18 research outputs found

    A new near octagon and the Suzuki tower

    Get PDF
    We construct and study a new near octagon of order (2,10)(2,10) which has its full automorphism group isomorphic to the group G2(4):2\mathrm{G}_2(4){:}2 and which contains 416416 copies of the Hall-Janko near octagon as full subgeometries. Using this near octagon and its substructures we give geometric constructions of the G2(4)\mathrm{G}_2(4)-graph and the Suzuki graph, both of which are strongly regular graphs contained in the Suzuki tower. As a subgeometry of this octagon we have discovered another new near octagon, whose order is (2,4)(2,4).Comment: 24 pages, revised version with added remarks and reference

    Geometric contextuality from the Maclachlan-Martin Kleinian groups

    Full text link
    There are contextual sets of multiple qubits whose commutation is parametrized thanks to the coset geometry G\mathcal{G} of a subgroup HH of the two-generator free group G=x,yG=\left\langle x,y\right\rangle. One defines geometric contextuality from the discrepancy between the commutativity of cosets on G\mathcal{G} and that of quantum observables.It is shown in this paper that Kleinian subgroups K=f,gK=\left\langle f,g\right\rangle that are non-compact, arithmetic, and generated by two elliptic isometries ff and gg (the Martin-Maclachlan classification), are appropriate contextuality filters. Standard contextual geometries such as some thin generalized polygons (starting with Mermin's 3×33 \times 3 grid) belong to this frame. The Bianchi groups PSL(2,O_d)PSL(2,O\_d), d{1,3}d \in \{1,3\} defined over the imaginary quadratic field O_d=Q(d)O\_d=\mathbb{Q}(\sqrt{-d}) play a special role

    Some contributions to incidence geometry and the polynomial method

    Get PDF

    The L₃(4) near octagon

    Get PDF
    In recent work we constructed two new near octagons, one related to the finite simple group and another one as a sub-near-octagon of the former. In the present paper, we give a direct construction of this sub-near-octagon using a split extension of the group . We derive several geometric properties of this near octagon, and determine its full automorphism group. We also prove that the near octagon is closely related to the second subconstituent of the distance-regular graph on 486 vertices discovered by Soicher (Eur J Combin 14:501-505, 1993)

    Zoology of Atlas-groups: dessins d'enfants, finite geometries and quantum commutation

    Full text link
    Every finite simple group P can be generated by two of its elements. Pairs of generators for P are available in the Atlas of finite group representations as (not neccessarily minimal) permutation representations P. It is unusual but significant to recognize that a P is a Grothendieck's dessin d'enfant D and that most standard graphs and finite geometries G-such as near polygons and their generalizations-are stabilized by a D. In our paper, tripods P -- D -- G of rank larger than two, corresponding to simple groups, are organized into classes, e.g. symplectic, unitary, sporadic, etc (as in the Atlas). An exhaustive search and characterization of non-trivial point-line configurations defined from small index representations of simple groups is performed, with the goal to recognize their quantum physical significance. All the defined geometries G' s have a contextuality parameter close to its maximal value 1.Comment: 19 page

    Geometric aspects of 2-walk-regular graphs

    Full text link
    A tt-walk-regular graph is a graph for which the number of walks of given length between two vertices depends only on the distance between these two vertices, as long as this distance is at most tt. Such graphs generalize distance-regular graphs and tt-arc-transitive graphs. In this paper, we will focus on 1- and in particular 2-walk-regular graphs, and study analogues of certain results that are important for distance regular graphs. We will generalize Delsarte's clique bound to 1-walk-regular graphs, Godsil's multiplicity bound and Terwilliger's analysis of the local structure to 2-walk-regular graphs. We will show that 2-walk-regular graphs have a much richer combinatorial structure than 1-walk-regular graphs, for example by proving that there are finitely many non-geometric 2-walk-regular graphs with given smallest eigenvalue and given diameter (a geometric graph is the point graph of a special partial linear space); a result that is analogous to a result on distance-regular graphs. Such a result does not hold for 1-walk-regular graphs, as our construction methods will show
    corecore