
Counting CTL

François Laroussinie, Antoine Meyer, Eudes Pétonnet

To cite this version:

François Laroussinie, Antoine Meyer, Eudes Pétonnet. Counting CTL. FoSSaCS 2010, Mar
2010, Paphos, Cyprus. Springer, 6014, pp.206-220, 2010, Lecture Notes in Computer Science.
<10.1007/978-3-642-12032-9 15>. <hal-00681263>

HAL Id: hal-00681263

https://hal.archives-ouvertes.fr/hal-00681263

Submitted on 21 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00681263

Counting CTL

François Laroussinie1⋆, Antoine Meyer2, and Eudes Petonnet1

1 LIAFA, Université Paris Diderot – Paris 7 & CNRS UMR 7089, France
{Francois.Laroussinie,Eudes.Petonnet}@liafa.jussieu.fr

2 LIGM, Université Paris Est – Marne-la-Valle & CNRS UMR 8049, France
Antoine.Meyer@univ-mlv.fr

Abstract. This paper presents a range of quantitative extensions for
the temporal logic CTL. We enhance temporal modalities with the abil-
ity to constrain the number of states satisfying certain sub-formulas
along paths. By selecting the combinations of Boolean and arithmetic
operations allowed in constraints, one obtains several distinct logics gen-
eralizing CTL. We provide a thorough analysis of their expressiveness
and of the complexity of their model-checking problem (ranging from
P-complete to undecidable).

1 Introduction

Among the existing approaches to the formal verification of automated systems,
model checking [7, 17] aims at automatically establishing the validity of a certain
formal specification (modeled as a formula in a suitable logic) over the system
under study (modeled for instance as a finite automaton). This set of techniques
is now well-established and successful, with many real-world applications.

To formalize the specification of temporal properties, for instance in the case
of reactive systems, temporal logics (TL) were proposed thirty years ago [16] and
widely studied since. They are today used in many model-checking tools. There
exists a wide variety of temporal logics, differing for instance by the models over
which formulas are interpreted or by the kind of available temporal modalities.
Two well-known examples are LTL in the linear-time framework (where formulas
are interpreted over infinite runs) and CTL for the branching-time case (where
formulas are interpreted over states of Kripke structures). See [8] for a survey of
classical temporal logics for systems specification.

Temporal logics have been extended in various ways in order to increase their
expressive power. For example, while LTL and CTL only contain future operators,
it is also possible to consider past-time modalities to express properties of the
past of a run. One can also extend temporal logics with regular expressions (see
for instance [19, 10]). Other extensions were proposed to handle quantitative
aspects of systems. For example, some logics can contain timing constraints to
specify that some event P1 has to occur less than 10 time units before another
event P2. Such temporal logics, like TCTL [2, 9], have been especially studied in

⋆ Partly supported by ANR project DOTS and project QUASIMODO (FP7-ICT).

the framework of timed model checking. Another quantitative extension consists
in probabilistic logics where one can specify probability bounds over the truth of
some property (see for example [4]).

We propose several extensions of CTL with constraints over the number of
states satisfying certain sub-formulas along runs. For example, considering a
model for an ATM, we can express the property “whenever the PIN is locked,
at least three erroneous attempts have been made” by: ¬EF[♯error≤2]lock (one
cannot reach a state where the PIN is locked but less than two errors have
occurred). Similarly, ¬EF[♯error≥3]money states that three mistakes forbid cash
retrieval. We use subscripts on the temporal modality (as in TCTL) to associate
a constraint with the run for which the modality holds. Note that these two
properties could be clearly stated in CTL by nesting E U modalities, but the
resulting formulas would probably be too big to be easily handled by the user
of a model checker. For each extension we consider, we study its expressiveness
compared to CTL. In some cases, there is no formal gain of expressiveness because
there exist natural translations to obtain equivalent CTL formulas, but these
extensions are often exponentially more succinct than CTL: they allow writing
concise specifications that would require formulas of exponentially larger size
in CTL. In other cases, we show that adding some constraints increases the
expressive power of CTL.

We consider the model checking problem for various sets C of constraints, and
denote by CCTLC the corresponding extension of CTL. We show that polynomial-
time algorithms exist when considering Until modalities with constraints of the
form3

∑
i ♯ϕi ∼ c with ∼∈ {<,≤,=,≥, >} and c ∈ N. Additionally allowing

Boolean combinations of such constraints or integer coefficients in the sum (or
both) makes model checking ∆P

2 -complete. We also consider the case of diagonal
constraints ♯ϕ − ♯ψ ∼ c and their more general form

∑
i±♯ϕi ∼ c with c ∈ Z

and show that model checking can be done in polynomial time. However, al-
lowing Boolean combinations of such constraints leads to undecidability. Finally
we define a version of CCTL with freeze variables and show that it induces a
complexity blow-up: model checking becomes PSPACE-complete.

Several existing works provide related results. In [10], an extension of LTL

with a kind of regular expressions containing quantitative constraints over the
number of occurrences of sub-expressions is presented. This extension yields al-
gorithms whose time complexity is exponential in the size of formulas and the
value of integer constants. In [11], extensions of CTL are defined including pa-
rameters in constraints. One of these formalisms, namely GPCTL, allows one to
express properties with constraints defined as positive Boolean combinations of
sums of the form

∑
i Pi ≤ c where every Pi is an atomic proposition. Model-

checking E U formulas with such a constraint is shown to be NP-complete and
a polynomial algorithm is given for a restricted logic (with parameters). In [20],
a branching-time temporal logic with general counting constraints (using a vari-
ant of freeze variables) is defined to specify event-driven real-time systems. To

3 For complexity results, we always assume that integer constants are encoded in
binary.

obtain decidability, they restrict the analysis to systems verifying some bounded
progress condition. In [6, 5], extensions of LTL and CTL with Presburger con-
straints over the number of states satisfying some formulas are considered, for
some class of infinite state processes. The complexity of these problems is much
higher than the cases we are concerned with. Finally there also exist timed ex-
tensions of CTL interpreted over Kripke structures (see for instance [9]).

