208 research outputs found

    Constructive Algebraic Topology

    Get PDF
    The classical ``computation'' methods in Algebraic Topology most often work by means of highly infinite objects and in fact +are_not+ constructive. Typical examples are shown to describe the nature of the problem. The Rubio-Sergeraert solution for Constructive Algebraic Topology is recalled. This is not only a theoretical solution: the concrete computer program +Kenzo+ has been written down which precisely follows this method. This program has been used in various cases, opening new research subjects and producing in several cases significant results unreachable by hand. In particular the Kenzo program can compute the first homotopy groups of a simply connected +arbitrary+ simplicial set.Comment: 24 pages, background paper for a plenary talk at the EACA Congress of Tenerife, September 199

    kk-Critical Graphs in P5P_5-Free Graphs

    Full text link
    Given two graphs H1H_1 and H2H_2, a graph GG is (H1,H2)(H_1,H_2)-free if it contains no induced subgraph isomorphic to H1H_1 or H2H_2. Let PtP_t be the path on tt vertices. A graph GG is kk-vertex-critical if GG has chromatic number kk but every proper induced subgraph of GG has chromatic number less than kk. The study of kk-vertex-critical graphs for graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there is a polynomial-time algorithm to decide if a graph in the class is (k1)(k-1)-colorable. In this paper, we initiate a systematic study of the finiteness of kk-vertex-critical graphs in subclasses of P5P_5-free graphs. Our main result is a complete classification of the finiteness of kk-vertex-critical graphs in the class of (P5,H)(P_5,H)-free graphs for all graphs HH on 4 vertices. To obtain the complete dichotomy, we prove the finiteness for four new graphs HH using various techniques -- such as Ramsey-type arguments and the dual of Dilworth's Theorem -- that may be of independent interest.Comment: 18 page

    Bounds on the Complex Zeros of (Di)Chromatic Polynomials and Potts-Model Partition Functions

    Get PDF
    I show that there exist universal constants C(r)<C(r) < \infty such that, for all loopless graphs GG of maximum degree r\le r, the zeros (real or complex) of the chromatic polynomial PG(q)P_G(q) lie in the disc q<C(r)|q| < C(r). Furthermore, C(r)7.963906...rC(r) \le 7.963906... r. This result is a corollary of a more general result on the zeros of the Potts-model partition function ZG(q,ve)Z_G(q, {v_e}) in the complex antiferromagnetic regime 1+ve1|1 + v_e| \le 1. The proof is based on a transformation of the Whitney-Tutte-Fortuin-Kasteleyn representation of ZG(q,ve)Z_G(q, {v_e}) to a polymer gas, followed by verification of the Dobrushin-Koteck\'y-Preiss condition for nonvanishing of a polymer-model partition function. I also show that, for all loopless graphs GG of second-largest degree r\le r, the zeros of PG(q)P_G(q) lie in the disc q<C(r)+1|q| < C(r) + 1. Along the way, I give a simple proof of a generalized (multivariate) Brown-Colbourn conjecture on the zeros of the reliability polynomial for the special case of series-parallel graphs.Comment: 47 pages (LaTeX). Revised version contains slightly simplified proofs of Propositions 4.2 and 4.5. Version 3 fixes a silly error in my proof of Proposition 4.1, and adds related discussion. To appear in Combinatorics, Probability & Computin

    Variations on a game

    Get PDF
    corecore