary peak drops to approximately 45% of the primary which is still significant, 

though its effect on the signal is reducing. When the signal reaches its level 3 compression, 

this secondary peak is reduced even further and becomes much harder to discern within the 

signal. 
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Figure 69: DTWT of replica .38 calibre revolver in isolation to the left and on body to the right 

As with previous methods, the result of the replica .38 revolver presented in Figure 69 

is very distinctive. When in isolation at all 3 levels of compression used the revolver 

presents an excellent target, with the peak at the start of its return clearly visible and more 

than 4 times greater in magnitude than any other section of the signal. When the replica 

revolver is moved onto the body this characteristic continues, although it must be noted 

that the difference in magnitude between the signals has reduced a little. In the level 1 and 

level 3 compressions, the magnitude from the target is still at least 3 times greater than that 

of the body. The level 2 compression bucks this trend though, as the secondary peak 

representing the body is approaching 55% of that of the revolver. As long as care is taken 

when dealing with the secondary peak in the level 2 compression of the signal this target 

should present one of the best opportunities for successful on body classification. 
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Figure 70: DTWT of gas powered target pistol in isolation to the left and on body to the right 

The gas powered target pistol is a very large target compared to most of the dataset used. 

The results presented in Figure 70 show that in isolation, as with the replica .38 revolver 

the fundamental peak from the weapon is very large compared to the background with the 

primary peak being approximately 4 times that of the rest of the signal in the first 2 levels 

of compression.. Particularly at level 3 there is a nicely oscillating damped sinusoid which 

would be characteristic of the LTR from this target. When moved onto the body this pattern 

continues with the peak from the weapon being clearly present in the first two levels of 

compression, although the secondary peaks have increased in magnitude compared to 

targets in isolation and at level 3 the peak has become lost in the clutter presented by the 

body and so care would have to be taken using this for classification.  
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Figure 71: DTWT of replica .44 calibre revolver in isolation to the left and on body to the right 

As with the replica .38 revolver, the replica .44 calibre revolver presented in Figure 71 

is an excellent target for ease of detection. Its large geometric dimensions ensures that the 

waveform couples to the target efficiently and reradiates back to the antenna with a 

considerable intensity. In isolation as shown in the three plots to the left in Figure 71, the 

return from the main peak of the replica .44 revolver is even stronger than that of the replica 

.38 revolver. Moving the target onto the body has minimal effect, with the main peak of 

the signal from the revolver clearly present in all three levels of compression. This should 

ensure the target is both very easy to detect and presents sufficient features that the target 

should present only a limited challenge to any classification regime. 

 

Figure 72: DTWT of Fujifilm digital camera in isolation to the left and on body to the right 

The Fujifilm camera used as a non-threat item that may be found on the body is 

presented in Figure 72. The effectively planar surface that it presents to the radar system 



143 
 

 

when in isolation ensures a large peak at the point where the signal from the camera begins. 

When it is moved onto the body this large peak is still present, though the return from the 

addition of the body into the signal is almost half that of the return from the camera in the 

first 2 levels of compression.  The strength of the secondary peak is even greater in the 

third level of compression reaching more than 75% of that of the return from the camera. 

The strength of this secondary peak in such close proximity to the primary peak could 

present significant issues for a classification regime. There is also a third major peak 

reaching 60% of the initial which could present an issue. 

 

Figure 73: DTWT of keys and keyring in isolation to the left and on body to the right 

The second non threat object, the keyring results of which can be found in Figure 73 

presents a distinctive return which should make for simple classification. The major peak 

is clear in all three levels of compression for the object in isolation while when placed on 

the body, the secondary peaks introduced by the presence of the body in the signal are only 

limited in comparison for the first 2 levels of compression. Once the signal reaches the 

third level the secondary peak begins to become more substantial and could potentially 

present issues during classification. 
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Figure 74: DTWT results for all 9 targets, 1 represents a threat, 0 represents a non-threat 

The data presented in Figure 74 represents the entire target dataset classified either as 1 

for a threat or 0 for a non-threat item. The objects are arranged as per Table 8. The data 

sent to the classifier is in the form of a matrix of three columns, with each column 

containing normalised results for one of the three levels of waveform presented. The first 

5 targets, representing the first 375 points on the X axis are the threat items and so should 

all present as a value of 1. This is not the case therefore it can be inferred that the network 

is not perfect from this figure. The following 300 points represent the non-threat items. 

These should all present a value of 0 and as this is not the case therefore there will be some 

misclassifications in the network. The objects used are as per the order in Table 8: Table 

of Targets vs model order and resonant frequencies. 
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Figure 75: DTWT ROC curve, split dataset without PCA 

Figure 75 presents the results of classification by an ANN for the DTWT dataset. The 

blue line on the figure represents the classification result at a given threshold value ranging 

from 0 to 1. The gray line represents the results of a 50-50 guess therefore a result appearing 

to the left of the gray line is of value while a result appearing close to or to the right of the 

gray line indicates a non-viable classification regime. This result was generated by taking 

a dataset, splitting it in two, training the network on one half of the dataset and then using 

the other half as a test set. Figure 75 shows data from the test set only without PCA applied. 

