
A dissertation submitted to the
Fakultät für Informatik und Automatisierung

Technische Universität Ilmenau

Utilizing Traceable Software Artifacts to Improve
Bug Localization

for the degree of
DOKTOR-INGENIEUR (DR.-ING.)

by

Dipl.-Inf.
Michael Rath

born October 4, 1982
in Neuhaus am Rennweg, Germany

accepted on the recommendations of
Prof. Dr.-Ing. Patrick Mäder, TU Ilmenau
Prof. Dr.-Ing. habil. Armin Zimmermann, TU Ilmenau
Univ.-Prof. Dr.-Ing. habil. Matthias Riebisch, Universität Hamburg

DOI : 10.22032/dbt.53717 Day of submission: November 25, 2021
URN : urn:nbn:de:gbv:ilm1-2022000360 Day of scientific debate: October 24, 2022

Abstract

The development of software systems is a very complex task. Quality assurance
tries to prevent defects – software bugs – in deployed systems, but it is impossible
to avoid bugs all together, especially during development. Once a bug is observed,
typically a bug report is written. It guides the responsible developer to locate the
bug in the project’s source code, and once found to fix it. The bug reports, along
with other development artifacts such as requirements and the source code are stored
in software repositories. The repositories allow to create relationships – trace links
– among contained artifacts. Establishing this traceability is demanded in many
domains, such as safety related ones like the automotive and aviation industry, or in
development of medical devices.

However, in large software systems with thousands of artifacts, especially source code
files, manually locating a bug is time consuming, error-prone, and requires extensive
knowledge of the project. Thus, automating the bug localization process is actively
researched since many years. Further, manually creating and maintaining trace links
is often considered as a burden, and there is the need to automate this task.

Multiple studies have shown, that traceability is beneficial for many software de-
velopment tasks. This thesis presents a novel bug localization algorithm utilizing
traceability. The project’s artifacts and trace links are used to create a traceability
graph. Afterwards, this graph is analyzed to locate defective source code files for
a given bug report. Since the existing set of trace links of a project is possibly in-
complete, another algorithm is prosed to augment missing links. This augmentation
algorithm is fully automated, project independent, and derived from a project’s
development workflow.

An evaluation on more than 32,000 bug reports from 27 open-source projects shows,
that incorporating traceability information into bug localization significantly improves
the bug localization performance compared to two state of the art algorithms. Further,
the trace link augmentation approach reliably constructs missing links and therefore
simplifies the required trace maintenance.

Zusammenfassung

Die Entwicklung von Softwaresystemen ist eine komplexe Aufgabe. In der Qual-
itätssicherung wird versucht auftretendene Softwarefehler – bugs – in ausgelieferten
Systemen zu vermeiden. Dennoch können Fehler nie ausgeschlossen werden, besonders
während der Entwicklung. Sobald ein Softwarefehler entdeckt wird, wird typischer-
weise ein Fehlerbericht (bug report) erstellt. Dieser dient als Ausgangspunkt für
den verantwortlichen Entwickler den Fehler im Quellcode des Programms zu finden
und letztendlich diesen zu beheben (bug fixing). Alle Fehlerberichte sowie weitere
Softwareartefakte, z.B. Anforderungen und der Quellcode selbst, werden zusammen
in Software Repositories abgelegt. Diese erlauben außerdem die Artefakte miteinan-
der via trace links zur Nachvollziehbarkeit zu verknüpfen. Die Erstellung dieser
Nachvollziehbarkeit zwischen den Artfakten ist in vielen Anwendungsdomänen sogar
vorgeschrieben. Dazu zählen u.a. die Luftfahrt- und Automobilinstustrie, sowie die
Entwicklung von medizinischen Geräten.

Jedoch ist das Auffinden von Softwarefehlern in großen Systemen mit tausenden
Artefakten, insbesondere Quellcodedateien, eine anspruchsvolle, zeitintensive und
fehleranfällige Aufgabe, welche eine umfangreiche Projektkenntnis erfordert. Aus
diesem Grund wird seit mehreren Jahren aktiv an der Automatisierung dieses
Prozesses geforscht. Weiterhin wird die manuelle Erstellung und Pflege von trace
links als Belastung empfunden und sollte somit ebenfalls weitgehend automatisiert
werden.

Eine Vielzahl von Studien hat gezeigt, dass eine etablierte Nachvollziehbarkeit vorteil-
haft für verschiedenste Softwareentwicklungsaufgaben ist. In dieser Arbeit wird ein
neuartiger Algorithmus zum Auffinden von Softwarefehlern vorgestellt, der aktiv die
erstellten Verknüpfung zwischen Softwareartefakten ausnutzt. Hierzu werden die Arte-
fakte und deren Beziehungen herangezogen um einen Nachvollziehbarkeitsgraphen zu
erstellen. Anschließend wird der Graph analysiert um fehlerhafte Quellcodedateien
anhand eines gegebenen Fehlerberichtes zu finden. Jedoch muss angenommen wer-
den, dass nicht alle notwendigen Verknüpfungen zwischen den Softwareartefakten
eines Projektes vorhanden sind. Aus diesem Grund wird ein vollautomatisierter,
projektunabhängiger Ansatz vorgestellt, der diese fehlenden trace links erstellt. Die
Grundlage zur Entwicklung dieses Algorithmus ist der typische Arbeitsablauf eines
Projektes.

Der vorgeschlagene Ansatz wurde mit mehr als 32.000 Fehlerberichten von 27 Open-
Source Projekten evaluiert. Die erzielten Ergebnisse zeigen, dass die Einbeziehung
von trace links zwischen Softwareartefakten signifikant das Auffinden von Fehlern im
Quellcode im Vergleich zu zwei Algorithmen (Stand der Technik) verbessert. Weiter-
hin konnte gezeigt werden, dass notwendige jedoch fehlenden trace links zwischen
Softwareartefakten zuverlässig erstellt werden können und somit der Aufwand zum
Pflegen der Nachvollziehbarkeit vereinfacht wird.

iv

Contents

Contents

Abstract i

Zusammenfassung iii

Contents v

List of Publications 1
Publications Included in this Thesis . 1
Related Publications . 2

Contribution Statement 5

1. Introduction 7

2. Background 11
2.1. Defining Essential Terms . 11
2.2. Developing Software in an Agile Way 12
2.3. Software Traceability . 13
2.4. Common Tools Utilized in the Agile Development Process 14

2.4.1. Managing Requirements and Bug Reports in Issue Tracking
Systems . 15

2.4.2. Managing Source Code Files in Version Control Systems . . . 20
2.4.3. Creating Trace Links between Artifacts in Jira and Git 22

2.5. Localizing Bugs using Information Retrieval Techniques 23
2.5.1. Indexing the Source Code File Corpus 26
2.5.2. Constructing a Query from a Bug Report 26
2.5.3. Retrieve and Rank Source Code Files 27

