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0. INTRODUCTION 

It is beyond doubt that we are witnessing a renaissance of game theory. 
Besides the traditional theory, founded by J. von Neumann and 0. 
Morgenstern, it suffices to mention the advances in the theory of NIM-type 
games, more precisely, in the addition theory of partizan games; see J. H. 
Conway, All games bright and beautiful, Amer. Math. Monthly (1977) 
417-434. Here, however, we shall outline some results from a quite different, 
but no less interesting branch of game theory. 

To see where our concepts arose, inspect two well-known particular 
games. The first is a version of the Oriental Go-Moku, the game 5-in-a-row. 
It was the subject of the 10th problem dedicated to the memory of Starke, 
Amer. Math. Monthly (1979) p. 306; the solution appeared in (1980) 
575-576. The game is played on an infinite chessboard. Two players, whom 
we shall call Maker and Breaker (the names will be justified later) move 
alternately with Maker going first. Each of them in turn occupies one 
previously unoccupied square of the chessboard. The winner is the first one 
to occupy 5 or more adjacent squares in a row, horizontally, vertically, or 
diagonally. 

An easy argument shows the Breaker cannot have a winning strategy, and 
either Maker has a winning strategy, or else Breaker has a drawing strategy, 
i.e., a strategy which allows Breaker to play indefinitely. It is a folklore that 
Maker wins this game but the authors know of any strict proof. It is not even 
known whether a winning strategy for Maker, if any, can be bounded in 
time. In other words, assume that Maker has a winning strategy. Is there 
then a natural number n such that Maker can win before his nth move? The 
best result of this kind is due to Keisler [ 161. If the game is played on coun- 
tably many boards, i.e., at every step the player chooses one of the boards 
and occupies a square on it, and if Maker has a winning strategy, then 
Maker has a winning strategy bounded in time. 
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A very similar game is tic-tat-toe alias noughts-and-crosses. “Every child 
knows how to play this game” writes Dudeney in his famous book [9]. “You 
make a square of nine cells, and each of the players, playing alternately, puts 
his mark (a nought or a cross, as the case may be) in a cell with the object 
of getting three in a line. Whichever player first gets three in a line, wins with 
the exulting cry: 

Tit, tat, toe, 
My last go; 
Three jolly butcher boys 
All in a row.” 

Several generalizations of this game are studied in the literature [4, 8, 15, 
201; we shall also discuss it later. 

The other game we shall considere here is Shannon’s switching game. It 
has many variants and we have picked the one which seemed to best fit our 
purposes. The game is played on a connected graph G. The players, Maker 
and Breaker, alternately occupy preciously unoccupied edges of G with 
Maker going first. Maker’s aim is to pick all the edges of some cut of G, i.e., 
edges whose deletion splits G into more components. Breaker’s aim is simply 
to prevent Maker from achieving his goal. 

Lehman observed [ 171 that the existence of two edge-disjoint spanning 
trees of G is equivalent to the existence of a winning strategy for Breaker. 
Tutte [21] and Nash-Williams [ 191 proved independently that if there are no 
such spanning trees, then for some subset A of the edges, the deletion of A 
splits G into at least (JA 1 + 3)/2 components. When such a subset exists, 
Maker wins simply by occupying edges from A as long as there remain any. 

Though these games are different in many respects, they are closely 
related. In both games a hypergraph is given, i.e., a collection of sets. These 
sets are the edges, and the elements of the edges are the vertices of the 
hypergraph. The players alternately occupy previously unoccupied vertices. 
In both games Maker makes the first move, and Maker’s aim is to occupy all 
the vertices of some edge. Breaker’s aim, however, is different. In the game 5- 
in-a-row he wants to pick all the points of some edge before Maker can do it, 
whilst in the switching game he doesn’t want Maker to achieve his goal. 

The games whose general pattern have been outlined here belong to the 
class of positional games, and where studied by Hales and Jewett [ 151, 
Erdos and Selfridge [ 131, Berge [6], and others, We call them amoeba 
games after the Hungarian name of 5-in-a-row, and since almost all games 
mentioned in this paper are amoeba games, this attributive will often be 
omitted. 

We distinguish strong and weak (amoeba) games according to Breaker’s 
aim as follows: In the weak version Maker’s aim is to pick every vertex of 
some edge of a given hypergraph H, and Breaker’s aim is to prevent him 
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from doing so. The winner is the one who achieves his goal. In the strong 
version both players want to pick every vertex of some edge of H, the winner 
is the one who does it sooner. If neither of them succeeds, and in any other 
case, the game is a draw. 

Of course we have to speak about the length of the game. If there are only 
finitely many vertices in H, then there is no problem. The game ends if either 
players wins, or every vertex has been chosen. If H contains infinitely many 
vertices, then the players take turns until either of them wins, or until they 
have taken their nth turns for every natural number n. This agreement will be 
violated in the third part of this paper, the players will be allowed-and 
required-to continue their moves after these infinitely many moves. 