Figure 76 presents the same dataset with PCA applied. The application of PCA has given 

a small improvement in classification rates from 94% to 98%. 
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Figure 76: DTWT ROC curve, split dataset with PCA 

In circumstances such as this very high true positive classification rates are possible with 

the rate without PCA reaching 94% and with PCA approaching 98% whilst still 

maintaining a zero false positive rate. A real world classifier that functioned as well as this 

would be ideal for security classification in high security environments. It must be noted 

that the DTWT has no capability to classify objects individually as the classification of an 

object dataset yielded no usable result.  
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Table 12: DTWT classification results with and without PCA 

Target Correct classification rate 

with PCA (%) 

Correct classification rate 

without PCA (%) 

11 cm steel rod 100 98.67 

Kitchen Knife 95.76 95.76 

Replica .33 calibre 

revolver 

97.33 96 

Gas Powered Target pistol 100 98.67 

Replica .44 calibre 

revolver 

94.66 89.11 

Body, hands at side 95.76 95.76 

Body, hands behind back 98.42 97.09 

Fujifilm Camera 95.76 95.76 

Keyring 98.42 95.76 

6.2. The continuous complex wavelet transform 

6.2.1. Overview 

The ℂCWT is the preferred solution to wavelet based analysis of LTR security 

applications. It contains all of the benefits of both the continuous wavelet transform as well 

as complex wavelets without the reduced classification rate introduced by the DTWT. It is 

very simple to implement, using the same method as the real valued CWT, but as opposed 

to applying a real valued wavelet to both parts of a complex dataset, it applies a complex 

valued wavelet using the real values of the wavelet to transform the real component of the 

signal and the imaginary values of the wavelet to transform the imaginary component of 

the signal. Please refer to section 3.2.1 for a discussion of how the continuous wavelet 

transform works. 

A number of different wavelets are available for use when performing complex 

continuous wavelet analysis. Of the many different types considered, the four that have 

shown to have value are discussed in section 5.1.1. The following section presents the 

results of the use of the complex Gaussian wavelet as it can be compared directly to the 

real valued Gaussian wavelet results presented in chapter 5 as opposed to the Shannon or 

Frequency B-spline wavelets which have no real valued equivalent. The same target set 
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used in the previous sections has been used for these experiments and so a direct 

comparison between the techniques is possible.  

6.2.2. ℂCWT Results and Classification 

The following plots, Figure 77 to Figure 85 follow the same structure as those presented 

in Figure 49 to Figure 57. 

 

Figure 77: ℂCWT of body only, hands at side to the left, hands behind back to the right 

Figure 77 shows the body in the two postures mentioned previously. As you can see the 

results are very similar to those presented by the real valued CWT in Figure 49. In fact for 

all intents and purposes the two returns are indistinguishable. This is useful as it shows that 

the return from the body is very consistent meaning that accounting for the effects of the 

body on the signal should be simpler. Once again it is important to note the intensities of 

the return from the body, these values sit in the range of 10-3 with a number of peaks 

varying in intensity over a large scale range. The presence of the arms in the signal as 

shown in the plot of the body with hands by the side returns a strong cross polar signal at 

a lower scale, while when the arms are removed from the signal the torso at a higher scale 

range has more influence on the signal. It is important to note that the intensity of the targets 

on body is reduced from that of the targets in isolation. This is due to the additional 
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processing required in order to distinguish the target when on body as opposed to in 

isolation and is consistent with the same effect found in section 5.1.1.1. The continuous 

real valued wavelet transform (CWT). 

 

Figure 78: ℂCWT of 6.5 cm needle in isolation on the left, 6.5 cm needle on body on the right 

The ℂCWT result of the 6.5 cm needle on body in Figure 78 is similar in scale range to 

that found in Figure 50 of the same object using the CWT. As with previously presented 

figures it produces a sharp peak when in isolation though in this case the peak retains more 

energy after the transformation. It is interesting to note that using this method for the target 

placed on the body, the ratio of energy in the target signal versus that of the return has 

changed, showing that contrary to expectations in this case the ℂCWT actually makes it 

more difficult to successfully detect and classify a needle on the body. The needle return 

can be found at ~4 ns on the time axis with a scale range of 0.8 to 1.7. The intensity of the 

peak from the needle has also been considerably attenuated. This attenuation could 

potentially be caused by the position of the needle on the body being physically masked by 

a part of the body therefore completely blocking a percentage of the return signal. 
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Figure 79: ℂCWT of 11 cm steel rod in isolation on the left, 11 cm steel rod on body to the right 

Fortunately, the effect of the body increasing in magnitude does not consistently alter 

the returns using the ℂCWT. In the case of the 11 cm steel rod, presented in Figure 79 it is 

apparent that the target in isolation is still a well-defined peak with a small spread over the 

scale range. When comparing to the CWT result in Figure 51 the similarities are apparent. 

