467 research outputs found

    A Temporal Logic for Hyperproperties

    Full text link
    Hyperproperties, as introduced by Clarkson and Schneider, characterize the correctness of a computer program as a condition on its set of computation paths. Standard temporal logics can only refer to a single path at a time, and therefore cannot express many hyperproperties of interest, including noninterference and other important properties in security and coding theory. In this paper, we investigate an extension of temporal logic with explicit path variables. We show that the quantification over paths naturally subsumes other extensions of temporal logic with operators for information flow and knowledge. The model checking problem for temporal logic with path quantification is decidable. For alternation depth 1, the complexity is PSPACE in the length of the formula and NLOGSPACE in the size of the system, as for linear-time temporal logic

    Near-Optimal Scheduling for LTL with Future Discounting

    Full text link
    We study the search problem for optimal schedulers for the linear temporal logic (LTL) with future discounting. The logic, introduced by Almagor, Boker and Kupferman, is a quantitative variant of LTL in which an event in the far future has only discounted contribution to a truth value (that is a real number in the unit interval [0, 1]). The precise problem we study---it naturally arises e.g. in search for a scheduler that recovers from an internal error state as soon as possible---is the following: given a Kripke frame, a formula and a number in [0, 1] called a margin, find a path of the Kripke frame that is optimal with respect to the formula up to the prescribed margin (a truly optimal path may not exist). We present an algorithm for the problem; it works even in the extended setting with propositional quality operators, a setting where (threshold) model-checking is known to be undecidable

    Counting CTL

    Get PDF
    The original publication is available at www.springerlink.com.International audienceThis paper presents a range of quantitative extensions for the temporal logic CTL. We enhance temporal modalities with the ability to constrain the number of states satisfying certain sub-formulas along paths. By selecting the combinations of Boolean and arithmetic operations allowed in constraints, one obtains several distinct logics generalizing CTL. We provide a thorough analysis of their expressiveness and of the complexity of their model-checking problem (ranging from P-complete to undecidable)

    Playing to Learn, or to Keep Secret: Alternating-Time Logic Meets Information Theory

    Full text link
    Many important properties of multi-agent systems refer to the participants' ability to achieve a given goal, or to prevent the system from an undesirable event. Among intelligent agents, the goals are often of epistemic nature, i.e., concern the ability to obtain knowledge about an important fact \phi. Such properties can be e.g. expressed in ATLK, that is, alternating-time temporal logic ATL extended with epistemic operators. In many realistic scenarios, however, players do not need to fully learn the truth value of \phi. They may be almost as well off by gaining some knowledge; in other words, by reducing their uncertainty about \phi. Similarly, in order to keep \phi secret, it is often insufficient that the intruder never fully learns its truth value. Instead, one needs to require that his uncertainty about \phi never drops below a reasonable threshold. With this motivation in mind, we introduce the logic ATLH, extending ATL with quantitative modalities based on the Hartley measure of uncertainty. The new logic enables to specify agents' abilities w.r.t. the uncertainty of a given player about a given set of statements. It turns out that ATLH has the same expressivity and model checking complexity as ATLK. However, the new logic is exponentially more succinct than ATLK, which is the main technical result of this paper

    Probabilistic modal {\mu}-calculus with independent product

    Full text link
    The probabilistic modal {\mu}-calculus is a fixed-point logic designed for expressing properties of probabilistic labeled transition systems (PLTS's). Two equivalent semantics have been studied for this logic, both assigning to each state a value in the interval [0,1] representing the probability that the property expressed by the formula holds at the state. One semantics is denotational and the other is a game semantics, specified in terms of two-player stochastic parity games. A shortcoming of the probabilistic modal {\mu}-calculus is the lack of expressiveness required to encode other important temporal logics for PLTS's such as Probabilistic Computation Tree Logic (PCTL). To address this limitation we extend the logic with a new pair of operators: independent product and coproduct. The resulting logic, called probabilistic modal {\mu}-calculus with independent product, can encode many properties of interest and subsumes the qualitative fragment of PCTL. The main contribution of this paper is the definition of an appropriate game semantics for this extended probabilistic {\mu}-calculus. This relies on the definition of a new class of games which generalize standard two-player stochastic (parity) games by allowing a play to be split into concurrent subplays, each continuing their evolution independently. Our main technical result is the equivalence of the two semantics. The proof is carried out in ZFC set theory extended with Martin's Axiom at an uncountable cardinal
    • …
    corecore