We are interested in the existence of winning and drawing strategies, so we 
give a rough definition of these notions. Suppose the game is played on the 
hypergraph H. A strategy for Maker is a function S with domain the set of 
finite sequences of vertices of H (including the empty equence), such that 
S((wl, w, ,**-9 w,- 1)) is always a vertex of H different from the vertices 
ui = S((w,, w, ,..., wi-,)) and wi for i = 0, l,..., n - 1 (if there is any such 
vertex). In a play according to this strategy, Maker determines all his moves 
by S as follows: Suppose they have picked the vertices ziO, wO, 
u,,w~,...,u~-~,w~-~ in this order, then Maker’s nth move is 
0, = S((w,, w,,**-, W”- 1 )). The notions of a strategy for Breaker and a play 
according to a strategy for Breaker are similarly defined. The strategy S is a 
winning strategy for Maker (for Breaker) if every play according to S is a 
win for Maker (for Breaker). Strategy S is a drawing strategy, if every play 
according to S is either a win or a draw. A game is determined if either 
player has a winning strategy, or both of them has a drawing strategy. 

The rest of this paper is divided into three parts. In the lirst part we shall 
discuss the weak amoeba games; the results are mainly of combinatorial 
character. The middle part deals with the strong games and with the 
connections, or rather with the differences between strong and weak games. 
In these parts we shall assume without further notice that the edges of the 
hypergraphs are finite. Finally, in the last part we shall give some possible 
generalizations towards the infinite. 

1. WEAK AMOEBA GAMES 

Throughout this section, log denotes the natural logarithm, exp, denotes 
the k-fold iteration of the exponential function eX, and the inverse of exp, is 
denoted by log,. 

As a warm-up, we shall announce some results for three further games (cf. 
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Van der Waerden Game 

The weak amoeba game W(N, n) is played on the hypergraph whose edges 
are the arithmetic progressions of n terms from the interval {0, I,..., N - 1 }. 
In other words, in W(N, n) Maker and Breaker alternately say natural 
numbers below N with the proviso that no number can be mentioned twice. 
Maker wins if he mentions (among others) all the elements of an A.P. of n 
terms. 

THEOREM 1. Let E > 0 be arbitrary. For every N large enough depending 
only on E, in the game W(N, n): 

(i) if n < (1 - e)(log N/log 2), then Maker; 

(ii) if n > (1 + e)(log N/log 2), then Breaker has a winning 
strategy. I 

Ramsey Game 

If S is a set, then [S]” denotes the family of subsets of S containing 
exactly k elements. Following the set-theoretical traditions, we identify the 
natural number N with the set of its predecessors, i.e., N = (0, l,..., N - 1). 
So IN]* can be regarded as a complete graph with N vertices. The players 
alternately occupy edges of this graph (i.e., elements of [N]‘) and Maker’s 
aim is to pick all the edges of a complete subgraph with n vertices (i.e., all 
the elements of [S]* for some n-element subset of S of N). This weak game 
is denoted by R(N, n). 

The game R,(N, n) is a trivial generalization. The players alternately 
occupy k-element subsets of N, and Maker wins if he picked all the elements 
of [S]” for some n-element subset S of N. The following results are partially 
due to Erdos and Selfridge [ 13 ]: 

THEOREM 2. For every k 2 2 there are positive constants ck and c; such 
that in the game R,(N, n): 

(i) if n < c,(log N)‘lk, then Maker; 

(ii) if n > c;(log N) lfCk-*‘, then Breaker has a winning strategy. g 

In case of k = 2 the breaking point is known to be within the closer bounds 
(l/log 2 - E) log N < n < 2 log N/log 2. 

Hales-Jewett Game 

This is a straightforward generalization of the game tic-tat-toe. The 
players alternately put their marks in the cells of a d-dimensional cube of 
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size n X n X ..a x n. Maker wins if he has n of his marks in a line. More 
precisely, the board of the game HJ(d, n) is the set of d-tuples 

B=nXnX...Xn 

= {(a,, a2,..., a,):Osaai<nforeach lsjrd}. 

The edges of the hypergraph on which HJ(d, n) is played are those n-element 
subsets ((a:, a’ >,...,a:): 0 5 i < n} of the board B such that, for each j, the 
sequence (a!, af ,..., a;-’ ) composed of the jth coordinates is either strictly 
increasing (from 0 to n - l), or strictly decreasing (from n - 1 to 0), or 
constant. 

It is easy to see that HJ(2,3), which is the weak version of tic-tat-toe, is a 
win for Maker. The spatial HJ(3,4) is also a win for Maker; this follows 
from the fact that Maker wins even the strong version, see Martin Gardner’s 
column in Scientific American, 1980. The following theorem improves some 
results of Hales and Jewett [ 151, Erdos and Selfridge [ 131. 

THEOREM 3. Let E > 0 be arbitrary. In the game HJ(d, n) 

(i) if n*(log 2/2) < d, then Maker; 

(ii) if n((log 2/lag 3) - E) > d and n > n,,(e), then Breaker has a 
winning strategy. I 

When Can Maker Win? 

In these examples the sets of vertices of the hypergraphs corresponding to 
the games-the boards, in short- were finite. A game with finite board is 
determined since every play ends after finitely many moves. This deter- 
minateness remains valid if only the finiteness of the edges is assumed. 
Indeed, if Maker has no winning strategy, then Breaker can always make a 
move so that Maker still has no winning strategy. Since the edges are finite, 
if Maker wins he wins after finitely many moves, so Maker cannot win at all. 
The strategy described here is just a winning strategy for Breaker. 