The paper is organized as follows. In Section 2, we introduce the definitions
of the main formalisms we will use. In Section 3, we show that several of our
proposed logics are not more expressive than the classical CTL, yet exponentially
more succinct. In Section 4, we address the model-checking problem and provide
exact complexity results for most of the logics we introduce. Finally we present
in Section 5 a different logic with freeze variables, together with the complexity
of its model-checking problem.

2 Definitions

2.1 Models

Let AP be a set of atomic propositions. In branching-time temporal logics, for-
mulas are interpreted over states of Kripke structures.

Definition 1. A Kripke structure (or KS) S is a tuple 〈Q,R, ℓ〉 where Q is a
finite set of states, R ⊆ Q× Q is a total accessibility relation4and ℓ : Q → 2AP

is a labelling of states with atomic propositions.

A run ρ of S is an infinite sequence of states q0q1q2 . . . such that (qi, qi+1) ∈ R
for every i. We use ρ(i) to denote the state qi and ρ|i to denote the prefix q0 · · · qi
of ρ. Runs(q) denotes the set of runs starting from some state q ∈ Q. We write
σ ≤ ρ when σ is a prefix of ρ.

We will also consider Durational Kripke Structures (DKS), where an integer
duration is associated with every transition. Thus for a DKS S = 〈Q,R, ℓ〉, we
have R ⊆ Q × N × Q. The duration of a transition is also called a weight or a
cost. We use DKS0/1 to denote the DKSs where the durations belong to {0, 1}.
The notion of duration is naturally extended to finite runs of DKSs.

2.2 Counting CTL

We define several extensions of CTL able to express constraints over the number
of times certain sub-formulas are satisfied along a run.

Definition 2. Given a set of atomic propositions AP and a set of constraints
C, we define:

CCTLC ∋ ϕ, ψ ::= P | ϕ ∧ ψ | ¬ϕ | EϕU[C]ψ | AϕU[C]ψ

4 By total relation, we mean a relation R ⊆ Q×Q such that ∀p ∈ Q,∃q ∈ Q, (p, q) ∈ R.

where P ∈ AP and C ∈ C. The sets of constraints we consider are defined as
follows, with l, k ∈ N, k′ ∈ Z and ∼∈ {<,≤,=,≥, >}. First we have the sets of
atomic constraints:

C0 ∋ C ::= ♯ϕ ∼ k with ϕ ∈ CCTLC0

C1 ∋ C ::= (Σl
i=1♯ϕi) ∼ k with ϕi ∈ CCTLC1

αC1 ∋ C ::= (Σl
i=1αi · ♯ϕi) ∼ k with ϕi ∈ CCTLαC1 , αi ∈ N

C2 ∋ C ::= (♯ϕ− ♯ψ) ∼ k′ with ϕ, ψ ∈ CCTLC2

C3 ∋ C ::= (Σl
i=1 ± ·♯ϕi) ∼ k

′ with ϕi ∈ CCTLC3

αC3 ∋ C ::= (Σl
i=1αi · ♯ϕi) ∼ k

′ with ϕi ∈ CCTLαC3 , αi ∈ Z

Let La be the set {C0, C1, αC1, C2, C3, αC3}. We also consider the set of constraints
B(C) for every C ∈ La, defined as the set of Boolean combinations of atomic
constraints in C with sub-formulas in CCTLB(C). We use Lb for {B(C) | C ∈ La}.

Finally Lcons
def

= La ∪ Lb.

We make use of the standard abbreviations ∨,⇒,⇔,⊥,⊤, as well as the

additional modalities EF[C]ϕ
def

= E⊤U[C]ϕ, AF[C]ϕ
def

= A⊤U[C]ϕ, and their duals

AG[C]ϕ
def

= ¬EF[C]¬ϕ and EG[C]ϕ
def

= ¬AF[C]¬ϕ. Any formula occurring in a
constraint C associated with a modality in Φ is considered as a sub-formula of
Φ. The size |Φ| of Φ takes the size of these constraints and their sub-formulas into
account, assuming that integer constants are encoded in binary (unless explicitly
stated otherwise). The DAG-size of Φ is the total number of distinct sub-formulas
of Φ. As model-checking algorithms compute only once the truth value of a sub-
formula, this is generally more relevant to the complexity of model-checking.

The semantics of CCTLC formulas (with C ∈ Lcons) is defined over Kripke
structures as follows:

Definition 3. The following clauses define the conditions for a state q of some
KS S = 〈Q,R, ℓ〉 to satisfy a CCTLC formula ϕ – written q |=S ϕ – by induction
over the structure of ϕ (we omit Boolean modalities):

q |=S EϕU[C]ψ iff ∃ρ ∈ Runs(q), ∃i ≥ 0, ρ(i) |=S ψ, ρ|i−1 |=S C,
and ∀0 ≤ j < i, ρ(j) |=S ϕ

q |=S AϕU[C]ψ iff ∀ρ ∈ Runs(q), ∃i ≥ 0, ρ(i) |=S ψ, ρ|i−1 |=S C,
and ∀0 ≤ j < i, ρ(j) |=S ϕ

Let C ∈ Lcons be a set of constraints and C be a constraint in C, the semantics
of ρ|i |=S C is based on the interpretation of ♯ϕ over ρ|i, denoted by |ρ|i|ϕ and

defined as: |ρ|i|ϕ
def
= |{j | 0 ≤ j ≤ i ∧ ρ(j) |=S ϕ}|. Given these values, C is

interpreted in a natural way.