3. State of the Art 29
3.1. Bug Localization . 29

3.1.1. Datasets and Collections of Projects used to Evaluate Approaches 32
3.1.2. Comparison of IR-based Bug Localization Algorithms 33
3.1.3. Internal Structure of Bug Localization Algorithms 37

3.2. Localizing Features and Recovering Trace Links 38
3.3. Criticizing the State of the Art . 40

v

Contents

4. A Holistic Approach to Improve IR-based Bug Localization 41
4.1. Outlining the Idea . 41

4.1.1. Creating a Dataset to Evaluate Bug Localization Algorithms . 43
4.1.2. Designing a Bug Localization Algorithm utilizing Traceability 43
4.1.3. Augmenting the Issue-to-Commit Trace Link Set 43

4.2. Constructing an Artifact Model . 44
4.2.1. Describing Contained Artifacts 44
4.2.2. Describing Artifact Relations 44

4.3. Summary . 45

5. Mining Software Repositories to Create Holistic Datasets 47
5.1. Selecting Projects for Mining . 48
5.2. Collecting Project Artifacts from Multiple Repositories 49

5.2.1. Analyzing a Project’s Issue Tracking System 49
5.2.2. Analyzing a Project’s Version Control System 51

5.3. Organizing Project Artifacts in Unified Storage 52
5.4. Key Figures of the Created Dataset 53
5.5. Defining the Mined Dataset . 56
5.6. Summary . 56

6. The ABLoTS Bug Localization Approach 57
6.1. Motivating Example to Leverage ITS Project Data for Bug Localization 58
6.2. Multi-Component IR-Based Bug Localization Algorithms 59

6.2.1. Dissecting Existing Algorithms 59
6.2.2. Analyzing Algorithms used in Similar Bug Report Components 60

6.3. Designing a Similar Issue Component - TraceScore 61
6.3.1. Selecting Project Artifacts . 62
6.3.2. Textual Processing . 63
6.3.3. Constructing a Traceability Graph 63
6.3.4. Analyzing the Traceability Graph 65

6.4. Refining the Source Code Structure Component - LuceneScore 67
6.5. Utilizing TraceScore in a Bug Localization Algorithm - ABLoTS . . . 68

6.5.1. Internal Structure of ABLoTS 68
6.5.2. The Composer Component of ABLoTS 68

6.6. Summary . 72

7. Automatically Augmenting Incomplete Issue-to-Commit Trace Links 73
7.1. Analyzing Existing Issue-to-Commit Trace Links 74
7.2. Motivating Example to Automatically Tag Commit Messages 77
7.3. Developing a Commit Message Tagging Model 77

7.3.1. Analyzing the Development Process 79
7.3.2. Analyzing the Projects’ Stakeholder Activities 82

vi

Contents

7.4. Creating a Trace Link Classifier . 83
7.4.1. Deriving Process Related Features 83
7.4.2. Deriving Textual Similarity Features 84
7.4.3. Creating Feature Vectors . 85

7.5. Summary . 86

8. Evaluation 89
8.1. Research Questions . 89
8.2. Introducing the Evaluation Datasets 90

8.2.1. Creating a Gold Standard Dataset GS 90
8.2.2. Creating Datasets with Reduced Trace Link Sets RED𝑖 96
8.2.3. Augmenting Trace Link Sets to Create Datasets AUG𝑖 97

8.3. Evaluation Metrics . 98
8.3.1. Top@k . 98
8.3.2. Mean Average Precision (MAP) 99
8.3.3. Mean Reciprocal Rank . 99
8.3.4. Cliff’s delta . 99
8.3.5. Precision, Recall, and F-score 100

8.4. Experiment I: Effectiveness of Similar Issue Component TraceScore
(RQ-1) . 102

8.5. Experiment II: Impact of TraceScore Parameterization (RQ-2) 103
8.6. Experiment III: Effectiveness of IR-Based Bug Localization Algorithm

using TraceScore . 105
8.6.1. Training and Running ABLoTS on a Project 105
8.6.2. Results . 110

8.7. Experiment IV: Effectiveness of Trace Link Set Augmentation (RQ-4) 111
8.7.1. Training and Running the Trace Link Set Augmentation Clas-

sifier . 111
8.7.2. Results . 114

8.8. Experiment V: Effectiveness of IR-Based Bug Localization Algorithms
on Projects with Augmented Trace Link Sets (RQ-5) 115

9. Discussion 119
9.1. RQ-1 - Effectiveness of Similar Issue Component TraceScore 119
9.2. RQ-2 - Impact of TraceScore Parameterization 120
9.3. RQ-3 - Effectiveness of an IR-based Bug Localization Algorithm using

TraceScore . 121
9.4. RQ-4 - Effectiveness of Trace Link Set Augmentation 125

9.4.1. Evaluating Additional Trace Link Removal Settings 126
9.5. RQ-5 - Effectiveness of IR-based Bug Localization Algorithms on

Projects with Augmented Trace Link Sets 129

vii

Contents

9.6. RQ-6 - Limitations of Studied Approaches 134
9.6.1. ABLoTS Requires a Project History 134
9.6.2. Augmenting Issue-to-Commit Trace Link Set in Large Projects134
9.6.3. Issue-to-Commit Trace Link Set Augmentation Requires Ex-

isting Links . 135
9.7. Threats to Validity . 135

9.7.1. Project Selection and Dataset Creation 136
9.7.2. Experiments I-V . 137
9.7.3. Specifically for Experiments I and II 138
9.7.4. Specifically for Experiment III 138
9.7.5. Specifically for Experiment IV 138

10.Conclusion and Future Work 139
10.1. Summary . 139
10.2. Future Work . 141

A. Appendix I
A.1. Evaluating Different Temporal Settings for TraceScore I
A.2. Evaluation Details for Similar Issue Components IV
A.3. Evaluation Details for Bug Localization Algorithms VI

List of Tables XI

List of Figures XIII

List of Abbreviations XV

References XVI

viii

Contents

List of Publications

This introduction chapter of the thesis lists the included and related publications.

Publications Included in this Thesis

I. The IlmSeven Dataset (Rath, Rempel, and Mäder 2017)
Michael Rath, Patrick Rempel, and Patrick Mäder
Requirements Engineering (RE), pages 516–519, 2017

II. Analyzing requirements and traceability information to improve bug
localization (Rath, Lo, and Mäder 2018)
Michael Rath, David Lo, and Patrick Mäder
Mining Software Repositories (MSR), pages 442–453, 2018

III. Traceability in the wild: automatically augmenting incomplete trace
links (Rath et al. 2018)
Michael Rath, Jacob Rendall, Jin L. C. Guo, Jane Cleland-Huang, and Patrick
Mäder
International Conference on Software Engineering (ICSE), pages 834-845, 2018

IV. The SEOSS 33 dataset — Requirements, bug reports, code history,
and trace links for entire projects (Rath and Mäder 2019b)
Michael Rath and Patrick Mäder
Data in brief, Vol. 25, p. 104005, 2019.