Moving the target onto the body and processing using the ℂCWT does present some 

differences to that shown in Figure 51, as the effect of the body in the signal is minimal, 

while the peak from the rod is still clearly apparent. The return from the target is located 

around ~4 nS with a scale range of 2.3 to 5.4. It is important to note that the intensity of 

the peak presented by the steel rod has been somewhat attenuated though not as 

significantly as the 6.5 cm needle. 
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Figure 80: ℂCWT of kitchen knife only to the left, on body to the right 

For the small kitchen knife, results of which are presented in Figure 80 the return from 

the knife in isolation is still represented by a well-defined peak with a small spread over 

the scale range. Figure 52 which presents the results of the CWT of the same target shows 

there to be a small amount of clutter towards the higher scale ranges, in the case of the 

ℂCWT this is not present. The scale range at which the return from the knife can be found 

peaks between 2.1 and 2.9 at ~4 ns on the time axis. When the target is moved onto the 

body it is still clear that the return from the needle is present in the signal, although it must 

be noted that there are some secondary peaks caused by the interaction of the signal with 

the body that are potentially of high enough intensity to cause problems in classification. 
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Figure 81: ℂCWT of replica .38 revolver in isolation on the left, on body to the right 

The ℂCWT result for the replica .38 revolver presented in Figure 81 shows similar 

characteristics to that of the CWT for the same target presented in Figure 53. When the 

target is presented to the algorithm in isolation, a strong peak with a reasonable spread over 

the scale range is apparent though this scale range is concentrated between scale 5 and 10. 

A low intensity component of the signal can be found in the scale ranges from 10 upwards. 

When the target is moved onto the body, once again the revolver proves itself to be a very 

simple target to detect as the return from the target masks that of the body. The scale range 

at which the revolver can be found is between 5.4 and 11.7 at ~4 ns on the time axis. In the 

case of the ℂCWT dataset there is very little of the return from the body that can be 

discerned. It must be noted that some attenuation of the signal does occur, though not to 

the same level as with previous targets and that the peak from the revolver has deformed 

towards the lower end of the scale range available.  
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Figure 82: ℂCWT of GP target pistol only to the left, on body to the right 

The result of the experiment using the gas powered target pistol with the ℂCWT 

processing technique is displayed in Figure 82. As previously demonstrated in figure 52 by 

the same target with the CWT applied, this target presents a very broad range of scales 

when presented in isolation. The scale range at which this target can be found is between 

8 and 24 at ~4 ns on the time axis. When moved on to the body there is a similar effect, 

though it is interesting to note that the deformation of the peak at lower scales presented 

by the revolver in Figure 81 has also occurred with this target only to such a degree that 

two distinct peaks at different scale ranges are visible. The return from the signal 

interaction with the body is heavily suppressed such that it should have minimal to no effect 

on classification algorithms.  
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Figure 83: ℂCWT of replica .44 revolver only to the left, on body to the right 

The large replica .44 calibre revolver has also been tested using the ℂCWT based 

method. The results of this presented in Figure 83 are quite unique amongst the target sets 

used in this work. The target in isolation presents as a well-defined peak with a small spread 

of scales as with the result of the CWT for the same target in Figure 55. The scale range 

between which this target can be located is 3.5 and 6.5 at ~4 ns on the time axis. The target 

on body also presents as a single well defined peak with a small spread of scales and the 

return from the signals interaction with the body has been completely suppressed. This 

indicates that the replica .44 revolver is an ideal target for classification as its characteristics 

are such that the presence of a larger geometric but nonmetallic object such as the body is 

not able to interfere with its return.  
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Figure 84: ℂCWT of camera in isolation to the left, on body to the right 

The Fujifilm camera presented in Figure 84 shows some useful characteristics. In 

isolation its single well defined peak allows for ease of identification of the needles 

characteristics while when it is moved on to the body, this peak is still clearly present. The 

scale range at which the camera can be located is between 2.4 and 4.4 at ~4 ns on the time 

axis. It must be noted that the peak has been heavily attenuated and so is now in a similar 

range to the return from the signals interaction with the body. Indeed the peaks representing 

the clutter introduced by the body in the signal are approaching 60% of the value of the 

return from the camera. 



156 

 

 

 

Figure 85: ℂCWT of Keyring only to the left, on body to the right 

The second non threat object presented is the keyring. Figure 85 demonstrates the result 

of applying the ℂCWT based technique to this particular target. As before it is apparent 

that this target offers a very LTR signal and as such is very easy to detect. It also has a very 

similar effect to the revolvers presented previously in that when the body is introduced to 

the signal, this target is capable of suppressing the signal from it. The scale range at which 

the keys can be located in this instance is between 2.6 and 4 at ~4 ns on the time axis. As 

there is a large quantity of metal present and all are of a complex geometric nature, in all 

the targets that are capable of having this effect it must be considered as to whether the 

quantity of metal present can be used to determine a threat object and if any successful 

method could be used to eliminate non threat items such as keyrings from detection. 
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Figure 86: ℂCWT plot of all 9 target sets with value 1 as threat and value 0 as non-threat 

Figure 86 shows the result of the binary threat/non-threat classifier using the ℂCWT. 