There is a rather general sufficient condition for Maker’s win. To describe 
it we recall that the chromatic number of a hypergraph is the least integer r 
such that the vertices can be colored with r colors yielding no 
monochromatic edge. 

PROPOSITION 4. Suppose that the set of vertices of the hypergraph H is 
finite, and the chromatic number of H is at least 3. Then Maker has a 
winning strategy in the weak game played on H. I 

The latter condition is sometimes expressed by saying that H does not have 
property B. 
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Unfortunately, this result is rather weak for the majority of applications. 
Consider, e.g., the van der Waerden game. The finite form of van der 
Waerden’s well-known theorem states that for every positive integer n there 
exists a smallest integer f(n) with the following property: If the natural 
numbers less thanf(n) are arbitrarily colored with two colors, then there is a 
monochromatic arithmetic progression of n terms. From Proposition 4 it 
follows immediately that N 1 f(n) implies the existence of Maker’s winning 
strategy in W(N, n). The best upper bound on f(n) known at present, 
however, is extremely poor; e.g., it is an open problem whetherf(n) < exp, n 
holds for some constant k. 

The situation is very similar in the case of Ramsey games. Let g,(N) 
denote the largest number n such that, for every 2-coloring of the elements of 
IN]“, there exists an n-element subset S of N whose every k-element subset 
has the same color; i.e., there exists S E [N]” such that [S]” is 
monochromatic. The value of g,(N) has a quite different order of magnitude 
than the breaking point for the game R,(N, n). More exactly, for k 1 3, there 
are positive constants d, and d; such that 

4 log,- 1 N < g/AN) < d; log,-, N, 

see [ 10, 121. The following theorem, however, gives a condition for Maker’s 
win which is already strong enough to impy some of the announced results 

141. 

THEOREM 5. Let H be an n-uniform hypergraph (every edge has exactly 
n vertices), and let v be the number of the vertices in H. Suppose moreover 
that, fixing two vertices, no more than d edges contain both of them. If 
/Hi > vd2”, then Maker has a winning strategy in the weak game played on 
H. I 

Theorem l(i) can be deduced easily. Indeed, there are more than N2/4n 
arithmetic progression of n terms in the interval (0, l,..., N - I}, and at most 
( y) such A.P. can contain two fixed integers. Therefore, if N2/4n > N( i ) 2”, 
then Maker has a winning strategy, and this inequality evidently holds if 
N > n42”. Similar but more complicated computations give the other 
announced results for Maker’s win. 

The condition given in Proposition 4 is sufficient not only for finite but for 
arbitrary hypergraphs with finite edges. Indeed, suppose that the chromatic 
number of H is at least 3. An easy generalization of a theorem of de Bruijn 
and Erdos [7] gives that there are finitely many edges of H such that the 
subhypergraph G composed from them has chromatic number 23. By 
Proposition 4, Maker has a winning strategy in G, and he can play-and 
win-by this strategy in H, too, he simply ignores those moves of Breaker 
which are not vertices of G. 
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In this construction Maker wins the game because he can win in some 
finite part. This compactness property is valid in general. 

PROPOSITION 6. The weak game played on H is a win for Maker if and 
only iffor some finite subhypergraph G of H, the game played on G is a win 
for Maker. 

Prooj The if part is obvious. To show the only if part, assume that 
Breaker wins on every finite subhypergraph G c H, and fix a winning 
strategy S, for Breaker in each G. We combine these S,‘s to get a winning 
strategy for Breaker in the big game. To do this let A be the family of finite 
subhypergraphs of H, and choose an ultrafilter U on A such that for every 
G E A we have {G’ E A: G’ 3 G] E U. Now Breaker plays as follows: If 
there is some vertex v of H such that almost all (in the sense of U) of the 
strategies agree on u as the next move of Breaker, then he chooses v; if there 
is no such vertex, then he makes an arbitrary move. Now suppose that 
Maker wins the play in which the vertices v,,, wO, ul, w  ,,..., v,,_, , w,~,, v, 
were chosen in this order, and Breaker picked all the vertices wi by the 
strategy described above. Then there is some finite hypergraph G E A such 
that ui and wi are vertices in G, the set (vO, v1 ,..., v,,} contains an edge of G. 
and for every 0 5 i < n, S,((v,, v, ,..., vi)) 6Z (vi+, ,..., v,}. Thus picking the 
vertices vO, v, ,..., v, in this order, Maker wins against the strategy S,, a 
contradiction. i 

This proof of the theorem is due to Fred Galvin. 

When Can Breaker win? 

We start with a fundamental combinatorial theorem due to Erdos and 
Selfridge 113 1. 

THEOREM 7. If H is an n-uniform hypergraph and 1 HJ < 2n-‘, then 
Breaker has a winning strategy in the weak game played on H. 

Proof: Given a finite hypergraph G we assign the value 

u(G) = \- z-IA’ 
AEG 

to G. Consider a play on H in which the vertices uO, w,,, ZI,, w, ,..., were 
picked in this order. Define the hypergraphs Hi for i 2 0 as follows. Throw 
away those edges from H which contain any vertex picked by Breaker, and 
from the remaining edges throw away the vertices picked by Maker, i.e., 

Hi = {A\{u,,..., vi}: A E H and A f-7 { w0 ,..., wi- 1 ) = 01. 
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Maker wins if and only if some of the Hi’s contain the empty set, and since 
the cardinality of the empty set is zero, in this case v(H,) 2 1. Thus if 
V(Hi) < 1 for every i 2 0, then Breaker wins. 