V. SpojitR: Intelligently link development artifacts (Rath, Tomova, and
Mäder 2020)
Michael Rath, Mihaela T. Tomova, and Patrick Mäder
International Conference on Software Analysis, Evolution and Reengineering
(SANER), 2020

1

Contents

Related Publications

VI. Are Graph Query Languages Applicable for Requirements Trace-
ability Analysis? (Rath et al. 2017)
Michael Rath, David Akehurst, Christoph Borowski, and Patrick Mäder
Working Conference on Requirements Engineering: Foundations for Software
Quality (REFSQ), vol. 1796, 2017

VII. State of the art of traceability in open-source projects (Rath, Goman,
and Mäder 2017)
Michael Rath, Maxim Goman, and Patrick Mäder
Workshop des Arbeitskreises Traceability/Evolution der Technischen Univer-
sität Ilmenau: Aktuelle Methoden zur Gewinnung und Aktualisierung von
Traceability-Modellen, pages 8-11, 2017

VIII. Preprocessing texts in issue tracking systems to improve IR tech-
niques for trace creation (Tomova, Rath, and Mäder 2017)
Mihaela T. Tomova, Michael Rath, and Patrick Mäder
Workshop des Arbeitskreises Traceability/Evolution der Technischen Univer-
sität Ilmenau: Aktuelle Methoden zur Gewinnung und Aktualisierung von
Traceability-Modellen, pages 17-20, 2017

IX. Lessons learned from analyzing requirements traceability using a
graph database (Goman, Rath, and Mäder 2017)
Maxim Goman, Michael Rath, and Patrick Mäder
Workshop des Arbeitskreises Traceability/Evolution der Technischen Univer-
sität Ilmenau: Aktuelle Methoden zur Gewinnung und Aktualisierung von
Traceability-Modellen, pages 27-30, 2017

X. Use of trace link types in issue tracking systems (Tomova, Rath, and
Mäder 2018)
Mihaela T. Tomova, Michael Rath, and Patrick Mäder
International Conference on Software Engineering (ICSE) Companion volume,
pages 181-182, 2018

XI. Influence of Structured Information in Bug Report Descriptions on
IR-Based Bug Localization (Rath and Mäder 2018)
Michael Rath and Patrick Mäder
Software Engineering and Advanced Applications (SEAA), pages 26-32, 2018

XII. Selecting open source projects for traceability case studies (Rath,
Tomova, and Mäder 2019)
Michael Rath, Mihaela T. Tomova, and Patrick Mäder
Working Conference on Requirements Engineering: Foundations for Software
Quality (REFSQ), pages 229-242, 2019

2

Contents

XIII. Structured information in bug report descriptions - influence on
IR-based bug localization and developers (Rath and Mäder 2019a)
Michael Rath and Patrick Mäder
Software Quality Journal, vol. 27, no. 3, pages 1315–1337, 2019

XIV. Request for comments: Conversation patterns in issue tracking
systems of open-source projects (Rath and Mäder 2020)
Michael Rath and Patrick Mäder
Symposium On Applied Computing (SAC), 2020

XV. Did you remember to test your tokens? (Gonzalez, Rath, and Mirakhorli
2020)
Danielle Gonzalez, Michael Rath, and Mehdi Mirakhorli
Mining Software Repositories (MSR), pages 232-242, 2020

XVI. Cutting through the jungle: Disambiguating model-based traceability
terminology (Holtmann et al. 2020)
Jörg Holtmann, Jan-Philipp Steghöfer, Michael Rath, and David Schmelter
Requirements Engineering (RE), pages 8-19, 2020

3

Contents

Contribution Statement

Collaborating with other researchers is vital and a central aspect in academics.
Therefore all papers in this thesis have been co-authored with other researchers. The
authors’ individual contributions to papers I-V are as follows.

Paper I
For the first paper, Patrick Mäder proposed the idea of creating a new dataset
suitable for traceability research. Initial code fragments to automatically mine
projects were provided by Patrick Rempel, which were previously used in his own
research. Eventually, Michael Rath implemented the whole mining approach, designed
the database layout, and performed the data collection. He also performed most of
the writing. All authors then reviewed the paper prior to publication.

Paper II
Michael Rath was in charge for most parts of the paper. He came up with the
mathematical background of the presented algorithm, the approach, and implemented
the prototypical solution. Patrick Mäder and Michael Rath co-designed the study.
The applied statistical methods were suggested by David Lo. He also provided a
running version of the AmaLgam algorithm, which was used to compare localization
performance as shown in the paper. Michael Rath wrote the majority of the paper
and all authors reviewed the text.

Paper III
The idea for the paper were equally suggested by Jane Cleland-Huang and Patrick
Mäder. As first author, Michael Rath was responsible for most of the work. He
collected the data, implemented the majority of the approach, and performed all
experiments. Jacob Rendall assisted Michael Rath during the implementation. The
textual analysis in the paper was implemented and executed by Jin Guo. The user
study was designed by Jane Cleland-Huang and conducted by her, Jacob Rendall,
Jin Guo, and Patrick Mäder. Michael Rath wrote most parts of the paper, with
contributions by Jane Cleland-Huang and Patrick Mäder. All authors reviewed the
text.

Paper IV
Patrick Mäder proposed to create and publish this benchmark dataset. Michael Rath
was the first author of the paper, created the required tools to collect the artifacts,

5

Contents

and performed the presented experiments. He also wrote most parts of the text, with
contributions by Patrick Mäder who also reviewed the paper.

Paper V
Michael Rath developed the approach and the tool described in the paper. Mihaela
Tomova assisted Michael Rath during the implementation. The majority of the
text was written by Michael Rath with contributions of Mihaela Tomova who also
created all illustrations. Patrick Mäder gave feedback and reviewed the paper prior
publication.

6

1. Introduction

Developing software is a complex task, performed by humans, and defects are
inevitable (W. E. Wong et al. 2016). It is costly, time-consuming, and requires
extensive project knowledge to locate and remove (fix) these bugs. Studies estimated,
that software testing and debugging consumes more than one third of the total
cost of software development (Si, Hu, and Zhou 2010; Xie et al. 2014). A more
recent research report states, that over 600 million hours are spent on debugging
code in North America each year, which equates to $61 billion of salary costs alone
(Cambridge Judge Business School MBA, Undo IO 2021). Further, the developers are
often overwhelmed by the sheer amount of reported bugs. A developer at Mozilla is
cited “Everyday, almost 300 bugs appear that need triaging. This is far too much for
Mozilla programmers to handle.” (Anvik, Hiew, and Gail C Murphy 2005). Similar
numbers are found in other projects such as Eclipse, where the software team has to
handle 115 bugs every day (Zhao et al. 2015).