All 9 targets are presented as per Table 8 with 150 sweeps for each target and can be 

compared with Figure 61. It is known that the first 5 targets are threat items on the body 

therefore the plot in Figure 86 should show a value of 1 as far as 650 points in. This is the 

case as the blue line representing the result has stayed high to this point. It then drops down 

to 0 as would be expected for the remaining 600 sweeps. This is an excellent result as it 

has successfully trained and classified on the dataset. All objects are presented in the order 

laid out in Table 8: Table of Targets vs model order and resonant frequencies. 
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Figure 87:  ℂCWT training ROC, binary classifier 

Figure 87 is a ROC curve representing the same dataset as that shown in Figure 86. As 

the result in Figure 86 was close to a perfect result, the blue line in Figure 87 would be 

expected to stay very close to the Y axis until it reaches a value of 1. As this is the case, it 

can be seen that for any threshold value, with this particular test set the classifier is very 

effective. It is important to see if this result can be generalised to different datasets. 
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Figure 88: ℂCWT generalised ROC, binary classifier 

Figure 88 is a ROC curve representation of the trained neural network used in Figure 86 

and Figure 87 on a generalised data set. To test the sensitivity of the network to target type, 

a further set of data was taken using similar weapons and benign objects at different target 

range with a differing number of points. This generalised data set was processed using the 

same method as applied to the ℂCWT test set. It was important to test the effect of range 

as it could potentially have had a significant effect on the classifiers performance due to 

changes in received power levels. The number of points taken was altered to test whether 

this could cause loss of resolution sufficient to increase errors in the classification 

algorithm. The classification algorithm has proven to be robust as it has maintained a very 
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high true positive classification rate, although it must be noted that the value of the true 

positive classification rate where false positives will be 0% has dropped from 100% to 

88%. This means that in order to successfully detect all targets passing the systems field of 

view, it would be necessary to set the threshold value to 0.9. This would incur a penalty of 

a 10% false positive rate which is very high for a potential practical system. It would be 

more useful to set the threshold to 1, thereby only having a successful true positive rate of 

88% and sweeping targets multiple times. 

 

Figure 89: ℂCWT plot of all 9 target sets against their expected classification value 

The additional complexity of attempting to classify 9 different objects on body provides 

for a complex representation on the plot in Figure 89 and can be compared with the data 

shown in Figure 63. The expected value for each target can be found in Table 8. The data 

presented is from the test set and presents a good result for classification with only a few 

misclassifications. The result of applying a threshold of ± 0.3 to the dataset can be found 
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in the following ROC curve. This threshold value of ± 0.3 was chosen as it allowed for 

some small variation in target response due to movement etc. while presenting the best 

result for true positive classifications of the targets given and keeping false positives to a 

minimum.  

 

Figure 90: ℂCWT 9 object classifier, split dataset 

 

Figure 90 is the ROC curve representing the trained neural network used to produce 

Figure 89. As can be seen the true positive classification rate remains very high for this 

dataset, approaching 97% while keeping false positives to a minimum. When compared to 
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Figure 64 representing the CWT result for the same target set where the true positive 

classification rate is 83%, a marked increase in performance can be noted. 

 

Figure 91: ℂCWT Generalised 9 item classifier 

Finally the generalised result for the 9 object classifier is presented in Figure 91. This 

result differs from that shown in Figure 90 as it uses a generalised dataset on which the 

classifier was not trained.  The true positive classification rate is located around the 25% 

mark, very low when compared to other datasets though it must be noted that this is greater 

than the result of the CWT, the result of which is the same as the gray line on Figure 91. It 

is notable that this is the only method that showed a greater than 50-50 guess result for the 

generalised 9 item classifier. The results for the 9 object classifier using the CWT, DTWT 
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and GPOF methods have not been included as they show no better performance than a 50-

50 guess.  

Discussion 

This chapter has presented the results for tests performed using both the DTWT and 

ℂCWT for LTR security applications. It has been determined that the DTWT is able to 

perform binary threat/non-threat classification though it has no capacity to be able to 

classify different items specifically. The ℂCWT has shown itself to be the most capable of 

all the algorithms tested, with high classification rates in binary threat/non-threat 

classification and some capability to classify individual though these classification rates 

are considerably lower than those presented in binary classification. 
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Chapter 7   

 

Discussion and conclusions 

Preview. 

This chapter presents a discussion of the work performed in the previous chapters. This 

discussion will focus on potential scenarios in which an LTR system may be deployed and 

how the results may be applied to a practical weapons detection system. The discussion 

will also cover the issues discovered with the different techniques and the mitigating 

actions that should be taken to allow for a creation of a viable LTR system and the 

appropriate algorithms to be used. 