We define a strategy for Breaker. Let the value of an edge A E Hi be 
2-IA’, and the value of a vertex of Hi be the sum of the values of the edges it 
belongs to. In his ith move Breaker picks that vertex of Hi which is of largest 
value. We claim that u(H[+,) 5 v(Hi) independently of Maker’s (i + I)st 
move. If we prove this the result follows since every edge of H, contains n or 
n - 1 vertices, so u(H,) 5 IH,J 2-“+’ < 1. Therefore, u(Hi) < 1 for every 
i 2 0. 

-We check v(Hi+,) 2 v(Hi). Before Maker’s (i + 1)st move, the sum of 
values of the edges is u(Hi) - ~1, where q~ is the value of the vertex wi picked 
by Breaker. On Maker’s next move he doubles the value of each edge 
containing his vertex ui+ ,, so he adds to u(H,) - q no more than the 
previous value w  of ui+ ,. But rp 2 v by the definition of wir so u(Hi+ ,) 5 
u(H;) - v, + v/ 5 u(H,) which was to be proved. fi 

Generalizations of this valuation method are at the heart of the other 
combinatorial results mentioned here. The theorem is sharp in the sense that 
for every n, an n-uniform hypergraph with 2”-’ edges can be constructed 
which is a win for Maker. For example, the full branches of a binary tree 
with n levels form such a hypergraph (Fig. 1). 

From this theorem a somewhat weaker form of the second part of 
Theorem 1 fohows immediately. There are fewer than N2/n arithmetic 
progression of n terms from the interval {O, l,..., N - 1 }, so Breaker has a 
winning strategy in the game W(N, n) if N2/n 5 2”-I, i.e., if 
n > (2 + e)(log N/log 2) for N large enough. 

The hypergraph in the Hales-Jewett game HJ(d, n) is n-uniform and 
contains ;[(n + 2)d - nd] e dg es. So Theorem 8 gives the rather weak 
sufficient condition (n + 2)d - nd < 2” for Breaker’s win. This hypergraph, 
however, has an important additional feature, namely, any two edges have at 
most one vertex in common. The hypergraphs with this property are called 
almost disjoint. For hypergraphs of this type the upper bound 2”-’ of 
Theorem 7 can be raised considerably [3]. 

FIGURE 1 
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THEOREM 8. There is a constant c > 0 such that for every n-uniform 
almost-disjoint hypergraph H, if 1 HI < 4 - ’ ‘6, then Breaker has a winning 
strategy in the weak game played on H. 1 

This theorem is also sharp as far as the order of magnitude is concerned. 
Erdos and Lovasz constructed [ 111 a 3-chromatic n-uniform almost-disjoint 
hypergraph with no more than n44” edges. The game played on their 
hypergraph, as stated in Proposition 4, is a win for Maker. 

On some n-uniform hypergraphs Maker can win very quickly, e.g., in the 
extremal game indicated in Fig. 1 Maker wins on his nth move. The situation 
is quite different with almost-disjoint hypergraphs; here maker cannot force a 
win within about 2” moves. 

THEOREM 9. Let E > 0 be arbitrary. If n > q,(E) and H is an n-uniform 
almost-disjoint hypergraph, then Breaker has a strategy playing which he 
does not lose before his (2 - s)“th move. 1 

This result is also sharp in the asymptotic sense because the construction of 
Erdos and Lo&z cited above has no more than n42” vertices. 

Biased Games 

When a game is overwhelmingly in favor of one of the players, one can 
make up this handicap by allowing the other to pick many vertices in a 
move. Games so played are called biased. More precisely, let m and b be 
positive integers, and let H be a hypergraph. In the biased game (m, b, H) 
Maker and Breaker take moves alternately, with Maker going first. In each 
of his moves, Maker picks m vertices, and Breaker picks b vertices of H. The 
conditions for a win are the same as in amoeba games, and so we could 
distinguish weak and strong biased games, but we shall deal with weak 
games only. For these games a generalization of Theorems 5 and 7 holds as 
follows 15 1. 

THEOREM 10. Let H be an n-uniform hypergraph with v vertices such 
that fixing two vertices no more than d edges contain both of them. Then in 
the weak biased game (m, b, H): 

(i) if 1 HI > vdmb( 1 + (b/m))“, then Maker; 

(ii) iflH\ < (1 + b)(“‘m)-l, then Breaker has a winning strategy. I 

The second part of this theorem is also sharp if m is a divisor of n. The 
frame of the extremal game is a tree of height n/m, in which every node has 
exactly b + 1 immediate successors. Put m points in place of each node, and 
an edge of the extremal hypergraph is the union of points along a full 
branch. Obviously, it has (1 + b)(“““)-I edges and is a win for Maker. 
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From Theorem 10 one can get bounds easily for the breaking points of the 
biased versions of van der Waerden and Ramsey games, cf. [8]. 
Proposition 4, however, seems not to generalize immediately to this case, 
and we do not known whether every 4-chromatic hypergraph is a win for 
Maker in that biased game where Maker picks one vertex, and Breaker picks 
two vertices in each of his move’. 