The most time consuming task in bug fixing is to first locate the defective parts in the
project’s code base (Wang and Lo 2014). This is comparable to finding the needle in
a haystack. Large projects consist of thousands of source code files, but only few of
them are relevant for fixing an individual bug. A study of three projects and 374 bugs
showed, that 88% of the bugs involve at most two source code files (Lucia et al. 2012).
Additionally, the older a piece of software is, fewer developers know the whole code
base. Manually locating bugs heavily relies on the developer’s experience, judgement,
and intuition to prioritize code to be correct or faulty (W. E. Wong et al. 2016).
Especially young developers or those new to a project might struggle with these
tasks. Thus it is highly desireable to automate the bug localization process to reduce
the cost and the time spent. Two major approaches for bug localization emerged.
The first is dynamically locating the bug via program execution by leveraging data
monitoring techniques and breakpoints (Abreu et al. 2009). However, this dynamic
approach is often time consuming and expensive itself (Saha et al. 2013). The second
is locating the bug via different forms of static analysis using bug reports and the
project’s source code (Hovemeyer and Pugh 2004). This idea will be studied in detail
in this thesis.

Companies and open-source projects use bug reports to collect bugs reported by
developers, testers, and end-users to guarantee the quality of software. A bug report
is a structured artifact containing information about the misbehavior. Standard

7

1. Introduction

components of a bug report are environment information (product, version, operating
system), management fields (reporter, assignee, priority), and arguable most import
a free-text description (Herzig and Zeller 2014). This description characterizes the
bug and hopefully provides steps to reproduce it. The description plays an important
role for a specific class of static bug localization algorithms. These are based on
information retrieval (IR) techniques and gained significant attention in the last
decade. They have relatively low computational costs as it is not necessary to execute
the software. Further, they have low dependencies only requiring the bug report
and the project’s source code (Manning, Raghavan, and Schütze 2008; Binkley and
Lawrie 2010; W Bruce Croft, Metzler, and Strohman 2010). IR-based bug localization
algorithms treat the source code files as text documents. The bug report’s description
is used as a query to search defective source code files. The result is a ranked list,
based on predicted relevance, of candidate source code files that guide the responsible
developer (assignee) of the bug report to fix the bug.

Software and systems traceability is widely accepted as an essential element for
supporting many software development tasks such as change impact analysis, coverage
analysis, and bug fixing (Cleland-Huang et al. 2014; Gotel et al. 2012). It is non-
negotiable in development of safety-critical systems and thus part of standards
ISO 26262 (International Organization for Standardization 2011) in the automotive
industry and IEC 61511 (International Electronical Commission 2003) in the industry
sector. Traceability documents relationships (trace links) between software artifacts.
For example requirement-to-source code trace links may indicate where a specific
requirement is implemented in the source code and vice versa. There is empirical
evidence, that these trace links can accelerate bug fixes and feature extensions by
20 − 30% and make 50% more correct (Mäder and Egyed 2011; Briand et al. 2014).
But the effort needed to manually establish and maintain trace links is costly (Heindl
and Biffl 2005), and has often been perceived as prohibitively high, especially in
non-regulated domains. Thus, automatically creating requirements to source code
trace links is studied by many researchers. IR-based algorithms are often used to
solve the challenging task (Cleland-Huang et al. 2007; De Lucia, Fasano, and Oliveto
2008; Mahmoud and Niu 2010; Keenan et al. 2012; Rempel, Mäder, and Kuschke
2013).

Large amounts of development artifacts are created during the lifecycle of a project.
It is not unusual that tens of thousand of them are involved (Feldt 2014; Regnell,
Berntsson-Svensson, and Wnuk 2008) ans sometimes located in multiple software
repositories. Issue tracking systems constitute prominent examples of software
repositories utilized in commercial and open-source projects (Skerrett 2011). They
are used to manage software requirements and bug reports, summarized under the
umbrella term issue but also provide a communication hub for developers to ask
for advice, and share opinions useful for maintenance activities or making decisions
(Murgia et al. 2014). The continuous inflow of issues especially in projects applying

8

agile methodologies reflects the whole project’s history. Another import software
repository are version control systems storing the project’s source code files and
their evolution. Source code modifications are commonly subdivided into small,
manageable increments (Kamei et al. 2013) and the version control system stores the
transition from one version of a file to another (Hinsen, Läufer, and Thiruvathukal
2009).

The goal of this thesis is to fuse all introduced concepts, i.e., traceability information,
and history of development artifacts available in software repositories to improve
IR-based bug localization. Therefore, a process is presented that allows convenient
access to a project’s development artifacts. After analyzing the artifacts and trace
links among them, two novel components for a bug localization are created that
exploit this information. These components constitute the backbone for a new
IR-based bug localization algorithm. Next, the ability to increase the existing issue
to source code trace link set of a project is studied. This results in an automatic
trace link augmentation algorithm derived from the project’s development workflow.
The developed algorithms are evaluated in five large empirical experiments. These
are conducted on a dataset containing tens of thousands of artifacts.

The remainder of the thesis is structured as follows.

Section 2: Background. This section sets the context for this thesis and introduces
fundamental concepts and ideas. It also provides references to relevant literature for
further details.

Section 3: State of the Art. This section discusses the state of the art relevant
for this thesis. It recaps bug localization algorithms, their internal structure, as well
as the research area of trace link retrieval. The section ends with a critique, which
identifies a number of shortcomings and thus motivates the goals of the thesis.

Section 4: A Holistic Approach to Improve IR-based Bug Localization.
This section outlines the goals of this thesis and motivates novel ideas concerning
IR-based bug localization. Also an artifact model and corresponding artifact relations
is presented, which is used throughout this thesis.

Section 5: Mining Software Repositories to Create Holistic Datasets. This
section introduces software repository mining. Project’s artifacts, i.e. requirements
and source code modifications, are usually scattered in multiple repositories. This
section describes an approach to identify and collect (mine) a projects’ repositories
artifacts. The artifacts are stored within a database allowing easy access to analyze
the retrieved data. The result is the SEOSS dataset containing 600,000 artifacts and
300,000 trace links among them.

Section 6: The ABLoTS Bug Localization Approach. At the beginning, this
section recaps the internal structure and components of IR-based bug localization

9

1. Introduction

algorithms. Than, the included similar bug report components are reviewed in
detail. Afterwards, current shortcomings (e.g. limitation to only bug reports) are
discussed and a novel approach called TraceScore is presented as core of a similar
issue component. Further, the current approach for a structured source component is
analyzed and enhanced leading to the LuceneScore approach. Finally, the previously
obtained ideas are combined to create the novel bug localization algorithm ABLoTS.

