956 research outputs found

    The Case of HyperLedger Fabric as a Blockchain Solution for Healthcare Applications

    Get PDF
    The healthcare industry deals with highly sensitive data which must be managed in a secure way. Electronic Health Records (EHRs) hold various kinds of personal and sensitive data which contain names, addresses, social security numbers, insurance numbers, and medical history. Such personal data is valuable to the patients, healthcare service providers, medical insurance companies, and research institutions. However, the public release of this highly sensitive personal data poses serious privacy and security threats to patients and healthcare service providers. Hence, we foresee the requirement of new technologies to address the privacy and security challenges for personal data in healthcare applications. Blockchain is one of the promising solutions, aimed to provide transparency, security, and privacy using consensus-driven decentralised data management on top of peer-to-peer distributed computing systems. Therefore, to solve the mentioned problems in healthcare applications, in this paper, we investigate the use of private blockchain technologies to assess their feasibility for healthcare applications. We create testing scenarios using HyperLedger Fabric to explore different criteria and use-cases for healthcare applications. Additionally, we thoroughly evaluate the representative test case scenarios to assess the blockchain-enabled security criteria in terms of data confidentiality, privacy and access control. The experimental evaluation reveals the promising benefits of private blockchain technologies in terms of security, regulation compliance, compatibility, flexibility, and scalability

    Designing Incentives Enabled Decentralized User Data Sharing Framework

    Get PDF
    Data sharing practices are much needed to strike a balance between user privacy, user experience, and profit. Different parties collect user data, for example, companies offering apps, social networking sites, and others, whose primary motive is an enhanced business model while giving optimal services to the end-users. However, the collection of user data is associated with serious privacy and security issues. The sharing platform also needs an effective incentive mechanism to realize transparent access to the user data while distributing fair incentives. The emerging literature on the topic includes decentralized data sharing approaches. However, there has been no universal method to track who shared what, to whom, when, for what purpose and under what condition in a verifiable manner until recently, when the distributed ledger technologies emerged to become the most effective means for designing a decentralized peer-to-peer network. This Ph.D. research includes an engineering approach for specifying the operations for designing incentives and user-controlled data-sharing platforms. The thesis presents a series of empirical studies and proposes novel blockchains- and smart contracts-based DUDS (Decentralized User Data Sharing) framework conceptualizing user-controlled data sharing practices. The DUDS framework supports immutability, authenticity, enhanced security, trusted records and is a promising means to share user data in various domains, including among researchers, customer data in e-commerce, tourism applications, etc. The DUDS framework is evaluated via performance analyses and user studies. The extended Technology Acceptance Model and a Trust-Privacy-Security Model are used to evaluate the usability of the DUDS framework. The evaluation allows uncovering the role of different factors affecting user intention to adopt data-sharing platforms. The results of the evaluation point to guidelines and methods for embedding privacy, user transparency, control, and incentives from the start in the design of a data-sharing framework to provide a platform that users can trust to protect their data while allowing them to control it and share it in the ways they want

    Shaping Governance in Self-Sovereign Identity Ecosystems: Towards a Cooperative Business Model

    Get PDF
    The Internet has undoubtedly created great opportunities for consumers. With the digitalization wave breaking, Single Sign-On services emerged that satisfy the desire for seamless online journeys and provide users with their digital identities. On a global scale, oligopoly structures evolved where tech giants primarily manage digital identities and personal data. Conversely, recent developments stemmed from the desire for data privacy, digital sovereignty, and self-determination, both from the user perspective and legislature. In line with recent discussions, this study focuses on Self-Sovereign Identity, a new paradigm that promises independence from intermediary identity providers. We follow an appeal for further research on business aspects and strategic alliances and adopt an exploratory research approach with semi-structured interviews. We identify cooperatives as suitable to govern Self-Sovereign Identity Ecosystems, shape their business model along Al-Debei and Avison’s V4 Business Model dimensions, and outline paths for future inquiries

    Will Digital Currencies Replace Cash?: Digital, Currency, Privacy and Surveillance

    Get PDF
    In some nations, including Sweden and South Korea, cash payments are becoming increasingly uncommon. Other nations, such as Germany, continue to predominantly prefer cash. At the same time, digital currency is on the rise, and the announced launch of Facebook’s stablecoin Libra, in particular, has caused a debate around digital money. In response, a number of central banks have begun to consider launching their own versions of digital currency. This article analyzes characteristics of both cash and digital currency and illustrates advantages as well as disadvantages of digital money and a cashless society. In particular, privacy concerns regarding digital cash are addressed. In addition, compliance risks are highlighted, and it is deliberated whether the introduction of digital cash could lead to a decrease in crime related to cash and cryptocurrencies

    Overview on the Blockchain-Based Supply Chain Systematics and Their Scalability Tools

    Get PDF
    Modern IT technologies shaped the shift in economic models with many advantages on cost, optimization, and time to market. This economic shift has increased the need for transparency and traceability in supply chain platforms to achieve trust among partners. Distributed ledger technology (DLT) is proposed to enable supply chains systems with trust requirements. In this paper, we investigate the existing DLT-based supply chain projects to show their technical part and limitations and extract the tools and techniques used to avoid the DLT scalability issue. We then set the requirements for a typical DLT-based supply chain in this context. The analyses are based on the scalability metrics such as computing, data storage, and transaction fees that fit the typical supply chain system. This paper highlights the effects of Blockchain techniques on scalability and their incorporation in supply chains systems. It also presents other existing solutions that can be applied to the supply chain. The investigation shows the necessity of having such tools in supply chains and developing them to achieve an efficient and scalable system. The paper calls for further scalability enhancements throughout introducing new tools and/or reutilize the current ones. Doi: 10.28991/esj-2021-SP1-04 Full Text: PD