2. STRONG AMOEBA GAMES 

On the same hypergraph Maker and Breaker may play both weak and 
strong games. From the preceding section we know something about the 
odds in the weak version; let us see what happens in the strong games. 

When a Draw is Worth a Win 

With the restriction we have made at the beginning, i.e., that the edges are 
finite, the strong games are also determined; either one of the players has a 
winning strategy, or both of them can force a draw. An easy argument shows 
that Breaker cannot win against a clever Maker, so a strong game has only 
two possible outcomes: it is either a win for Maker, or is a draw. Breaker’s 
only reasonable goal is not to lose, and in this respect the strong version 
resembles the weak one. If Breaker wins in the weak game, then the same 
play gives him (at least) a draw in the strong game. Therefore the results in 
the preceding section giving sufficient conditions for Breaker’s win in the 
weak games yield conditions without any change for Breaker’s draw in the 
strong case. If Breaker is satisfied with the draw, he has the advantage that 
in the strong game he can threaten, and Maker has to waste valuable moves 
fending off the threats. What is more, it is quite possible that Maker wins the 
weak version while Breaker can force a draw in the strong version. This 
happens, e.g., in the game tic-tat-toe: the original game is a draw but the 
weak version is a win for Maker. 

While playing a strong game, both players have their own threats, and 
either of them, fending off the other’s, may build his own. Therefore, a play 
is a delicate balancing between threats and counterthreats and can be of very 
intricate structure even if the hypergraph of the game is simple. Nevertheless, 
the claim of Proposition 4 remains valid. 

PROPOSITION 11. Suppose that the set of vertices of the hypergraph H is 
finite, and the chromatic number of H is at least 3. Then Maker has a 
winning strategy in the strong game played on H. 1 

This proof goes along the same lines as that of Proposition 4. As we have 
mentioned, this condition gives very poor estimates. For example, Hales and 

’ P. Frankel constructed a game of this type which is a win for Breaker. The problem in 
general, however, has remained open. 
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Jewett proved the existence of a threshold function d,(n) such that the 
hypergraph of the game HJ(d, n) has chromatic number at least 3 whenever 
d > d,,(n) 1151. In this case Maker wins the strong version of the game 
HJ(d, n). On the other hand, Theorem 4 gives the condition 
d ( n((log 2/lag 3) - E) = d,(n) for Breaker’s draw. Unfortunately, no 
sensible estimate is known for the threshold function d,(n), and this is so 
because van der Waerden’s cited theorem is an easy corollary of the theorem 
of Hales and Jewett. There is a wide gap between d,(n) and d,(n) and the 
behavior of the strong game is unknown in this interval. Even the existence 
of a breaking point is questionable. It may well happen that Maker wins the 
strong version of HJ(d, n), but the same game with d + 1 instead of d is a 
draw. 

The situation is very similar to the strong versions of van der Waerden 
and Ramsey games, and no powerful method is known for handling these 
problems. 

Iwompactness Properties 

While Proposition 7 gave a nice compactness-type property for weak 
games, there is hardly any for the strong games. To start with, let G be a 
subhypergraph of 2% It may happen that Maker wins the strong game on G 
while the game on H is a draw. This is the case if the edges of G are the 3- 
element subsets of some Selement set, and H contains infinitely many 
disjoint two-element edges besides G. Notice that this H is 3-chromatic 
(because G is); therefore, Proposition 11 does not generalize for infinite 
hypergraphs. 

The hypergraph sketched in Fig. 2 gives an example of a strong game in 
which Maker wins but Breaker has arbitrary long counterplay. The edges are 
the full branches of the trees T,, for n 2 0; here TO has eight 4-element 
branches, and T, has exactly one i-element branch for every 3 5 i 5 n + 2. 
Maker can pick elements of a branch of T,,, but Breaker may postpone his 
defeat for n moves by threatening in T,,. 

In this example after Breaker’s first move the length of the game is no 
longer in doubt. If Breaker picked a point from T,, then Maker can win 
within n + 3 turns but no sooner. Let us say that the rank of a game is n if 

FIGURE 2 
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Maker can win within n + 1 turns but no sooner. For example, if Maker wins 
with his first move, then the rank is 0. The game of Fig. 2 is not of rank n, 
but after the first turn it becomes a game of rank n for some natural number 
n. If we want to assign a rank to this game, too, then the best choice is the 
least ordinal exceeding every natural number, that is o. In general, the rank 
of a game is an ordinal number and can be defined as follows: Say that a 
position of the game is nice, if the next move belongs to Maker (in other 
words, the players occupied even number of points), no player has won and 
Maker still has a winning strategy. We assign ordinal ranks to these nice 
positions. Let this number be 0 if Maker can win in one move; otherwise, let 
it be the least ordinal number a for which Maker has such a move that for 
Breaker’s any move the new position (with two more occupied points) is nice 
and has rank less than a. The rank of a game is, of course, the rank of the 
starting position. It measures, in some sense, how far Maker is from victory. 

