1,605 research outputs found

    Locating bugs without looking back

    Get PDF
    Bug localisation is a core program comprehension task in software maintenance: given the observation of a bug, e.g. via a bug report, where is it located in the source code? Information retrieval (IR) approaches see the bug report as the query, and the source code files as the documents to be retrieved, ranked by relevance. Such approaches have the advantage of not requiring expensive static or dynamic analysis of the code. However, current state-of-the-art IR approaches rely on project history, in particular previously fixed bugs or previous versions of the source code. We present a novel approach that directly scores each current file against the given report, thus not requiring past code and reports. The scoring method is based on heuristics identified through manual inspection of a small sample of bug reports. We compare our approach to eight others, using their own five metrics on their own six open source projects. Out of 30 performance indicators, we improve 27 and equal 2. Over the projects analysed, on average we find one or more affected files in the top 10 ranked files for 76% of the bug reports. These results show the applicability of our approach to software projects without history

    Exploiting Spatial Code Proximity and Order for Improved Source Code Retrieval for Bug Localization

    Get PDF
    Abstract—Practically all Information Retrieval (IR) based approaches developed to date for automatic bug localization are based on the bag-of-words assumption that ignores any positional and ordering relationships between the terms in a query. In this paper we argue that bug reports are ill-served by this assumption since such reports frequently contain various types of structural information whose terms must obey certain positional and ordering constraints. It therefore stands to reason that the quality of retrieval for bug localization would improve if these constraints could be taken into account when searching for the most relevant files. In this paper, we demonstrate that such is indeed the case. We show how the well-known Markov Random Field (MRF) based retrieval framework can be used for taking into account the term-term proximity and ordering relationships in a query vis-a-vis the same relationships in the files of a source-code library to greatly improve the quality of retrieval of the most relevant source files. We have carried out our experimental evaluations on popular large software projects using over 4 thousand bug reports. The results we present demonstrate unequivocally that the new proposed approach is far superior to the widely used bag-of-words based approaches

    Utilizing traceable software artifacts to improve bug localization

    Get PDF
    Die Entwicklung von Softwaresystemen ist eine komplexe Aufgabe. Qualitätssicherung versucht auftretenden Softwarefehler (bugs) in Systemen zu vermeiden, jedoch können Fehler nie ausgeschlossen werden. Sobald ein Softwarefehler entdeckt wird, wird typischerweise ein Fehlerbericht (bug report) erstellt. Dieser dient als Ausgangspunkt für den Entwickler den Fehler im Quellcode der Software zu finden und zu beheben (bug fixing). Fehlerberichte sowie weitere Softwareartefakte, z.B. Anforderungen und der Quellcode selbst, werden in Software Repositories abgelegt. Diese erlauben die Artefakte mit trace links zur Nachvollziehbarkeit (traceability) zu verknüpfen. Oftmals ist die Erstellung der trace links im Entwicklungsprozess vorgeschrieben. Dazu zählen u.a. die Luftfahrt- und Automobilindustrie, sowie die Entwicklung von medizinischen Geräten. Das Auffinden von Softwarefehlern in großen Systemen mit tausenden Artefakten ist eine anspruchsvolle, zeitintensive und fehleranfällige Aufgabe, welche eine umfangreiche Projektkenntnis erfordert. Deswegen wird seit Jahren aktiv an der Automatisierung dieses Prozesses geforscht. Weiterhin wird die manuelle Erstellung und Pflege von trace links als Belastung empfunden und sollte weitgehend automatisiert werden. In dieser Arbeit wird ein neuartiger Algorithmus zum Auffinden von Softwarefehlern vorgestellt, der aktiv die erstellten trace links ausnutzt. Die Artefakte und deren Beziehungen dienen zur Erstellung eines Nachvollziehbarkeitsgraphen, welcher analysiert wird um fehlerhafte Quellcodedateien anhand eines Fehlerberichtes zu finden. Jedoch muss angenommen werden, dass nicht alle notwendigen trace links zwischen den Softwareartefakten eines Projektes erstellt wurden. Deswegen wird ein vollautomatisierter, projektunabhängiger Ansatz vorgestellt, der diese fehlenden trace links erstellt (augmentation). Die Grundlage zur Entwicklung dieses Algorithmus ist der typische Entwicklungsprozess eines Softwareprojektes. Die entwickelten Ansätze wurden mit mehr als 32.000 Fehlerberichten von 27 Open-Source Projekten evaluiert und die Ergebnisse zeigen, dass die Einbeziehung von traceability signifikant das Auffinden von Fehlern im Quellcode verbessert. Weiterhin kann der entwickelte Augmentation Algorithmus zuverlässig fehlende trace links erstellen.The development of software systems is a very complex task. Quality assurance tries to prevent defects – software bugs – in deployed systems, but it is impossible to avoid bugs all together, especially during development. Once a bug is observed, typically a bug report is written. It guides the responsible developer to locate the bug in the project's source code, and once found to fix it. The bug reports, along with other development artifacts such as requirements and the source code are stored in software repositories. The repositories also allow to create relationships – trace links – among contained artifacts. Establishing this traceability is demanded in many domains, such as safety related ones like the automotive and aviation industry, or in development of medical devices. However, in large software systems with thousands of artifacts, especially source code files, manually locating a bug is time consuming, error-prone, and requires extensive knowledge of the project. Thus, automating the bug localization process is actively researched since many years. Further, manually creating and maintaining trace links is often considered as a burden, and there is the need to automate this task as well. Multiple studies have shown, that traceability is beneficial for many software development tasks. This thesis presents a novel bug localization algorithm utilizing traceability. The project's artifacts and trace links are used to create a traceability graph. This graph is then analyzed to locate defective source code files for a given bug report. Since the existing trace link set of a project is possibly incomplete, another algorithm is prosed to augment missing links. The algorithm is fully automated, project independent, and derived from a project's development workflow. An evaluation on more than 32,000 bug reports from 27 open-source projects shows, that incorporating traceability information into bug localization significantly improves the bug localization performance compared to two state of the art algorithms. Further, the trace link augmentation approach reliably constructs missing links and therefore simplifies the required trace maintenance