    #Blockchain4EU: Blockchain for Industrial Transformations

    Get PDF
    The project #Blockchain4EU is a forward looking exploration of existing, emerging and potential applications based on Blockchain and other DLTs for industrial / non-financial sectors. It combined Science and Technology Studies with a transdisciplinary policy lab toolbox filled with frameworks from Foresight and Horizon Scanning, Behavioural Insights, or Participatory, Critical and Speculative Design. Amid unfolding and uncertain developments of the Blockchain space, our research signals a number of crucial opportunities and challenges around a technology that could record, secure and transfer any digitised transaction or process, and thus potentially affect large parts of current industrial landscapes. This report offers key insights for its implementation and uptake by industry, businesses and SMEs, together with science for policy strategic recommendations.JRC.I.2-Foresight, Behavioural Insights and Design for Polic

    Advances in Information Security and Privacy

    Get PDF
    With the recent pandemic emergency, many people are spending their days in smart working and have increased their use of digital resources for both work and entertainment. The result is that the amount of digital information handled online is dramatically increased, and we can observe a significant increase in the number of attacks, breaches, and hacks. This Special Issue aims to establish the state of the art in protecting information by mitigating information risks. This objective is reached by presenting both surveys on specific topics and original approaches and solutions to specific problems. In total, 16 papers have been published in this Special Issue

    Autonomy, Efficiency, Privacy and Traceability in Blockchain-enabled IoT Data Marketplace

    Full text link
    Personal data generated from IoT devices is a new economic asset that individuals can trade to generate revenue on the emerging data marketplaces. Blockchain technology can disrupt the data marketplace and make trading more democratic, trustworthy, transparent and secure. Nevertheless, the adoption of blockchain to create an IoT data marketplace requires consideration of autonomy and efficiency, privacy, and traceability. Conventional centralized approaches are built around a trusted third party that conducts and controls all management operations such as managing contracts, pricing, billing, reputation mechanisms etc, raising concern that providers lose control over their data. To tackle this issue, an efficient, autonomous and fully-functional marketplace system is needed, with no trusted third party involved in operational tasks. Moreover, an inefficient allocation of buyers’ demands on battery-operated IoT devices poses a challenge for providers to serve multiple buyers’ demands simultaneously in real-time without disrupting their SLAs (service level agreements). Furthermore, a poor privacy decision to make personal data accessible to unknown or arbitrary buyers may have adverse consequences and privacy violations for providers. Lastly, a buyer could buy data from one marketplace and without the knowledge of the provider, resell bought data to users registered in other marketplaces. This may either lead to monetary loss or privacy violation for the provider. To address such issues, a data ownership traceability mechanism is essential that can track the change in ownership of data due to its trading within and across marketplace systems. However, data ownership traceability is hard because of ownership ambiguity, undisclosed reselling, and dispersal of ownership across multiple marketplaces. This thesis makes the following novel contributions. First, we propose an autonomous and efficient IoT data marketplace, MartChain, offering key mechanisms for a marketplace leveraging smart contracts to record agreement details, participant ratings, and data prices in blockchain without involving any mediator. Second, MartChain is underpinned by an Energy-aware Demand Selection and Allocation (EDSA) mechanism for optimally selecting and allocating buyers' demands on provider’s IoT devices while satisfying the battery, quality and allocation constraints. EDSA maximizes the revenue of the provider while meeting the buyers’ requirements and ensuring the completion of the selected demands without any interruptions. The proof-of-concept implementation on the Ethereum blockchain shows that our approach is viable and benefits the provider and buyer by creating an autonomous and efficient real-time data trading model. Next, we propose KYBChain, a Know-Your-Buyer in the privacy-aware decentralized IoT data marketplace that performs a multi-faceted assessment of various characteristics of buyers and evaluates their privacy rating. Privacy rating empowers providers to make privacy-aware informed decisions about data sharing. Quantitative analysis to evaluate the utility of privacy rating demonstrates that the use of privacy rating by the providers results in a decrease of data leakage risk and generated revenue, correlating with the classical risk-utility trade-off. Evaluation results of KYBChain on Ethereum reveal that the overheads in terms of gas consumption, throughput and latency introduced by our privacy rating mechanism compared to a marketplace that does not incorporate a privacy rating system are insignificant relative to its privacy gains. Finally, we propose TrailChain which generates a trusted trade trail for tracking the data ownership spanning multiple decentralized marketplaces. Our solution includes mechanisms for detecting any unauthorized data reselling to prevent privacy violations and a fair resell payment sharing scheme to distribute payment among data owners for authorized reselling. We performed qualitative and quantitative evaluations to demonstrate the effectiveness of TrailChain in tracking data ownership using four private Ethereum networks. Qualitative security analysis demonstrates that TrailChain is resilient against several malicious activities and security attacks. Simulations show that our method detects undisclosed reselling within the same marketplace and across different marketplaces. Besides, it also identifies whether the provider has authorized the reselling and fairly distributes the revenue among the data owners at marginal overhead
    • …
    corecore