Every amoeba game, which is a win for Maker, has a uniquely determined 
rank, and it is so because the edges of its hypergraph are finite. By 
Proposition 6 the ranks of weak games are always finite; the strong amoeba 
games, however, are of quite different character II]. 

THEOREM 12. For every ordinal number, there exists a strong game whose 
rank exceeds that ordinal. i 

Last but not least there is an increasing sequence H, c H, c H, c v-1 of 
finite hypergraphs such that Breaker can force a draw in each strong game 
played on H, , but Maker wins on their union H = lJ r! 0 H, within five turns 
Ill. 

Snub Games 

Every two-person game can be played in a snub way. Our players are, as 
usual, Maker and Breaker, and suppose that a given two-person game is 
played by White and Black. Maker and Breaker agree on playing this game, 
but before starting, as apremove, Maker chooses who he wants to be, White 
or Black. After this choice, they start playing the game according to its rules. 
Snub games are in favour of Maker, because here Breaker clearly cannot 
have a winning strategy. This peculiar resemblance to strong amoeba games 
suggests that they are closely related. And so they are. 

The two-person games we are interested in are the so-called positional 
games. One of their possible definitions is as follows: A tree of height at 
most w  is given. It is supposed that at the lowest level there is only one node, 
the root. Every node may have immediate successors of arbitrary cardinality, 
and the nodes having no successor are labelled by one of the letters W or B. 
The game is played by White and Black with White going first. Initially a 
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marker is placed into the root of the tree, and the players alternately push 
the marker one level higher along an edge. The game ends if the marker 
arrives (within finitely many moves) into a node with no successor, the 
winner is the one whose initial is its label. In the other cases the game is a 
draw. One may think of these nodes as the positions in some game (with a 
perfect description of the previous moves), and the edges of the tree indicate 
the legal moves. These games are determined and belong to the class of 
infinite open games of perfect information studied first by Gale and 
Stewart [ 141. A snub positional game is a positional game played in a snub 
way. 

THEOREM 13. There is a uniform construction which gives for every snub 
positional game G, a strong amoeba game G, such that: 

(i) the hypergraph of G, is eflectively constructed from the tree of G, ; 

(ii) from every winning (drawing) strategy for Maker (Breaker) in Gi, 
a winning (drawing) strategy can be eflectively constructed for the same 
player in GIpi (i = 0, 1). I 

If the tree of G, is defined by some finite description, then a finite 
description exists for the hypergraph of G,. This is valid for the strategies, 
too, and leads to a surprising consequence. There exists a strong amoeba 
game in which Maker has a winning strategy, but if a computer, not matter 
how large and how fast, plays instead of Maker, then Breaker can win 
against it [ 11. 

COROLLARY 14. There is a strong amoeba game such that: ’ 

(i) the vertices of the hypergraph are the natural numbers; every 
edge contains fewer than 100 vertices; the edges form a decidable set, i.e., 
there exists a recursive procedure which decides whether a given finite set of 
natural numbers is an edge or not; 

(ii) every play ends before the 100th turn, no matter how the players 

play; 

(iii) Maker has a winning strategy (this follows, e.g., from (ii)) but 
Breaker may win against any recursive strategy of Maker. 

Proof. We give here only the idea behind the construction. It suffices to 
find a positional game with similar properties because the previous theorem 
allows us to salvage them. This latter task is easy. Let White and Black play 
as follows: First, White chooses a Turing machine M; then Black chooses a 
natural number x; finally White chooses a natural number y different from x. 
White wins if the machine M, applied to the blank tape, halts after exactly y 
steps; otherwise, Black wins. Clearly, Black has a winning strategy, but no 
recursive winning strategy. I 
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3. BEYOND THE FINITE 

Following the set-theoretical conventions introduced by J. von Neumann, 
we identify an ordinal number with the set of its predecessors, and a cardinal 
number with the smallest ordinal which, as a set, has that cardinality. So o 
and +&, are the same ordinal, and if K is a cardinal number, then IC itself is a 
set of cardinality K. ic’ is the smallest cardinal exceeding K, and 2” is the 
cardinality of the power set (i.e., the set of all subsets) of K. The generalized 
continuum hypothesis (GCH) is the assertion that 2” = K' holds for every 
infinite cardinal K. It is well known that GCH is neither provable nor 
disprovable in ZFC, the usual axiom system of set theory. 

More Moves 

Let H be an arbitrary hypergraph, and suppose Maker and Breaker play 
an amoeba game on H, and they play not only until they have made their 
nth move for every natural number n, but they continue to make moves as 
long as there is any unoccupied vertex of H. In this case a play is a 
transfinite sequence of moves, and for an ordinal number a, the ath move of 
that play is the ath element of the sequence. The players move alternately, 
but the limit moves have no immediate predecessor so one has to decide 
separately about them. We admit the most natural possibility and offer these 
limit moves to Maker. This type of games will be called injhite. 

For an ordinal number a, a game of length a is an infinite game with the 
additional rule that if neither player has won before the ath move, then the 
game is a draw. 