7.1. Summary of work done 

A laboratory evaluation of the LTR has been carried out and involved the use of a VNA 

to provide the source for an UWB radar system which illuminated targets to excite and 

extract CNR’s. The VNA itself provided a sweep of 500 MHz to 3 GHz has been used. 

The additional higher frequencies available with the VNA could be used to detect smaller 

objects via the LTR method in other scenarios although it is important to note that for this, 

some technical hurdles will need to be overcome.  

The experimental work performed was supplemented by computer simulations 

performed on objects in isolation and have helped to confirm the expected locations of the 

fundamental resonant frequencies for a selection of the targets used. This has backed up 

the theory and provided additional confidence in the practical results obtained. A complete 

simulation of objects and a human body has proved to be impossible as due to the density 

of the mesh required, the limitations of the computer memory available mean that any mesh 

created is not sufficiently dense and so cannot provide an accurate result. 

The data analysis techniques used have proven themselves critical to the LTR method 

that has been developed. The application of the matched filter and wavelet filters with time 

gating to reduce noise in the signal and windowing the area of interest within the signal 

have allowed the required processing volume to be reduced. Also adjustment of parameters 

applied to the SOM has shown the capability of reducing processing time further, without 
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sacrificing much with regard to accuracy. For certain of the methods tested, PCA has also 

shown itself to be of value in reducing false positives. 

7.2. Assessment of how project objectives were addressed 

The three main objectives for this research program are outlined in section Aims and 

Objectives of the Research Program. Each of these represented a step along the road to 

creating a suitable algorithm for threat classification in the real world. Objective 1 was to 

develop a reliable method of detecting a target in isolation and develop a suitable algorithm 

for processing the data using the GPOF method. The results of this can be found in the 

plots from Figure 36 through to Figure 44. A discussion of the approach taken in the 

development of this algorithm can be found in Chapter 2 and further details can be found 

in Chapter 4. This objective required that a number of techniques already believed 

necessary be verified and improved upon. The successful completion of this allowed for 

progression on to objective 2. 

Objective 2 required that an investigation into multiple objects present in the same radar 

beam at the same range be undertaken. Details of this can be found in section 2.3.2. Single 

and multiple target detection in isolation and in [1]. This investigation showed that it was 

possible to detect two objects of similar dimensions when both objects were at the same 

range using LTR based methods. This required much more accurate windowing of the 

signal and detection of the first two major peaks with windows placed around both. The 

confirmation of this allowed further progression on to objective 3. 

Objective 3 involved determining the impact of the LTR based method in detecting 

objects in different environments, in particular environments where the LTR of the object 

in question may be obscured by the return from a larger, complex geometric object. This 

objective represents the bulk of the results presented in this thesis in Chapter 4, Chapter 5 

and Chapter 6. These results clearly show that it is possible to detect the LTR of an object 

of interest when it is in close proximity to a much larger complex geometric object. Once 

this had been determined it was then necessary to increase the scope of the research and 

determine if it was possible to use machine learning to identify these objects. This required 

the introduction of a number of statistical signal processing and filtering techniques in order 
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to allow for machine learning algorithms to process the data. These techniques have proven 

successful allowing for true positive classification rates on test datasets of between 70% 

and 100% for binary threat/non-threat classifiers. The GPOF and DTWT classifiers 

represent the most computationally efficient algorithms, although they also have lower true 

positive classification rates than the continuous wavelet based methods. Application of 

these methods in a security environment would require a target to be scanned multiple 

times to ensure successful detection. The higher classification rates made available by the 

continuous wavelet based methods would require fewer scans be taken though this comes 

with the drawback that the greater computational intensity of these algorithms would 

require either longer processing times or more capable/expensive computer hardware.  

When applied to generalised datasets the binary true positive classification results 

approached 88% for the ℂCWT and 25% for the individual object classifier. With more 

complex problems such as identifying individual objects only the continuous wavelet based 

methods were able to process this with lower true positive classification rates at between 

84% and 97% for the test set using these methods. 

The overall aim of this research project as outlined in the aims and objectives, to 

investigate the application of Late Time Response based techniques to develop an 

algorithm that will robustly detect concealed threat objects in security environments, has 

been met and exceeded. Four potential classification algorithms that could be used are 

described in chapters 4, 5 and 6. The benefits and downsides in the use of each of these 

algorithms has been outlined and a determination made that the algorithm that best meets 

the requirements of a potential LTR security system is the ℂCWT. A discussion as to the 

best type of wavelet for use with this transform has been presented with the Gaussian 

wavelet showing itself to be the most effective. A discussion of the benefits and downsides 

of each of the four algorithms developed has been presented at the end of chapters 4, 5 and 

6 with a conclusion as to the best choice for overall performance being made. 
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7.3. Discussion 

7.3.1. Signal smearing 

A viable LTR security system has a number of potential deployment opportunities. The 

physical requirements of the experimental LTR system used here will allow for either a 

fixed installation system or a system that could be installed in a vehicle. Unfortunately due 

to the low frequencies at which the fundamental resonances for most objects of interest are 

found, the antennas required are large making a man portable system highly unlikely. It is 

envisaged that a deployed fixed installation LTR system using the algorithm developed 

could involve the use of a planar array of concurrently fed patch antennas [159], allowing 

for the creation of a wideband RF sweep and control of the beam while reducing the form 

factor of the system. This system could then be deployed on the walls in secure areas, 

allowing for scanning individuals as they walk by. 