    Automatically Repairing Programs Using Both Tests and Bug Reports

    Full text link
    The success of automated program repair (APR) depends significantly on its ability to localize the defects it is repairing. For fault localization (FL), APR tools typically use either spectrum-based (SBFL) techniques that use test executions or information-retrieval-based (IRFL) techniques that use bug reports. These two approaches often complement each other, patching different defects. No existing repair tool uses both SBFL and IRFL. We develop RAFL (Rank-Aggregation-Based Fault Localization), a novel FL approach that combines multiple FL techniques. We also develop Blues, a new IRFL technique that uses bug reports, and an unsupervised approach to localize defects. On a dataset of 818 real-world defects, SBIR (combined SBFL and Blues) consistently localizes more bugs and ranks buggy statements higher than the two underlying techniques. For example, SBIR correctly identifies a buggy statement as the most suspicious for 18.1% of the defects, while SBFL does so for 10.9% and Blues for 3.1%. We extend SimFix, a state-of-the-art APR tool, to use SBIR, SBFL, and Blues. SimFix using SBIR patches 112 out of the 818 defects; 110 when using SBFL, and 55 when using Blues. The 112 patched defects include 55 defects patched exclusively using SBFL, 7 patched exclusively using IRFL, 47 patched using both SBFL and IRFL and 3 new defects. SimFix using Blues significantly outperforms iFixR, the state-of-the-art IRFL-based APR tool. Overall, SimFix using our FL techniques patches ten defects no prior tools could patch. By evaluating on a benchmark of 818 defects, 442 previously unused in APR evaluations, we find that prior evaluations on the overused Defects4J benchmark have led to overly generous findings. Our paper is the first to (1) use combined FL for APR, (2) apply a more rigorous methodology for measuring patch correctness, and (3) evaluate on the new, substantially larger version of Defects4J.Comment: working pape

    Source Code Retrieval from Large Software Libraries for Automatic Bug Localization

    Get PDF
    This dissertation advances the state-of-the-art in information retrieval (IR) based approaches to automatic bug localization in software. In an IR-based approach, one first creates a search engine using a probabilistic or a deterministic model for the files in a software library. Subsequently, a bug report is treated as a query to the search engine for retrieving the files relevant to the bug. With regard to the new work presented, we first demonstrate the importance of taking version histories of the files into account for achieving significant improvements in the precision with which the files related to a bug are located. This is motivated by the realization that the files that have not changed in a long time are likely to have ``stabilized and are therefore less likely to contain bugs. Subsequently, we look at the difficulties created by the fact that developers frequently use abbreviations and concatenations that are not likely to be familiar to someone trying to locate the files related to a bug. We show how an initial query can be automatically reformulated to include the relevant actual terms in the files by an analysis of the files retrieved in response to the original query for terms that are proximal to the original query terms. The last part of this dissertation generalizes our term-proximity based work by using Markov Random Fields (MRF) to model the inter-term dependencies in a query vis-a-vis the files. Our MRF work redresses one of the major defects of the most commonly used modeling approaches in IR, which is the loss of all inter-term relationships in the documents
    • …
    corecore