In the following we omit the subscript S for |= when no confusion is possible.
We use ≡ to denote the standard equivalence between formulas.

Remark 1. The classical X operator (“neXt”) can be expressed in CCTLC0 as
EXϕ ≡ EF[♯⊤=1]ϕ, and that basic constraints in C0 can be expressed in C2 because

♯ϕ ≡ ♯ϕ−♯⊥. Moreover, for CCTLB(C) with C ∈ La, since ϕU[C]ψ ≡ F[C∧♯(¬ϕ)=0]ψ
the modality F is sufficient to define U; thus such a logic CCTLB(C) can also be
built from atomic propositions using Boolean operators and modalities EF[C]ϕ
and AF[C]ϕ (or EG[C]ϕ). Note that all these translations are succinct (linear in
the size of formulas) and do not have any impact on complexity results.

Remark 2. The related temporal logic TCTL [2], whose semantics are defined
over timed models, allows one to label temporal modalities with duration con-
straints. For instance, one may write ϕU<kψ to express the fact that ϕ is consis-
tently true until, before k time units have elapsed, ψ eventually holds. When all
transitions in a durational Kripke structure have duration 1 (i.e. the duration of
any run is equal to its length), TCTL (or RTCTL in [9]) formulas can be directly
coded into the logic CCTLC0 by only using the sub-formula ⊤ inside constraints.
A similar coding is also possible when one uses a proposition tick to mark time
elapsing as in [15].

2.3 Examples of CCTL formulas.

Consider a model for an ATM, whose atomic propositions include money,
reset and error, with the obvious meaning. To specify that it is not possible
to get money when three mistakes are made in the same session (i.e. with no in-
termediate reset), we can use the formula AG

(
¬EF[♯error≥3∧♯reset=0]money

)
that

belongs to CCTLB(C0). Note that this could also be expressed by the CCTLC0
formula AG

(
¬E(¬reset)U[♯error≥3]money

)
.

Consider a mutual exclusion algorithm with n processes trying to reach their
critical section. We can specify that it verifies the bounded waiting property with
bound 10 (i.e. when a process P tries to reach its CS, then at most 10 other
processes can reach theirs before P does) by the following CCTLB(C1) formula:

AG
∧
i

(
requesti ⇒ ¬EF[

P

j 6=i
♯CSj>10∧♯CSi=0]⊤

)
.

AG[♯send−♯receive<0]⊥ belongs to CCTLC2 and states that along any finite run,
the number of receive events cannot exceed the number of send events.

Quantitative constraints can also be useful for fairness properties. For exam-
ple AGAF[

V

i
5≤♯ϕi≤10]⊤ expresses that the ϕi’s occur infinitely often along every

run (as stated with the CTL formula
∧
i(AG AF ϕi)) but it also ensures some

constraint on the number of states satisfying the ϕi’s along every execution: for
example, it is not possible to have a sub-run where ϕ1 holds for 11 states and
ϕ2 holds only for 4 states.

Note that with CCTLαC3 one can express properties over the ratio of two
kinds of states along a run. For example, EF[100·♯error−♯⊤<0]P is true when there
is a path leading to P such that the rate of error states is less than 1 percent.
Thus constraints of the form “ ♯P

♯P ′ ∼ k” can easily be expressed with this logic.

Finally note that we can use any temporal formula inside a constraint (and
not only atomic propositions). For example, AG(EF[♯(EXalarm)≤5]init) states that
it is always possible to reach init with a path along which at most 5 states have
a successor satisfying alarm.

These examples illustrate the ability of CCTL formulas to state properties
over the portion of a run leading to some state. A similar kind of properties
could also be expressed with past-time modalities (like S or F

−1), but unlike
these modalities our constraints cannot easily describe the ordering of events in
the past: they “only” allow to count the number of occurrences of formulas. We
will see in the next sections that our extensions do not always induce a complexity
blow-up, while model-checking CTL+F−1 is known to be PSPACE-complete [14].

3 CCTL expressiveness and succinctness

When comparing two logics, the first question which comes to mind is the range
of properties they can be used to define, in other words their expressiveness.
When they turn out to be equally expressive, a natural way to distinguish them
is then to ask how concisely each logic can express a given property. This is
referred to as succinctness, and is also relevant when studying the complexity
of model-checking for instance, since it may considerably influence the size of
a formula required to express a given property, and hence the time required to
model-check it. In this section we study the expressiveness of the different logics
defined in the previous section, and provide partial results and comments about
their respective succinctness with respect to CTL.

3.1 Expressiveness

We first show that only allowing boolean combinations and positive sums in
constraints does not allow CCTL to express more properties than CTL.

Proposition 4. Any CCTLB(αC1) formula can be translated into CTL.

Proof (sketch). Let Φ be a CCTLB(αC1) formula of the form EF[C]ϕ whose con-
straint C contains n counting arguments ♯ϕ1 to ♯ϕn, each preceded by a multi-
plicative constant αi, and m atomic constraints. We inductively translate Φ to
CTL by building a family of formulas whose intended meaning (up to technical
details) is as follows:

– If constraint C holds with ♯ϕi = 0 for all i, then ϕ may be true immediately.
– Otherwise, successively check for every i which of the ϕi hold in the current

state, updating constraint C along the way by decreasing by αi the constant
to which ϕi is compared in Φ.

– Once all ϕi have been scanned, proceed to the next state and reevaluate C
for the new values of the constants.