This does lead some to potential problems, preeminent among which would be the effect 

of moving targets. This causes a change in the return time from an observer moving relative 

to the signal source during the time taken to complete the frequency sweep, which in turn 

could cause the LTR returns from target objects to become confused, rendering the 

classifier as trained ineffective. Therefore the design must be robust enough to handle a 

certain level of motion before smearing in the signal will become an issue. As a human 

being can walk approaching speeds of 1.4 m/s, the sweep time of the system must be set to 

accommodate this. The sweep time is currently limited by the VNA setup to 256 ms. Use 

of discrete hardware could improve this. For example at a frequency of 1 GHz, time 

smearing should be kept to less than 0.5 ns to avoid smearing. Therefore the maximum 

allowable motion within the beam can be calculated using Equation 67: 

 Δ𝐿 = (
0.5 × 10−9

2
) ∙ 3 × 108 = 75 𝑚𝑚  

Equation 67 

 With Δ𝐿 the maximum allowable motion in the beam before smearing occurs. This 

requires that the frequency sweep be completed within 25 ms, which could be achieved 

using customized hardware. The ability to scan targets in motion has a fundamental 
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advantage over many portal based systems currently in production, in that it could reduce 

the issue of bottlenecks at security checkpoints. 

7.3.2. Attenuation 

Another consideration is the sensitivity of the system to the microwave power 

employed. The power levels used range from 2 dBm to –4 dBm with little variation in 

performance found. This is important because the strength of the return signal can be 

affected by target distance and by attenuation due to clothing. Rahim et al [160] discuss 

the effect of four different textiles on path attenuation of a signal in line of sight and non-

line of sight scenarios at frequencies between 2 GHz and 3 GHz. Another potential problem 

is the attenuation caused by the materials used to make the clothes themselves. Rahim et al 

[160] conclude that of the materials tested, polyester produces the most attenuation of the 

signal, approaching a loss of 13.9% with the major contributing factor being the dielectric 

constant of the material. When compared to results at higher frequencies as demonstrated 

in [59] these low frequency losses are of lesser magnitude. The power values used have 

been successfully tested out to ranges of 3 m with similar results for each demonstrating 

the robustness of the algorithm in handling attenuation and indicating that lower 

frequencies suffer less attenuation by clothing. 

7.3.3. Filtering and SNR 

There are two different filtering approaches applied in the work presented, one for the 

GPOF based approach and the other for the wavelet based approach.  

The first step in filtering applied to the GPOF was to average 10 sweeps of the target 

together to reduce noise. This was followed by time- gating the signal, an approach which 

removes information outside the region of interest. This was followed by a matched filter, 

used to maximize the SNR before processing with the GPOF. 

The filtering for the wavelet based algorithms involved time-gating of the signal as only 

a single sweep was processed each time for this. The next step comprised a wavelet based 
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threshold filter using a Gaussian mother wavelet followed by a SG filter for high frequency 

noise. 

The goal of the filtering methods applied is maximizing the SNR of the signal while 

minimizing any changes caused by filtering the signal. The GPOF filtering approach of 

using a matched filter requires some knowledge of the signal a priori and the averaging of 

the 10 sweeps together introduces longer scan times. This led to the introduction of the 

single processed sweep to reduce scan times and the SG filter to remove high frequency 

noise. The matched filter was replaced by the wavelet filter when using wavelets as it does 

not require a priori knowledge of the signal and can therefore be applied simply. 

Deconvolution of the transmission characteristics from the signal is a necessary 

component of the algorithm if any successful LTR signal is to be extracted. This has been 

analysed in two ways, firstly linear deconvolution which performs a division in the 

frequency domain of the known transmission signal from the target scans and secondly 

with non-linear deconvolution, which comprises either the CLEAN or Richardson-Lucy 

deconvolution methods. The linear deconvolution method is very effective in its ability to 

remove transmission characteristics from the signal, although in cases where the signal 

sweep is broader than the available frequency range of the horns an offset must be added 

into the transmission in order to prevent a case where the signal may be divided by zero. 

The non-linear deconvolution methods have shown they are able to help with frequency 

extraction in some circumstances, though the additional computational complexity 

introduced by these algorithms and the requirement for a priori knowledge in order to apply 

them effectively does limit their utility. 