Section 7: Automatically Augmenting Incomplete Issue-to-Commit Trace
Links. This section addresses missing trace link in projects. Therefore a novel
algorithm, TLSA, is presented to enhance and augment a project’s trace link set. Its
design is based on common developer workflows identified in software projects.

Section 8: Evaluation. This section evaluates all presented concepts and algo-
rithms. It starts by stating six research questions. Next, three datasets are defined
used throughout the evaluation. Several datasets are required, because the presented
approaches require different information. After presenting the evaluation metrics,
five experiments to answer the research questions are described in detail. Each
experiment addresses a specific aspect within the holistic approach.

Section 9: Discussion. This section critically discusses the results of the five
conducted experiments. Further, the current limitations of the applied approaches
are discussed. The section ends with a detailed discussion of threats to validity for
the conducted experiments. Each experiment poses different threats to validity and
thus is handled separately.

Section 10: Conclusion and Future Work. This section concludes the thesis.
It summarizes important findings and conclusions. Based on the findings, possible
directions for future work are outlined.

Section A: Appendix. The appendix provides supporting material related to the
evaluation and discussion.

10

2. Background

This chapter provides a brief overview of techniques, software engineering concepts,
and ideas that are used throughout the thesis. It also provides references to relevant
publications for further reading.

2.1. Defining Essential Terms

A defect is an error, which impairs the functions of a system. In context of software
development defects are commonly termed as bugs. Bugs are introduced to the
projects’ source code because of mistakes made by developers. They stem from
wrong implementations or software design flaws. Such a source code modification is
called a bug inducing change (Wen, Wu, and Cheung 2016). If a defect is executed,
it can lead to failures, i.e. the software no longer complies to its requirements. Thus,
the program may produce incorrect or unexpected results, or behaves in unintended
ways (Committee et al. 1990; Zeller 2009). Once a defect is discovered, a bug report1

is filed. This software document, a special kind of software development artifact,
describes the bug most commonly with natural language, created by developers,
testers, or end-users (Zhang et al. 2015). For example, a bug report taken from
project Hadoop2 reads

Fix memory leak in FileSystem.Cache.Key class Calling
FileSystem#get(final URI uri, final Configuration conf,
final String user) multiple times can result in memory leak because
of the hash method implementation of UserGroupInformation. FileSys-
tem always instantiates a new FileSystem object despite using the same
user name/same URI. […]

and the user reports a bug related to memory management. After reporting, the bug
report is triaged. Thus the developers discuss whether a bug is a real bug, prioritize
the bug report, and decide which developer becomes the assignee and should work
on the bug report. Bug localization follows and the developer triages source code

1. Bug reports have many names, including “defect reports”, “fault reports”, and “failure reports”
(Zhang et al. 2015). This thesis consistently uses the term “bug report”.

2. https://issues.apache.org/jira/browse/HADOOP-13971

11

https://issues.apache.org/jira/browse/HADOOP-13971

2. Background

modifications to identify the bug-inducing one(s). Once identified, the process of bug
fixing is performed, where the developer takes actions to remove the bug by creating
fix-inducing source code modifications (Sliwerski, Zimmermann, and Zeller 2005).
This removal is termed debugging, i.e., finding the root cause of the bug and remove
it such that the failure no longer occurs (Zeller 2009). When a bug has been fixed,
the corresponding bug report is marked as resolved.

2.2. Developing Software in an Agile Way

In the past decade, a number of notable strategic changes in industrial software
engineering were made, including the adoption of agile methodologies (Highsmith
and Cockburn 2001). Traditional software tried to anticipate a complete set of
software requirements early in the development lifecycle and avoid change later to
reduce cost. However, the increasing demand for acceleration of time to market,
and customer satisfaction no longer suits the former approaches, but is addressed
by agile methodologies. This thesis focuses on software development utilizing agile
principles. A study shows that organizations with high agility meet business goals
19% more likely than those with low agility (Project Management Institute 2015).
Moreover, the former finish projects on time 65% of the time, versus 40% for
the latter. Agile methods provide a new set of 12 principles formulated in the
agile manifesto (Agile Manifesto Team 2001). This includes “welcome changing
requirements, even late in development”, “deliver working software frequently”, “build
projects around motivated individuals”, and “working software is the primary measure
of progress”. Thus, agile development no longer follows a plan, which usually outdates
quickly. Instead short iterative cycles, the sprints, with feature planning, dynamic
prioritization, implementation, and testing are established (Highsmith and Cockburn
2001). Instead of planing tasks, the focus is on features, i.e. the things customers
understand and care about. Open-source software (OSS) development and agile
share a lot of underlying principles such as skilled individuals, self-organizing teams,
short feedback loops, embraced change, and frequent releases of working code (Koch
2004).

Current software systems are continuously changing with regard to features and source
code changes and thus require effective ways to track and relate all modifications.
This is solved by introducing navigable trace links. Many studies have shown that
established traceability is beneficial for developing well engineered software (Gotel
and Finkelstein 1994; Gotel et al. 2012; Cleland-Huang et al. 2014; Mäder and
Cleland-Huang 2015). The next Section gives a brief introduction of the underlying
concepts (see Sec. 2.3).

12

2.3. Software Traceability

Each sprint provides a small increment of the software. Thus large features are split
into smaller ones, and developers realize them usually in a sequence of reasonable
source code modifications (Kamei et al. 2013), in order to avoid breaking the software
(i.e. inability to create a deliverable or introducing a major bug). Thus sprints produce
a stream of artifacts, such as new features, source code modifications, tests, and bug
reports. A new set of tooling is required to manage the artifacts and implement an
agile software development process. This set needs to support feature management,
agile boards for feature planning, custom workflows, and handling continuous source
code changes. Further, the tools need to scale, should be decentralized, and support
effective ways for collaboration and communication among developers. This is
especially import in OSS development, because of the hundreds or thousands of
volunteer developers working from all around the globe and rarely meet in person
(Mockus, Fielding, and Herbsleb 2000). Notable tools in this regard are discussed in
Section 2.4.

Embracing change first seems to contradict with retaining quality. Customers demand
and expect high quality, innovative software delivered as soon as possible (Highsmith
and Cockburn 2001). The agile response includes constantly testing the software,
for earlier and less expensive bug detection. Once a bug has been detected, the
bug localization process starts in order to identify the defective source portion.
Automating this task is highly beneficial for agile approaches, because it accelerates
testing and reduces cost.

2.3. Software Traceability

Artifacts are continuously created and modified when agile methods are used for
software development. Therefore it is vital to track and relate all these activities.
Traceability represents the “potential to relate data that is stored within artifacts of
some kind, along with the ability to examine this relationship” (Gotel et al. 2012).
Navigable links need to be created to connect the data held in the artifacts in order
to achieve traceability. Once these links are established, traceability provides support
for many different software engineering activities including change impact analysis,
test regression selection, safety analysis, and coverage analysis (Gotel and Finkelstein
1994; Cleland-Huang et al. 2014).