Each of these steps corresponds to a sub-formula of the form ΦC′,i,b in the
CTL translation of Φ, where C′ is the current constraint to be checked, i is the
index of the formula ϕi being scanned, and b is a boolean flag used to enforce
termination, ΦC,0,⊥ being the translation of Φ itself. By counting the number of
distinct ΦC′,i,b, one can show that the DAG-size of ΦC,0,⊥ is O(n.km), where k
is the maximal constant appearing in Φ. A similar argument holds for formulas
of the form EG[C]ϕ with the same resulting DAG-size. ⊓⊔

Note that the upper bound for the above translation is parametric, and can
be interpreted for all variants of CCTL below CCTLB(αC1). An example of this
translation on a CCTLαC1 formula is given in the next section. In contrast to
this result, introducing subtractions in constraints yields a strict increase in
expressiveness.

Proposition 5. The CCTLC2 formula ϕ = AG[♯A−♯B<0]⊥ cannot be translated
into CTL.

Proof (sketch). Formula ϕ (already seen in Sec. 2 with different atomic propo-
sitions) states that the number of B-labeled states cannot exceed the number
of A-labeled states along any path. As shown by [3] and also presented in [18],
the set of models of any CTL formula can be recognized by a finite alternating
tree automaton. From such an automaton, one can easily build a finite alternat-
ing automaton over words, whose accepted language is the set of all prefixes of
branches in models of the formula, seen as words over 2AP.

Suppose there exists a CTL formula ϕ′ equivalent to ϕ, and let A be the
alternating tree automaton accepting its set of models. As stated above, from
A one can derive a finite alternating automaton recognizing the set of all words
over 2{A,B} labeling a finite prefix of a branch in a model of ϕ, namely words
whose prefixes contain at most as many B’s as A’s. Since this language is clearly
not regular, this leads to a contradiction. ⊓⊔

3.2 Succinctness

Our extensions of CTL come with three main sources of possible concision, which
appear to be orthogonal : the encoding of constants in binary, the possibility to
use boolean combinations in the constraints, and the use of sums. However, only
the first two prove out to yield an exponential improvement in succinctness :

Proposition 6. For every formula Φ ∈ CCTLC1 with unary encoding of integers,
there exists an equivalent CTL formula of DAG-size polynomial in |Φ|.

This proposition is a direct consequence of Prop. 4 where m, the number of
atomic constraints, is set to 1. For instance, to translate Φ = EF[Σn

i=1
♯pi=K]ϕ, we

define ∀0 ≤ k ≤ K the family of CTL formulas:

∀1 ≤ i ≤ n, 0 ≤ j < n, Φi,j,k = (pi ∧ Φi+1,j+1,k) ∨ (¬pi ∧ Φi+1,j,k)
∀1 ≤ j ≤ k, Φn+1,j,k = EXE(¬

∨n
i=1 pi)U((

∨n
i=1 pi) ∧ Φ1,0,k−j)

Φn+1,k,k = EXE(¬
∨n
i=1 pi)Uϕ

∀j > k, Φn+1,j,k = ⊥

By construction, we have Φ ≡ Φ1,0,K . The size of this family is O(n.k), thus
the DAG-size of Φ1,0,K is also polynomial in |Φ|, even if its literal size is expo-
nential. This example relies on the fact that constants are encoded in unary, to
measure the impact of the addition operation in constraints. We now look at the
succinctness gap due to the binary encoding of constants.

Proposition 7. CCTLC0 can be exponentially more succinct than CTL.

Proof. In [15], it is shown that the logic TCTL, when interpreted over Kripke
structures with a special atomic proposition tick used to mark the elapsing of
time, can be exponentially more succinct than CTL. More precisely, the TCTL

formulas EF<nA and EF>nA, which are of size O(log(n)) since n is encoded in
binary, do not admit any equivalent CTL formula of temporal height (and hence
also size) less than n. These formulas express the existence of a path where A
eventually holds and less (resp. more) than n clock ticks are seen until then.
They are clearly equivalent to the O(log(n))-size CCTLC0 formulas EF[♯tick<n]A
and EF[♯tick>n]A respectively. ⊓⊔

This exhibits a first aspect in which CCTL logics can be exponentially more
succinct than CTL. However, as expressed in the next proposition, another or-
thogonal feature of the logic may yield a similar blow-up.

Proposition 8. CCTLB(C0) with unary encoding of integers can be exponentially
more succinct than CTL.

Proof. It was shown by [18, 1] that any CTL formula ϕ equivalent to the CTL+

formula ψ = E(FP0 ∧ . . . ∧ FPn) must be of length exponential in n. It turns
out ψ is equivalent to the CCTLB(C0) formula ψ′ = EF[

V

i
♯Pi≥1]⊤, which entails

the result. Note that ψ′ only contains the constant 1, which means that this gap
cannot be imputed to the binary encoding. ⊓⊔

The intuitive reason for this blow-up is that a CTL formula expressing the
property that atomic propositions P1 to Pn are each seen at least once along a
path would have to keep track of all possible interleavings of occurrences of Pi’s.

To summarize, we showed that two different aspects of the extensions of CTL

presented in this paper, while not increasing the overall expressiveness of the
logic, may yield exponential improvements in succinctness We still have to study
similar succinctness properties of the remaining CCTL fragments with respect to
CTL and to each other.

4 Model checking

4.1 Model checking CCTLC0
and CCTLC1

It turns out that model-checking CCTLC1 is polynomially equivalent to model-
checking CCTLC0 (or CTL), as both problems are P-complete.

Theorem 9. The model-checking problem for CCTLC1 is P-complete.