For these games some of the previous results generalize immediately. For 
example, the same argument as before shows that Breaker cannot have a 
winning strategy. Suppose that the hypergraph H has finite edges only, then 
the weak infinite game played on H is determined. The claim of 
Proposition 6 remains valid, too: This game is a win for Maker if and only 
if, for some finite subhypergraph G c H, the (finite) weak game on G is a 
win for Maker. In other words, if Maker has a winning strategy in a weak 
infinite game, then for some natural number n, he can win within n moves. 
Observe that the proof of the original claim does not work here since it says 
nothing about the cases when Maker wins after infinitely many moves. 

The case is far from this in strong games. Let K(a) denote the supremum 
of cardinals below the orinal number a; this K(a) is always a cardinal, and, 
e.g., K(W)= K(O + O)= K(W,)=&. 

THEOREM 15. Let a be a limit ordinal. There exists a hypergraph H with 
finite edges and set of vertices of cardinality K(a) such that Maker wins the 
strong infinite game on H before his ath move, but for every /3 < a, Breaker 
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has such a counter-play which postpones his defeat until after the /?th 
move. I 

The cardinality of the board in these examples is the smallest possible 
since for every cardinal K < a, Breaker must be able to pick K different 
vertices. 

While weak infinite games are always determined, the determinacy of 
strong games may depend on various set-theoretical assumptions. First of all, 
there exists a hypergraph H whose edges are finite sets of reals such that the 
strong infinite game played on H is undetermined. What is more, if either 
Maker or Breaker plays by a strategy, then the other can win against that 
strategy before the (w + 20)th move. Therefore, this game gives an example 
of an undetermined strong game of length o + cu. The board of this example 
is the set of reals, and one may ask for an undetermined game with coun- 
table board. 

THEOREM 16. (i) Assume there is a measurable cardinal. Then every 
strong amoeba game on a countable board with finite edges and of length 
w + o is determined. (ii) Assume the axiom of constructibilitv V = L. Then 
there is an undetermined game of this type. 

Proof Part (i) is a consequence of Martin’s result on analytic games 
[ 181. The construction in (ii) uses the following idea. In the first w  moves 
the players build two trees, one for Maker and one for Breaker. On their next 
w  moves they are forced to climb up on some branch of their own tree. Now 
if either of them playes by a strategy, then the other can arrange that his tree 
has an infinite branch and the opponent’s has none. (Here is the point where 
the assumption V L L is used.) The one who has no infinite branch, runs out 
of his tree eventually, and loses the game. Of course, a lot of auxiliary edges 
of the hypergraph of this game force the players to follow this pattern. I 

The Case of Countable Edges 

From now on we shall deal with weak games only, and the edges of the 
hypergraphs are required to be infinite. The simplest case is when all the 
edges are countable, and the board is also countable. If the hypergraph has 
also countably many edges, then the game is a win for Breaker: in his nth 
move he can pick a new vertex from the nth edge. One can easily construct a 
game of this type with continuum many edges which is a win for Maker. 
There are undetermined games here, too. The following example was found 
independently by R. McKenzie and J. Paris; the proof given here is due to 
McKenzie. 

THEOREM 17. Suppose that the edges of a hypergraph form a nontrivial 
ultrafilter on w. The weak infinite game played on it is undetermined. 

582a/33/3-6 
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Proof: Suppose first that Breaker has a winning strategy. When a play 
ends, all the elements of the board are occupied, so either the set of Maker’s 
points, or that of Breaker’s points is in the given ultrafilter U, but not both. 
Now if Breaker plays by his winning strategy, then at the end, his points 
form an element of U. But Maker can also play by this strategy which 
ensures that he also covers some elements of U, a contradiction. ’ 

Now suppose Maker has a winning strategy, and let them play three 
instances of the game as shown in Fig. 3. Let i denote the number of square 
Maker is advised by his strategy to occupy first. In his first move Maker 
occupies all squares in the row numbered by i, then Breaker occupies one 
square and Maker answers in the same row by his strategy, etc. Breaker may 
arrange that after the first w  moves every square is occupied, and in every 
column of three squares, except for the ith one, at least one square belongs to 
him. But Maker won the game in each row, therefore his squares in the rows 
are elements of U. So their intersection must be infinite, a contradiction. I 

An undetermined game on a countable board cannot have fewer edges 
than in this example, namely continuum. This is because Martin’s axiom 
implies that in such games Breaker wins within the first o moves. On the 
other hand the existence of a game with countable board and fewer than 
continuum many edges in which Breaker has no winning strategy is 
consistent with ZFC. 

The ultrafilter game can be made biased by allowing Maker and Breaker 
to pick m and b vertices, respectively, in a move. Theorem 17 says that if 
m = b = 1, then for no nontrivial ultrafilter does Maker have a winning 
strategy. Fred Galvin proved that if m 2 2b, then for some nontrivial 
ultrafilter Maker can win by a strategy, but if b 1 m, then there is no such 
ultrafilter. For the missing cases b < m < 2b nothing is known. 

Several other generalizations were discussed by S. Hechler and R. 
McKenzie. For example, a player is allowed to pick any finite number of 
vertices, or even infinitely many if they are not in the ultrafilter. They 
characterize in many cases the ultrafilters for which Maker has a winning 
strategy. 

If we raise the cardinality of the board, new problems arise. The simple of 
them is yet unsolved. Is there a weak infinite amoeba game with EC, 
countable edges which is a win for Maker? The existence of such a game can 
be shown to be consistent. 