This thesis follows the definition of software traceability as proposed by the Center
of Excellence for Software & Systems Traceability (CoEST) (Gotel and Finkelstein
1994; Center of Excellence for Software & Systems Traceability 2020):

Software traceability is the ability to describe and follow the life of
any uniquely identifiable software engineering artifact to any other in

13

2. Background

Figure 2.1.: Definition of trace link directionality. Typically only the forward direc-
tion is explicitly defined, but technically a reverse (backward) link is
also created.

both a forwards and backwards direction.

Using this definition, two main building blocks of traceability can be identified:
artifact and trace links. Gotel et al. (Gotel et al. 2012) define these terms as
follows.

A (trace) artifact is a traceable unit of data and is qualified as either
a source artifact or as a target artifact when it participates in a trace.

A trace link is a specified association between a pair of artifacts, one
comprising the source artifact and one comprising the target artifact.

A trace (noun) is a specified triplet of elements comprising: a source
artifact, a target artifact and a trace link associating the two artifacts.

The terms source and target artifact imply directionality for trace links. However, in
practice every trace link can be traversed in both directions (Gotel et al. 2012) as
depicted in Figure 2.1. All traces in a project are termed as trace set, and can be
represented as a traceability graph (Center of Excellence for Software & Systems
Traceability 2020).

A traceability graph is a representation of the trace set, i.e. all traces of
a project, with trace artifacts depicted as nodes and trace links depicted
as edges.

A path in the traceability graph from a source artifact to a target artifact following
the edges (i.e. using trace links) is called trace path.

2.4. Common Tools Utilized in the Agile Development
Process

This section introduces common tools and software repositories used in agile software
development. Nowadays, two software repositories are very common: issue tracking
systems (ITS) and version control systems (VCS). Depending on the software project’s

14

2.4. Common Tools Utilized in the Agile Development Process

size and internal structure it may utilize multiple ITS and VCS. In this thesis, project
data denotes the artifacts, their evolution (history), and relationships among them
stored in ITS and VCS.

2.4.1. Managing Requirements and Bug Reports in Issue
Tracking Systems

The predecessor of issue tracking systems were bug tracking systems, which solely
focused on bug reports and their management. In open-source projects these systems
are an important part of how teams (such as eclipse and mozilla) interact with their
user communities (Breu et al. 2010). A bug tracking system allows the users to
enter bug reports and keep track of their status’. Over the years, these systems
were generalized to issue tracking systems, which also allow to manage additional
artifacts including requirements, software features, and open tasks (Skerrett 2011).
Developers can choose from different ITS implementations, both commercial and
open-source ones (Singh and Chaturvedi 2011; Project Management Zone 2018).
Popular implementations are BugZilla, Mantis, Trac, and Atlassian Jira.

Out of them, the commercial ITS Atlassian Jira (Atlassian Corporation 2020b) is
of special interest for this thesis. It is widely used3, and is also very popular in the
open-source community, because of its “friendly” licensing scheme4. Jira consists of
multiple modules. The Jira Software module supports agile project management and
issue tracking. Jira is highly customizable and can be adapted to project specific
needs, e.g. defining artifact types, their properties, and workflows. Customizations
are usually applied, and therefore it is difficult to make universally valid statements
how Jira is used for a given project. However, the basic installation comes with a set
of defaults, which are present in most project.

The fundamental artifact in Jira is called issue. Figure 2.2 shows the issues view,
i.e. the list of most recent issues, of project Derby5. Derby is a relational database
management system developed by the Apache Software Foundation. The issue
overview allows to browse, filter, and search the project’s issues. The most important
properties of an issue are shown as columns, and selecting an issue reveals all
details.

3. Atlassian claims about 10 million daily users. https://www.atlassian.com/customers
4. https://www.atlassian.com/software/views/open-source-license-request
5. With respect to developers’ privacy, all personal information like names and pictures is

obfuscated (grey bars) throughout this thesis.

15

https://www.atlassian.com/customers
https://www.atlassian.com/software/views/open-source-license-request

2. Background

Figure 2.2.: Screenshot of issue overview of project Derby in Atlassian Jira. It shows
a list of the most important properties such as summary, status, and
resolution of the most recent issues.

Properties of Issues in Atlassian Jira

Each issue in Jira is uniquely identifiable by its issue id derived from the project
name and an increasing positive integer number. For example DERBY-64536 is a valid
issue id in project Derby and the typed properties of this issue are shown in Figure
2.3.

This section describes the properties that are relevant in this thesis. Most properties
and their values are customizable, and depending on the project new properties
can be created. The default property list includes the texts summary, a brief
description of the issue, as well as a longer description. Further, there are properties
to capture stakeholder information about who reported the issue (Reporter) and who
is responsible to solve it (Assignee), as well as information recording timestamps
about issue creation and modification (Created, Updated, Resolved). Important issue
properties, their values, and the suggested interpretation are shown in Table 2.1
(Atlassian Corporation 2021a). The issue’s type is used to distinguish types of work
in unique ways, and help to identify, categorize, and report on the stakeholders work.
The suggested issue types include Bug, New Feature, and Task, but this list and the
intended usage has changed between different Jira releases (Atlassian Corporation
2021b). Older Jira versions also contained the type “Improvement”, which is an
improvement or enhancement to an existing feature or task. Figure 2.4 shows the
distribution of used issue types found in 33 projects, which will become of interest in
Section 5. The x-axis depicts the project, and the y-axis all found issue types. The
color of the dots is the percentage of issues with this type in the respective project.
The issue types “Task”, “Sub-task”, and “Bug” are present in every project, whereas

6. https://issues.apache.org/jira/browse/DERBY-6453

16

https://issues.apache.org/jira/browse/DERBY-6453

2.4. Common Tools Utilized in the Agile Development Process

Figure 2.3.: Screenshot of improvement DERBY-6453 of project Derby.

“Bug” has the most occurrences. The second most prominent issue types are “New
Feature”, “Improvement”, “Feature Request”, and “Enhancement”. Interestingly,
there seems to be a usage pattern such that only two of them are used in a project.
Because of customization, some obscure issue types also exist, such as “Component
Upgrade” in project Wildfly. In Figure 2.3, the issue has type “Improvement” encoded
as green icon in front of the issue identifier DERBY-6453. In this thesis, the following
mapping is used.

The term bug report maps to the Jira issue type “Bug”, because this
allows no misinterpretation and the shown example projects agree in that
respect.

All issue types different from “Bug” are summarized as requirements. As
shown, most projects contain in addition only “New Feature”, “Feature
Request”, “Improvements”, “Enhancements”, and “Tasks”. They all
represent a natural language description of necessary changes to be made
in the source code. This matches the IEEE definition for a requirement:
“A condition or capability needed by a user to solve a problem or achieve
an objective.” (Committee et al. 1990).