Proof. P-hardness comes from the P-hardness of CTL model-checking. For mem-
bership in P, we provide polynomial-time procedures to deal with the sub-

formulas EψU[C]ψ
′ and AψU[C]ψ

′ with C
def

= Σl
i=1♯ϕi ∼ k. Consider a Kripke

structure S = (Q,R, ℓ), and inductively assume that the truth values of ψ, ψ′

and ϕi over each state of S are known: these sub-formulas will be seen as atomic
propositions in the following.

To each state q occurring along a path, we associate a cost |q|C = |{i | q |=
ϕi}|, and note that the value of |q|C is in O(|C|). This cost is additively extended
to paths in the usual way. Deciding the truth value of the path formula ψU[C]ψ

′

over any path ρ verifying ψUψ′ then amounts to checking whether there exists
a finite prefix ρ′q of ρ such that |ρ′|C ∼ k, q |= ψ′ and ∀i ≤ |ρ′|, ρ′(i) |= ϕ.

We reduce this problem to the model-checking of a TCTL formula over a
DKS0/1 (DKS with 0/1-durations) for which there exists a polynomial-time al-

gorithm [15]. We build from S a DKS0/1 S′ = (Q′, R′, ℓ′) as follows: for each
state q ∈ Q with |q|C = n, Q′ contains n + 1 additional states q0, . . . , qn. R

′ is

then defined as {q
0
−→ q0 | q ∈ Q} ∪ {qi

1
−→ qi+1 | q ∈ Q, i < |q|C} ∪ {qn

0
−→

q′ | (q, q′) ∈ R, n = |q|C}. Finally, we set ℓ′(qi) = ∅ for all qi ∈ Q′ \ Q and
ℓ′(q) = ℓ(q) ∪ {ok} for all q ∈ Q′ ∩Q, where ok is a new atomic predicate.

To each path ρ = qσq′ in S, we associate the path ρ̃ = qq0 . . . qnσ̃q
′ in S′.

It can now be shown by induction on run lengths that ρ satisfies ψU[C]ψ
′ if and

only if ρ̃ satisfies the TCTL path formula (ok⇒ ψ)U[∼k](ok ∧ ψ′). ⊓⊔

Since CCTLC0 includes CTL and is included in CCTLC1 , we get:

Corollary 1. The model-checking problem for CCTLC0 is P-complete.

4.2 Model-checking CCTLB(C0) and CCTLαC1

We now establish the ∆P
2 -completeness of model-checking for the fragments

CCTLB(C0), CCTLαC1 and CCTLB(αC1). Let us first recall the definition of the

complexity class ∆P
2 , one of the classes of the polynomial hierarchy.

Definition 10. ∆P
2 = PNP is the class of problems solvable in polynomial time

with access to an oracle for some NP-complete problem.

We now prove ∆P
2 -hardness of the model-checking problem for CCTLB(C0).

Theorem 11. The model-checking problem for CCTLB(C0) is ∆P
2 -hard.

Proof. We proceed by reduction from the ∆P
2 -complete problem SNSAT [12].

Given p families of variables X1, . . . Xp with Xi = {x1
i , ..., x

m
i } and a set

Z = {z1, . . . , zp} of p variables, an instance I of SNSAT is defined as a collection
of p propositional formulas ϕ1, . . . , ϕp under 3-conjunctive normal form (3-CNF),
where each ϕi involves variables in Xi∪{z1, ..., zi−1}, and the values of each zi is

defined as zi
def

= ∃Xi. ϕi(z1, ..., zi−1, Xi). The instance I is positive iff the value
of zp is ⊤. We denote by vI the unique valuation of variables in Z induced by I.

From I, we define the KS described in Figure 1. Every state is labeled by its
name, and in addition every state z̄i is labeled by some new atomic proposition
Pz̄ . We use X to denote the set X1 ∪ · · · ∪Xp and V for X ∪ Z. A path ρ from
qp to qF describes the valuation vρ such that vρ(y) = ⊤ if ρ visits state y and
⊥ if it visits ȳ for every variable y in V . We use a CCTLB(C0) formula to ensure

zp zp−1 z1 x1

p x2

p xm
1

qp qp−1 qp−2 · · · q1 q0 • • · · · • qF

z̄p z̄p−1 z̄1 x̄1

p x̄2

p x̄m
1

Fig. 1. Kripke structure associated to an SNSAT problem.

that vρ coincides with vI over Z, that is: vρ(zi) = ⊤ iff vI(zi) = ⊤ for any
i ∈ {1, . . . , p}.

Let ϕ̃i be the formula ϕi where every occurrence of the literal x is replaced
by ♯x=1. We define the CCTLB(C0) formula Ψ0 as ⊤ and for every 1 ≤ k ≤ p, Ψk

as EX
(
E(Pz̄ ⇒ ¬Ψk−1)U[Ck]qF

)
, with Ck

def

=
∧
l≤k

(
(♯zl=1)⇒ ϕ̃l

)
∧

∧k
j=1

(
(♯q=

j) ⇒ ϕ̃j
)
. The first part of the constraint Ck aims at ensuring that vρ(zl) = ⊤

is witnessed by a valuation for {z1, . . . , zl−1}∪X
l satisfying ϕl. The second part

ensures the formula ϕj is satisfied by vρ when Ψk is interpreted from zj or z̄j
(i.e. when the number of qs along the path leading to qF is j). The formula Ψj
holds for a state qi with i ≤ j when vI(zi) is ⊤. The embedding of Ψj−1 inside
Ψj is used to ensure that going through a z̄m with i ≥ m is always necessary
w.r.t. I (i.e. there is no way to satisfy the corresponding ϕm):

Lemma 12. For any i = 1, . . . , p and i ≤ j ≤ p, we have: zi |= Ψj ⇔ vI(zi) = ⊤
and z̄i 6|= Ψj ⇔ vI(zi) = ⊥

Now it is sufficient to check whether q0 satisfies Ψp or not, and then deduce the
truth value of vI(zp). ⊓⊔

Theorem 13. The model-checking problem for CCTLαC1 is ∆P
2 -hard.