0 1 2 3 . . . i .__ 

FIGURE 3 
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We call a weak infinite game fat if the edges are countable, Maker has a 
winning strategy, but Breaker wins whenever Maker restricts himself to 
picking points from a fixed small subset of the vertices. Here small means 
that the cardinality of the subset of strictly less than the cardinality of the 
board. One can construct a fat game with K, vertices easily, and A. Hajnal 
has proved that the axiom of constructibility implies the existence of fat 
games with k vertices for every not weakly compact cardinal K > K,. It is 
not known whether the nonexistence of a fat game with Kz vertices is 
consistent. 

Infinite Ramsey Game 

Let rc and I be infinite cardinals, and let k 2 2 be a natural number. Recall 
that [Slk denotes the family of all k-element subsets of S, so [K]* can be 
regarded as a set of edges of a complete graph with K vertices. The weak 
infinite amoeba game R,(k, 1) is an immediate generalization of the finite 
Ramsey games discussed in the first section. The players alternately occupy 
k-element subsets of ic (i.e., elements of [K]“) as long as there remain any, 
and Maker wants to pick all k-element subsets of some XC K of cardinality 
A. 

In the game R<,(K, A) the players may pick any finite subset of K 
(including the empty set), and Maker’s aim is to pick all finite subsets of 
some XC K of cardinality 1. In this game the only reasonable starting move 
of Maker is to occupy the empty set, otherwise he cannot win the game. 

The chromatic number of the hypergraph of a finite Ramsey game gives 
some insight into the structure of the game. The chromatic numbers of these 
infinite hypergraphs were investigated thoroughly, and they are closely 
related to the so-called partition relations introduced by Erdos. The partition 
relation K + (A);, where K and 1 are infinite cardinals, k and r are natural 
numbers, means the following assertion: Whenever the k-element subsets of IC 
(i.e., elements of [K]“) are colored with r colors, then for some subset XC K 
of cardinality ,4, all the k-element subsets of X have the same color. The 
meaning of the partition relation K --) (A),?” is similar. Whenever the finite 
subsets of K are colored with r colors, then there exists a subset XC K of 
cardinality ,l such that for each natural number k, all k-element subsets of X 
have the same color (but this color may depend on k). 

In a well-known theorem of Erdos and Rado [ 121 it is stated that the 
relations (2”)+ + (K+):, (2’“)’ -+ (K+):, etc., hold for every infinite cardinal 
K. Observe that these claims are equivalent with the statements that the 
chromatic numbers of the hypergraphs of the games R,((2”)+, K+), 

R,(P*“)+, K+), etc., are at least 3. Unfortunately, while in the tinitistic case 
the game R&V, n) was known to be determined, and consequently, the large 
chromatic number implies the existence of a winning strategy for Maker, for 
infinite Ramsey games the determinacy is by no means a triviality. Nagy 
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observed, however, that the proofs of these partition relations can be turned 
to yield winning strategies for Maker, so the games listed above are wins for 
Maker. 

For the case K = A= Ho, Baumgartner et al. in a joint paper [ 2) proved 
that Maker has winning strategies in the games R,&, &,). For uncountable 
K and 1 the case k = 2 is solved almost completely under the assumption 
GCH. The results are due to Hajnal and Nagy. 

THEOREM 18. Assume GCH. For every infinite cardinal number K, 

Maker has a winning strategy in the game R,(K+ +, K+) and Breaker wins 
the game R,(K’, K+). If K is a singular cardinal (i.e., K can be partitioned 
into fewer than K parts so that each part has cardinality less than K), then 
the game R*(K, K) is a win for Maker. 1 

If GCH holds, then, as we have remarked above, Maker wins the game 
R,(N,, K,). R. Laver proved that the existence of a winning strategy for 
Breaker in R,(fC,, Hi) is consistent. At present no more is known about 
these games. 

In [2], Baumgartner et al. showed that Breaker has a winning strategy in 
the game R<,(K,,, No). Hajnal and Nagy proved that in the presence of the 
axiom of constructibility, the game R<,(K, 1) is determined, and Maker has 
a winning strategy if and only if the partition relation K--t (n):W holds. 

A Game of P. Erdiis 

Finally, we cannot resist mentioning a result of Galvin and Nagy 
(independently) concerning a biased game of Erdos. In this game Maker and 
Breaker pick unpicked real numbers alternately, Maker picks one, and 
Breaker picks countable many in a single move. The game ends if every real 
has been chosen, and Maker wants to pick elements of a long arithmetic 
progression. Evidently he can pick an A.P. of one or two terms, and Breaker 
has a strategy which prevents Maker from picking all terms of an infinite A. 
P. For a natural number n, denote by E, the game in which Maker wins by 
picking an A.P. of n + 1 terms. In these games either Maker or Breaker has 
a winning strategy depending on where the cardinality of the reals occurs in 
the sequence of cardinals. 

THEOREM 19. In the game E,, if 2Ko 2 K,, then Maker; if 2K0 < PC,, , then 
Breaker has a winning strategy. 1 

The game as well as the theorem generalizes easily for arbitrary vector 
spaces over rationals; in the theorem, 2N~ should be replaced by the 
cardinality of the vector space. 
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