For example, the summary of improvement DERBY-6453 clearly refers to source code
elements, such as class name InsertResultSet, or identifier skipCheckConstraints.
The chosen mapping will be formalized in Section 4.2.

In Jira, the project’s workflow is used to track the lifecycle of an issue. The workflow
is a record of statuses and transitions of an issue during its lifecycle. An issue’s
status indicates its current place in the project’s workflow. The workflow itself is

17

2. Background

(a) Issue type

Issue type Description

Bug A problem that impairs or prevents the functions of the
product.

New Feature Requesting new capability or software feature.
Task A task represents work that needs to be done.

(b) Issue status

Issue status Description

OPEN The issue is open and ready for the assignee to start work
on it.

IN PROGRESS This issue is being actively worked on at the moment by
the assignee.

RESOLVED A resolution has been taken, and it is awaiting verification
by reporter. From here, issues are either reopened, or
are closed.

CLOSED The issue is considered finished. The resolution is correct.
Issues which are closed can be reopened.

REOPENED This issue was resolved previously, but the resolution
was either incorrect or missed a few things or some
modifications are required.

(c) Issue resolution

Issue resolution Description

DUPLICATE The problem is a duplicate of an existing issue.
DONE Work has been completed on this issue.
FIXED The issue has been fixed, i.e. successfully resolved.
WON’T FIX Work on the issue is rejected.

Table 2.1.: Important issue properties, their values, and suggested interpretation in
Atlassian Jira (Atlassian Corporation 2021a).

18

2.4. Common Tools Utilized in the Agile Development Process

Ar
ch

iv
a

Ca
ss

an
dr

a
De

rb
y

Dr
oo

ls
Er

ra
i

Fl
in

k
Gr

oo
vy

H
ad

oo
p

H
ba

se
H

ib
er

na
te

H
iv

e
In

fin
isp

an
Iz

pa
ck

JT
M

Jb
eh

av
e

Jb
pm

Ka
fk

a
Ke

yc
lo

ak
Lo

g4
j2

Lu
ce

ne
M

av
en

Ra
ilo

Re
ste

as
y

Se
am

2
Sp

ar
k

Sw
itc

hy
ar

d
Te

iid
W

eld
W

ild
fly

Zo
ok

ee
pe

r

Project

Brainstorming
Bug

CTS Challenge
Clarification

Component Upgrade
Component Upgrade Subtask

Dependency upgrade
Deprecation

Documentation
Enhancement

Epic
Feature Request

Github Integration
IT Help

Improvement
Library Upgrade

New Feature
New Git Repo

New JIRA Project
Patch

Project
Proposal

Quality Risk
Question

Release
Remove Feature

Request
Requirement

Story
Sub-task

Support Patch
Task

Technical task
Temp

Test
Tracker

Umbrella
Wish

Iss
ue

 ty
pe

0

10

20

30

40

50

60

Pe
rce

nt
ag

e

Figure 2.4.: Issue type distribution in 33 example open-source projects (Rath and
Mäder 2019b). The type ”Bug” is present in every project, and the
majority issues of a project have this type.

19

2. Background

Figure 2.5.: Example issue workflow schema in Atlassian Jira. Blue represents states,
where no-one is working on the issue, yellow are intermediate states, and
lastly green represents final states.

represented by a schema, such as the one depicted in Figure 2.5. The transitions
are represented as links between the statuses. A transition is necessary to move the
issue from one status to the next one. An issue can be only in one status at any
given point in time. In the shown workflow an issue starts its lifecycle with status
OPEN. The blue highlighted states represent initial ones, where no-one is working
on the issue. Actively working on the issue is denoted by state IN PROGRESS.
Eventually the work on the issue has finished and a final state (highlighted in green),
is reached and the issue’s resolution is set. Depending on the project, FIXED is used
as resolution if a bug was successfully removed, and in case the issue type is not
“Bug”, DONE is used. However, e.g. project Railo also uses DONE as bug report
resolution. The example issue DERBY-6453 has the status CLOSED with resolution
FIXED (see Fig. 2.3).

Atlassian Jira also supports associations between issues called “Linked issues”. These
typed links such as “duplicates”, “relates to”, or “blocks” allow to establish trace
links among issue artifacts. For example, issue DERBY-6453 traces to improvement
DERBY-532 using the trace link type “relates to”.

2.4.2. Managing Source Code Files in Version Control Systems

A version control system (VCS) allows to systematically capture the evolution of
files, especially source code files. The VCS allows the developers to coordinate a
collaborative software development. Thereby, the VCS stores the individual versions
of a file and also information about the applied modification, i.e. the transition from
one version to another version (Hinsen, Läufer, and Thiruvathukal 2009). Like for

20

2.4. Common Tools Utilized in the Agile Development Process

Figure 2.6.: Screenshot of project Derby in GitHub (Github, Inc. 2021).

ITS, many VCS implementations are available, such as Git, mercurial, or SubVersion.
During the last years, Git (Git Community 2020) has become the dominant choice for
version control, and thus is the only one considered in this thesis (Stackoverflow 2018).
Figure 2.6 shows the main view of project Derby in GitHub (Github, Inc. 2021).
GitHub is a popular hosting website for software projects that use Git. It extends
the capabilities of git by offering additional features, such as extended collaboration
features, continuous integration, and wiki pages. From the depicted main view in
Github, users can browse the project’s files, their history, and the information about
all changes, i.e. the individual commit artifacts.

Properties of Commits in Git

The version control system Git (Git Community 2020) uses atomic commits to
represent changesets of files, i.e. the edits required to go from one version of a file to
the next version. A commit is able to hold changesets of multiple files. Each commit
is uniquely identified by a 160bit SHA-1 hash value. For example, the hash value
of the commit shown in Figure 2.7 starts with fb69172 and contains modifications
of the source code file TableDescriptor.java. Specifically the comment in line
734 is removed. Additional properties are available for a commit. They include the
stakeholder who created the commit, the creation timestamp, and a textual commit
message stating the purpose of the change, e.g. “Remove dead code in […]” in the
depicted commit.

21

2. Background

Figure 2.7.: Screenshot of commit f167762 of project Derby in GitHub.

2.4.3. Creating Trace Links between Artifacts in Jira and Git

Atlassian Jira and Git are separate, unconnected software systems, but often used
together in agile software development. The artifacts representing source code changes
are maintained in Git, and the issue artifacts in Jira. However, there is the need to
interconnect the systems. For example, developers create requirement artifacts in
Jira and start making changes to the source code files accordingly. Without tracing
from the issues to commits, the knowledge why these source code modifications were
made is lost. Thus it has become a common practice for developers to tag commit
messages with issue id(s), i.e. mention the issue id typically at the beginning of the
commit message (Cubranic and Murphy 2003; Fischer, Pinzger, and Gall 2003).