Proof. We provide a reduction from the model checking problem for TCTL spec-
ifications over Durational Kripke structures. TCTL formulas allow to deal with
the cost (or duration) of paths (i.e. the sum of the weight of every transition
occurring along the path). This problem is ∆P

2 -complete [13]. Let S = (Q,RS , ℓ)
be a DKS. Let W be the set of weights occurring in S. We define the Kripke
structure S′ = (Q′, RS′ , ℓ′) as follows:

– Q′
def

= Q ∪ {(q, d, q′) | ∃(q, d, q′) ∈ RS},
– for any (q, d, q′) ∈ RS , we add (q, (q, d, q′)) and ((q, d, q′), q′) in RS′ ; and

– ℓ′ : Q′ → 2AP′

with AP′
def

= AP∪{ok}∪{Pd | d ∈ W} – we assume ok, Pd 6∈ AP.

And we have: ℓ′(q)
def

= ℓ(q) ∪ {ok} for any q ∈ Q, and ℓ′(q, d, q′) = {Pd}.

Now we can easily see that q |=S Φ with Φ ∈ TCTL is equivalent to q |=S′ Φ̃

where P̃
def

= P , ¬̃ψ
def

= ¬ψ̃, ϕ̃ ∧ ψ
def

= ϕ̃∧ ψ̃, ˜EϕU∼cψ
def

= E(ok⇒ ϕ̃)U[C(∼c)](ok∧ ψ̃)

and ˜AϕU∼cψ
def

= A(ok⇒ ϕ̃)U[C(∼c)](ok∧ψ̃) with C(∼ c)
def

=
∑

d∈W d ·♯Pd ∼ c. ⊓⊔

Theorem 14. The model-checking problem for CCTLB(αC1) is in ∆P
2 .

Proof (sketch). Let S = 〈Q,R, ℓ〉 be a KS. For this proof, we only need to provide
NP procedures to deal with sub-formulas of the form EF[C]ϕ and EG[C]ϕ. First let
{C1, . . . , Cl} be the set of αC1 constraints occurring in C. Each Ci is of the form∑

j≤li
αij · ♯ϕ

i
j ∼i di. And let dmax be the maximal integer constant occurring in

C. Now we can present the algorithms:

– Φ
def

= EF[C]ψ: If q |= Φ, then there exists a run ρ starting from q and leading to
some q′ such that (1) q′ |= ψ and (2) ρ without q′ satisfies the constraint C.
First note that we can assume that the length of ρ is bounded with respect
to the model and formula: a sequence of |Q| states contributes for at least 1
to some linear expressions in C and then the length of ρ is in O(|Q|.2|C|) due
to the binary encoding of the constants. An easy NP algorithm consists in
guessing the Parikh image of the transitions in ρ, which can be represented
in polynomial size. Moreover it is possible to check (in polynomial time) that
q′ satisfies ψ, ρ without q′ satisfies C, and Fρ corresponds to a path in S.

– Φ
def

= EG[C]ψ: For this case we have to find an infinite path ρ satisfying the
property “if the current prefix satisfies the constraint C, then the next state
has to satisfy ψ”. Every constraint Ci ∈ αC1 in C may change its truth
value at most twice along ρ. Therefore ρ can be decomposed in a bounded
number of parts over which the truth value of every constraint is constant.
As previously, the length of every part is bounded and its Parikh image can
be encoded in polynomial size. Moreover it is possible to ensure that the
juxtaposition of all ρm is correct. ⊓⊔

A direct corollary of Theorems 11, 13 and 14 is:

Corollary 2. The model-checking problem for CCTLC is ∆P
2 -complete for each

C ∈ {αC1,B(C0),B(C1),B(αC1)}.

4.3 Diagonal constraints

We now show that even if diagonal constraints lead to strictly more expressive
logics than CTL, model checking CCTLC2 and CCTLC3 is not more difficult than
model checking CTL itself.

Theorem 15. The model-checking problem for CCTLC2 is P-complete.

Proof (sketch). P-hardness comes from that of CCTLC0 model-checking. Using
the fact that Aϕ′U[C]ψ

′ ≡ AF[C∧♯¬ϕ′=0]ψ
′ ≡ ¬EG[C∧♯¬ϕ′=0]¬ψ

′, to show mem-
bership in P, we only need to provide polynomial-time procedures to verify

sub-formulas of the form Eϕ′U[C]ψ
′ and EG[C∧♯ϕ′=0]ψ

′ with C
def

= ♯ϕ − ♯ψ ∼ k.

Consider a Kripke structure S
def

= (Q,R, ℓ). As previously, we associate a “cost”
to each state q ∈ Q. In this case however, |q|C can only be -1, 0 or 1 depending
on the truth values of ϕ and ψ. Inductively assume that the truth values of ϕ,
ψ, ϕ′ and ψ′ over each state of S are known: these sub-formulas will be seen as
atomic propositions in the following. We distinguish the two main cases below:

– Φ
def

= Eϕ′U[C]ψ
′: We consider the weighted and directed graph GS = (V,E)

representing the transition relation of S restricted to states verifying the
formula Eϕ′Uψ′, where edges are weighted by the cost of their source state
and where only edges whose source verifies ϕ′ are considered.