7.3.4. Feature extraction and classification 

Intelligent learning processes such as artificial neural networks are a growing area of 

research in security applications. The ability of feedforward backpropagation neural 

networks to classify unknown targets after presentation of a set of training data is very 

useful when attempting to identify these items. These networks are very adaptable with 

performance depending on the size of each layer of neurons and transfer function that is 
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chosen [161]. The hidden layer of the FFBP networks used comprised 8 neurons and used 

tangent-sigmoid transfer functions while the output layer of 1 neuron uses a linear transfer 

function allowing for an output value ranging between any set ranges of the designers 

choice. For the 9 object classifiers used the hidden layer comprises 60 neurons. An 

alternative to this would be to have an output layer comprising as many neurons as targets 

that the network is trained for. This would make the network larger and more complex to 

train, though it would allow for the use of a tan-sigmoid transfer function on the output 

layer which would constrain the values between 0 and 1, potentially improving 

classification rates for larger target sets. For the current approach the ANN’s used have 

proven to be very effective and robust. Faster training networks such as cascade 

feedforward networks [144], which operate by including a connection from the input layer 

and every previous layer to the following layers have been considered. Although there is 

an improvement in training time, it does not present a sufficient improvement to justify the 

extra complexity of the network therefore the FFBP network was selected as the classifier 

of choice. 

The training functions available to teach the neural network to classify the targets 

presented to it are numerous.  A common method uses Levenberg-Marquardt optimization. 

This is effective though it has two drawbacks in that training using this method is slower 

when compared to other methods and it can potentially find a local minima while training 

rather than the global minimum, leading to suboptimal network operation. Use of the 

gradient descent with momentum and adaptive learning rate backpropagation training 

functions greatly accelerated the training speed of the algorithm but did not address the 

algorithm potentially resolving to a local minima. The solution that allowed for both 

drawbacks to be resolved was to use conjugate gradient backpropagation with the Powell-

Beale restarts training function [144]. This approach has both improved training speed and 

ensures the network will resolve to a global minima.  

The utility of PCA in dimensionality reduction of datasets is well known. The method’s 

ability to determine the most useful components of a dataset and eliminate those that don’t 

contribute sufficiently to the overall picture provides an excellent capability to any 

application to which it lends itself. Of the many statistical methods available, PCA was 
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chosen because it allows for rapid processing of datasets while maintaining the 

characteristics of the original data. When coupled with a method such as an ANN, PCA is 

able to improve performance of the network while actually reducing the computational 

effort required to train the network. 

Theoretically the GPOF method lends itself well to LTR signal processing with certain 

caveats. Firstly, the windowing of the signal must be very accurate in order to ensure that 

the presence of clutter does not present spurious poles at frequencies not applicable to the 

target. Secondly, the model order of the target must be obtained in order to ensure that only 

those poles relevant to the target are presented. The algorithm created allows for automatic 

location of the start of the LTR signal which has shown itself to have a good level of 

accuracy, though accurate prediction of the end of the LTR window is a challenge that has 

yet to be overcome. The algorithm developed ensures that the whole of the LTR signal is 

obtained by taking 7.5 nS of data which is greater than any of the expected LTR lengths 

though this does come at the cost of potentially adding in unnecessary clutter to the data. 

The approach that has been used to determine the model order is computationally intensive 

as it requires all possible useful model orders to be run, the standard error calculated at 

these points for a signal reconstructed from the poles produced and then the algorithm be 

run again for the correct model order. 

The GPOF method developed has shown itself to be capable of performing binary 

threat/non-threat classification of targets successfully. With true positive classification 

rates of 70% with 0% false positives as shown in Figure 46, a viable security system using 

this method could be developed. With the application of PCA to the dataset, this increases 

the true positive classification rate to 73% while maintaining 0% false positives as shown 

in Figure 47. There has only been very limited success in classification of individual 

objects.  

The groundwork for the application of the real valued CWT to LTR analysis can be 

found in [68]. The intensity maps presented in this publication indicated that it may be 

possible to use the CWT for LTR security screening purposes. The work presented used 

the Morlet wavelet to analyze the horizontally polarised returns from a number of targets, 

the processed images of which showed distinct objects at different scale points. Progressing 
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onwards from this point, so that the images could be individually analysed presented quite 

a challenge. Due to the scale and complexity of the data it was not possible to obtain a 

classification result directly from the intensity plots, further intermediate steps were 

required. These steps including improving on the filtering regime and data vectorization 

using unsupervised ANN techniques allowed for a classifier to successfully learn from the 

data.  

Competitive learning functions [144] are an alternative training method that allows for 

the creation of unsupervised ANN’s. Known as unsupervised random order weight/bias 

training, these algorithms attempt to train the network with weight and bias learning rules, 

providing incremental updates after each presentation of a randomly presented input. The 

result of this approach is that the neurons in a given competitive layer will distribute 

themselves such that they are able to recognize commonly presented inputs. Therefore the 

network will return a zero for all neurons except for the winning neuron for which the 

network will return a value of one. This method allows for the very large wavelet based 

datasets to be successfully processed by an FFBP ANN and classified into different 

categories. The SOM does have some capability to classify targets itself, although in this 

case it was not able to provide a good result. 