If C
def

= ♯ϕ − ♯ψ ≤ k, then the formula holds true on state q if and only
if there exists a state q′ such that q′ |=S ψ

′ and either an elementary (i.e.
acyclic) path ρ in GS of weight less than k from q to q′, or a path from q to
some state q′′ appearing on a negative-weight cycle, and from q′′ to q′. Using
a classical reachability algorithm over GS , one can determine the existence
of such paths in polynomial time.

If C
def

= ♯ϕ − ♯ψ = k with k ≥ 0, we will compute the relation Rk over
V 2 denoting the existence of a run of weight k between states q and q′ and
simply test whether (q, q′) ∈ Rk for some q′ verifying ψ′. Using dichotomy
and simple fixed-point computations, we are able to compute Rk in time
polynomial in |Φ|, i.e. logarithmic in k The treatment of negative weights is
omitted.

– Φ
def

= EG[C∧♯ϕ′=0]ψ
′: We use the weighted and directed graph GS representing

the transition relation of S where edges are weighted by the cost of their
source state, to build a new Kripke structure S′ and a classical CTL formula
Ψ such that S satisfies Φ if and only if S′ satisfies Ψ . ⊓⊔

By combining the techniques used in the previous construction with those
used in the proof to Theorem 9, we obtain a similar result for the logic CCTLC3 .

Corollary 3. The model-checking problem for CCTLC3 is P-complete.

Proof (sketch). In this setting, each state contributes to the cost of a path by
a certain positive or negative number whose absolute value is bounded by some
integer d. Similarly to the technique used in the proof of Theorem 9, the idea
is to build a durational Kripke structure, this time with weights in {−1, 0, 1},
by adding intermediate states. Once this DKS is built, relations Ri, R

+
i and

R−i may be computed as previously, and the satisfaction of the formula under
consideration tested. ⊓⊔

Theorem 16. The model-checking problem for CCTLB(C2) is undecidable.

Proof (sketch). This is done by reduction from the halting problem of a two-
counter machine M with counters C and D. We define a Kripke structure SM
with one state to simulate each ofM’s instructions, plus some auxiliary states.
We use labels ϕ+

X and ϕ−X with X ∈ {C,D} to witness increments and decre-
ments, and additional labels okX , koX to simulate the positive test “X = 0”:
whenever the counter’s value is assumed to be zero, and before simulating the
next instruction, the run goes through an auxiliary state labeled koX whose
unique successor is labeled okX . Hence along any run in SM, a prefix satisfies
♯koX > ♯okX right after counter X was deemed equal to zero, and only then.
By counting occurrences of these predicates, one can write a CCTLB(C2) formula
expressing the fact that M is correctly simulated by SM and never halts. ⊓⊔

5 Freeze variables

Instead of using counting constraints associated with temporal modalities, we
now consider freeze variables and explicit constraints inside formulas.

Definition 17. Given a set of atomic propositions AP and a set of variables V ,
we define: CCTL

fv ∋ ϕ, ψ ::= P | ϕ ∧ ψ | ¬ϕ | z[ψ].ϕ | C | EϕUψ | AϕUψ

where P ∈ AP and C is a constraint
∑l

i=1 αi · zi ∼ c with zi ∈ V , αi ∈ N, c ∈ N

and ∼∈ {<,≤,=,≥, >}.

Intuitively z[ψ].ϕ means that (1) the variable z is reset to zero and associated
with the sub-formula ψ (i.e. z will evolve like ♯ψ in the future) and (2) given this
semantics for z, ϕ holds for the current state. We say that an occurrence of some
variable z is free in ϕ when this occurrence does not appear in the scope of a
reset operator “.”; a formula without any free variable is closed. For example, the
CCTLB(C0) formula EF[♯P≤5∧♯P ′>2]P

′′ can be expressed in CCTLv as the formula
z[P].z′[P ′].EF(z ≤ 5 ∧ z′ > 2 ∧ P ′′).

A CCTLv formula ϕ is interpreted in a state of a KS extended with a valuation
for any free variable in ϕ and an environment associating a sub-formula to any
free variable. We use dom to denote the domain of such functions and ⊥ to
represent undefined values. Given a function f and x ∈ dom(f), we use f [x← a]
to denote the function mapping x to a, and every element y to f(y) if y 6= x.
Finally let SubF(ϕ) be the set of all ϕ sub-formulas.

Given a valuation v : V → N ∪ {⊥} for a set of variables occurring in
a CCTLv formula ϕ, and an environment ε : V → SubF(ϕ) ∪ {⊥} such that
dom(v) = dom(ε), and given a finite run π, we define the valuation (v +ε π) as

follows: (v+επ)(z)
def

= ⊥ if z 6∈ dom(v), and otherwise (v+επ)(z)
def

= v(z)+|{j|0 ≤
j ≤ |π| ∧ π(j) |= ε(z)}|. The semantics of CCTLv is defined as follows:

Definition 18. The following clauses define when a state q of some KS S =
〈Q,R, ℓ〉 and a valuation v satisfy a CCTL

v formula ϕ in an environment ε –
written (q, v) |=S,ε ϕ – by induction over the structure of ϕ (we omit the cases
of Boolean modalities):

(q, v) |=S,ε EϕUψ iff ∃ρ ∈ Runs(q), v |=ρ,ε ϕUψ

(q, v) |=S,ε AϕUψ iff ∀ρ ∈ Runs(q), v |=ρ,ε ϕUψ

(q, v) |=S,ε z[ψ].ϕ iff (q, v[z ← 0]) |=S,ε[z←ψ] ϕ

(q, v) |=S,ε Σ
l
i=1αi · zi ∼ c iff Σl

i=1αi · v(zi) ∼ c

where v |=ρ,ε ϕUψ iff ∃i ≥ 0, (ρ(i), v+ε ρ|i−1) |=S,ε ψ and ∀0 ≤ j < i, (ρ(j), v+ε

ρ|j−1) |=S,ε ϕ.

Theorem 19. Model checking closed CCTL
v formulas is PSPACE-complete.

Proof. PSPACE-hardness can be proved by a reduction from QBF. PSPACE-
membership is obtained by considering a non-deterministic algorithm working

in polynomial space to decide whether a CCTLv formula holds for a state q within
a KS S. The main idea is to encode a configuration (q, v, ε) in polynomial size:
this is possible for v since we just have to record the value for the counter z up
to dmax + 1 where dmax is the maximal constant used in a constraint with z. In
order to verify EϕUψ – we assume that ϕ and ψ have already been treated – we
guess, from the current configuration (q, v, ε), the next configuration (q′, v′, ε)
and then we verify that there is a transition in S leading from q to q′ such that
the valuation v is updated with v′ w.r.t. the environment ε. Then it remains to
verify that either ψ or ϕ holds for (q′, v′) (and in the latter case, guess a new
configuration etc.). The same holds for EG. The operator z[ψ].ϕ changes the
environment ε and resets z to zero. And for any configuration one can decide
the truth value of a constraint C. ⊓⊔

6 Conclusion

In several cases (up to B(αC1) constraints) the logics we introduce are not more
expressive than CTL, but can concisely express properties which would be dif-
ficult to write in that logic. In particular, CCTLC0 and CCTLB(C0) can be expo-
nentially more succinct than CTL. As for the remaining fragments, even though
CCTLC2 is strictly more expressive than CTL, model-checking remains polyno-
mial up to CCTLC3 (complexity results are summarized in Figure 2). Further
work on CCTL will include completing the study of succinctness of its fragments
with respect to each other and to other logics, looking for an upper complexity
bound for the model-checking of CCTLαC3 , as well as investigating new kinds of
constraints and extensions to LTL and CTL∗.

P-complete ∆
P
2-complete

undec.

EXPTIME ∋

∆
P
2-hard

CCTLC0

CCTLC2

CCTLC1

CCTLC3

CCTLαC1

CCTLαC3

CCTLB(C0)

CCTLB(C2)

CCTLB(C1)

CCTLB(C3)

CCTLB(αC1))

CCTLB(αC3)

Fig. 2. Summary of model-checking complexity results.

References

1. M. Adler and N. Immerman. An n! lower bound on formula size. ACM Transactions

on Computational Logic, 4(3):296–314, 2003.
2. R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-time. Inf.

Comput., 104(1):2–34, 1993.
3. O. Bernholtz, M. Vardi, and P. Wolper. An automata-theoretic approach to

branching-time model-checking. In Proc. 6th CAV, volume 818 of LNCS, pages
142–155. Springer, 1994.

4. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. In 15th FSTTCS, volume 1026 of LNCS, pages 499–513. Springer, 1995.

5. A. Bouajjani, R. Echahed, and P. Habermehl. On the verification problem of
nonregular properties for nonregular processes. In Proc. 10th LICS, pages 123–
133. IEEE Comp. Soc. Press, 1995.

6. A. Bouajjani, R. Echahed, and P. Habermehl. Verifying infinite state processes
with sequential and parallel composition. In Proc. 22nd POPL, pages 95–106,
1995.

7. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Logics of Programs, volume 131 of LNCS,
pages 52–71. Springer, 1981.

8. E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer

Science, volume B, chapter 16, pages 995–1072. Elsevier Science, 1990.
9. E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal

reasoning. Real-Time Systems, 4(4):331–352, 1992.
10. E. A. Emerson and R. J. Trefler. Generalized quantitative temporal reasoning:

An automata-theoretic approach. In Proc. 7th TAPSOFT, volume 1214 of LNCS,
pages 189–200. Springer, 1997.

11. E. A. Emerson and R. J. Trefler. Parametric quantitative temporal reasoning. In
Proc. 14th LICS, pages 336–343. IEEE Comp. Soc. Press, 1999.

12. F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model checking CTL+ and
FCTL is hard. In Proc. 4th FoSSaCS, volume 2030 of LNCS, pages 318–331.
Springer, 2001.

13. F. Laroussinie, N. Markey, and Ph. Schnoebelen. Efficient timed model checking
for discrete-time systems. Theor. Comput. Sci., 353(1-3):249–271, 2006.

14. F. Laroussinie and Ph. Schnoebelen. Specification in CTL+Past for verification in
CTL. Inf. Comput., 156(1/2):236–263, 2000.

15. F. Laroussinie, Ph. Schnoebelen, and M. Turuani. On the expressivity and complex-
ity of quantitative branching-time temporal logics. Theor. Comput. Sci., 297(1–
3):297–315, 2003.

16. A. Pnueli. The temporal logic of programs. In Proc. 18th FOCS, pages 46–57.
IEEE Comp. Soc. Press, 1977.

17. J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems
in CESAR. In Proc. 5th Int. Symp. on Programming, volume 137 of LNCS, pages
337–351. Springer, 1982.

18. T. Wilke. CTL+ is exponentially more succinct than CTL. In Proc. 19th FSTTCS,
volume 1738 of LNCS, pages 110–121. Springer, 1999.

19. P. Wolper. Temporal logic can be more expressive. Inf. and Control, 56(1/2):72–99,
1983.

20. J. Yang, A. K. Mok, and F. Wang. Symbolic model checking for event-driven
real-time systems. ACM Transactions on Programming Languages and Systems,
19(2):386–412, 1997.