The real valued CWT is the first of the wavelet based methods that allowed for 

successful classification of data. The mother wavelets tested include the Daubechies, 

Morlet and Gaussian wavelets, with a particular focus on the Gaussian wavelets. This 

method shows itself to be effective in binary threat/non-threat classification with true 

positive classification rates approaching 100% when applied to the test set. When the 

individual object classifier is applied to the training set the true positive classification rate 

drops from close to 100% to around 83%. This reflects the additional complexity required 

to classify these objects individually, but is still a respectable figure. 

The next logical step was to attempt to process the complex return data by using a 

complex approach as opposed to the real valued approach in the CWT. This and attempts 

to reduce the computational complexity of the CWT algorithm led to the decision to use 

the DTWT. This algorithm applies a discrete complex wavelet to the dataset, in order to 

maintain features of the dataset in the transformed signal. This method uses two stages of 
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filters, the first stage of which are nearly symmetric Farras filters [162] and all subsequent 

stages use Kingsbury Q shift filters [163]. The DTWT used as a binary threat/non-threat 

classifier shows some good results with true positive classification rates approaching 95% 

for the test set presented in Figure 75 and 98% in Figure 76 for data with PCA applied. 

The inability of the DTWT to classify individual items led to work beginning on the 

ℂCWT, results of which can be found in section 6.2. The continuous complex wavelet 

transform. These results demonstrate that the ℂCWT has a number of advantages over the 

other methods presented. 

7.3.5. Process timescale 

The timescales for the analysis algorithm are critical. If it takes too long to process a 

target set the system will be of no practical use. A number of points need to be considered. 

Firstly, the use of an Field Programmable Gate Array (FPGA) based processor to perform 

the CWT could decrease the processing time from its current level of 3.2 seconds to less 

than 100 ms by parallelizing the processing of each individual scale. The size of the SOM 

used can also be altered. Current tests have shown a 4 x 4n SOM to take 11 seconds to 

process, while a 2 x 2 SOM takes 3 seconds. The introduction of faster, more capable 

central processing units could also be used to accelerate the algorithm.  
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7.4. Future work and applications 

7.4.1. Work program 

Production of a practical weapon detection system would involve an extensive 

programme of hardware and software development with many trials to confirm its 

performance. This would include development of custom frequency control and data 

acquisition hardware, optimisation of process software and a wider range of training 

examples including target range, weapon type, body type, weapon position and covering 

clothing. As well as portal or walk past systems, several other potential applications have 

been identified and would be worth investigating: 

1. A case study on luggage scanning: 

Luggage scanning is a critically important security feature of modern air travel. 

LTR based security techniques lend themselves well to this type of application 

and so a wavelet based LTR scanner could be developed to meet this 

requirement. Using LTR for this would reduce the use of ionizing radiation 

sources such as x-rays currently employed by airports. 

2. A case study on knife scanning: 

Knife crime is a serious issue, commonly reported as in inner city areas and 

schools. The ability to detect these knives at standoff ranges would allow for 

effective screening in schools and shopping centres for example. Fixed 

installation wavelet based LTR screening systems at entrances could be applied 

to this scenario, with the potential for helping to reduce knife crime. 

3. A case study on parcel scanning: 

Transport of threat items through the postal system by unsuspecting staff is a 

very real possibility. LTR’s non-invasive scanning could allow for these parcels 

to be checked prior to transport. 

 

A number of potential areas for future work have been identified during the research 

project performed. These include: 
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- Design and development of a concurrently fed planar antenna array [159] [13]. 

This would assist in reducing the form factor of the system by reducing depth 

and allow for installation on flat surfaces such as walls.  

- Introduction of a phased array system would allow for control of the radar beam 

via electronic beam steering/forming allowing for the range of the system to be 

increased and the location of the item on the body to be determined. 

- An alternative method for focusing the beam would be to use a lens. For a fixed 

emplacement system based around a portal scanner this could be considered but 

for any other application would be impractical as the lens diameter would be > 

2 m.. 

- The Empirical Mode Decomposition coupled with the Hilbert transform or 

Hilbert Huang Transform [77] as it is also known was developed by the National 

Aeronautics and Space Administration and is used for time-frequency analysis 

of meteorological data along with limited application to radar systems to date. 

This adaptive algorithm could potentially resolve some of the issues with 

computational complexity presented by the continuous wavelet based 

transforms while still resolving the frequency data accurately and potentially 

accounting for spurious data automatically. Conversely, its empirical based 

approach does allow for some error in the results provided which would need to 

be accounted for and the existing ANN’s would need to be retrained to process 

this data.  
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Appendices 

A.1. Gallery of target objects 

 

Figure 92: Replica .44 calibre revolver 

 

Figure 93: Gas powered target pistol 
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Figure 94: replica .38 calibre revolver 

 

Figure 95: Keyring 
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Figure 96: Fujifilm camera 

 

Figure 97: Kitchen knife 
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Figure 98: Steel rod 

 

Figure 99: 6.5cm needle 

 