This procedure is even reflected in the guidelines of the Apache Software Foundation
stating that “You need to make sure that the commit message contains at least […] a
reference to the Bugzilla or Jira issue […]” (Apache Software Foundation 2020). It is
also part of the developer documentation of projects like in Hadoop (“The commit
message should include the JIRA issue id […]” (Hadoop Community 2020)), or in
project Subversion (“If your change is related to a specific issue in the issue tracker,
then include a string like ‘issue #N’ in the log message […]” (Subversion Community
2021)).

This tagging procedure allows to connect the former independent systems Jira and

22

2.5. Localizing Bugs using Information Retrieval Techniques

Figure 2.8.: Screenshot of two tagged commits to create trace links to Jira issue with
identifier DERBY-6453.

Git and provides an important part in the creation of project-wide traceability.
Figure 2.8 shows an overview of two commits of project Derby, including the one
with commit hash f167662 (see Fig. 2.7). Each commit message starts with issue id
DERBY-6453 and thus creates a trace link to the improvement shown in Figure 2.3.

Nowadays developers actively utilize the trace links in their daily work. For example,
several browser extensions exist to integrate GitHub with Jira by replacing the
issue identifiers added to commit messages with hyperlinks which allows to navigate
between both tools (Sullivan 2014; D’Haeseleer 2019). Eventually GitHub itself
added support for this functionality in 2019 (GitHub, Inc. 2019). The introduction
of smart commits further extends the capabilities beyond navigation (Atlassian
Corporation 2020a). These allow to process Jira issues using special commands and
enable commenting on issues, record time tracking information, or transition issues
to any status defined in Jira project’s workflow (see Fig. 2.5).

Combining the information of the presented examples allows to create a (partial)
traceability graph for the improvement DERBY-6453 as shown in Figure 2.9. This
improvement relates to issue DERBY-532, which is modelled in Jira. Two commits,
f167762 and 7de985b, tag issue DERBY-6453. The tagging procedure allows to trace
between the independent systems Jira and Git. In Git, each commit inherently
contains (traces to) modifications of one or more files.

2.5. Localizing Bugs using Information Retrieval
Techniques

ITS such as Atlassian Jira allow to store and manage different types of issues, including
bug reports. Usually these reports are written in natural language, having a short
title and a longer bug description. It provides information about the abnormal

23

2. Background

Figure 2.9.: Example for a traceability graph based on the examples presented in
this section. Atlassian Jira directly supports to trace between issues. In
Git, the commits inherently contain modifications of source code files.
Tagging the commit messages with Jira issue identifiers allows to trace
between Jira and Git.

24

2.5. Localizing Bugs using Information Retrieval Techniques

Figure 2.10.: Structure of an IR-based bug localization algorithm.

behavior and initially guides the developer in retrieving source code files to be
modified for removing the defect. However, the quality of bug reports differs widely
(Zimmermann et al. 2010). As introduced, in Atlassian Jira bug reports are issues of
type “Bug” having the same properties as other types and follow the same project’s
workflow.

Bug localization is a task in software maintenance, in which a developer uses infor-
mation about a bug present in a software system to locate the portion of source code
that must be modified to remove the defect (see Sec. 2.1). If done manually, this
process is prone to errors. Further, the developers need to bridge the lexical gap
between the description written in natural language and the formal representation of
the source code. This requires extensive project knowledge and often the bug reports
do not contain the needed information (Zimmermann et al. 2010; Breu et al. 2010).
A bug localization algorithm automates the localization process.

A common realization of bug localization algorithms is leveraging information retrieval
(IR) techniques (Zhou, Zhang, and Lo 2012; Gay et al. 2009; Lukins, Kraft, and
Etzkorn 2008; Rao and Kak 2011). Manning et al. define information retrieval
as “[…] finding material (usually documents) of an unstructured nature (usually
text) that satisfies an information need from within large collections (usually stored
on computers).” (Manning, Raghavan, and Schütze 2008). In the context of bug
localization this translates to the following. The material to find are relevant source
code files, the information need is to locate the bug, and the large collection is the
project’s code base. Both the bug report and the source code files are treated as
(text) documents, and the bug report is used to query and rank the source code files.
The query is what the developer conveys to the computer to express the information
need. The collection of source code files is termed corpus: a body of text. A returned
source code file is relevant if it contains the information the developer was looking
for, i.e. the bug.

The whole process can be represented by three steps (Zhou, Zhang, and Lo 2012) as
visualized in Figure 2.10.

1. The first step handles lexical analysis of the project’s source code files and
creates the corpus. The corpus is indexed and results in an (inverted) index.

25

2. Background

2. The second step constructs a query from the bug report.
3. At last, relevant source code files are retrieved and ranked.

The details of the steps are presented in the next sections.

2.5.1. Indexing the Source Code File Corpus

This step performs lexical analysis and prepares the source code corpus for indexing.
Therefore a list of preprocessing steps is applied as shown in Figure 2.11. This starts
with tokenization, i.e. the textual content is chopped up into pieces called tokens,
and perhaps throwing away certain characters. Next, stopword removal is applied
i.e. the tokens are filtered by common (English) words (e.g. “a”, “in”, “the”), because
they appear very frequently in documents and thus have less discriminating value.
In context of source code this step also removes programming language keywords.
Indentifiers and types in source code are often combined words concatenated using
camel case (e.g. runLexicalAnalysis) or snake case (e.g. run_lexical_analysis).
These compound words are split. Next, the tokens are converted to lowercase and
stemmed. Stemming returns the stem for a token, i.e. by removing inflection, plural
forms, and so on. For example the tokens compute, computer, and computing have
all the same stem compute. The porter stemmer is a popular stemming algorithm
used for this activity (Porter 2006). Corpus creation treats the source code files
as bag-of-words, and thus only contained tokens are relevant independent of their
ordering. From now the tokens are called terms which are finally used in the IR
system. The preprocessing steps highly depend on the input documents, and thus
individual steps may be skipped (e.g. no lowercasing), repeatedly applied (e.g. filtering
again after compound word splitting), reordered, or new ones added (e.g. depending
on programming language).

The set of unique terms represents the corpus’ vocabulary. After lexical analysis
the source code files are indexed. This creates a mapping from a term to the list of
source code file(s) the term occurs in. The mapping forms the inverted index. Here
“inverted” is actually redundant, because an index always maps back, but the name
has become the standard term in information retrieval (Manning, Raghavan, and
Schütze 2008).

2.5.2. Constructing a Query from a Bug Report

In bug localization the bug report is used as a query to search for relevant source
code files. Lexical analysis is applied to the bug reports texts, i.e. summary and
description, to create the query. The same preprocessing steps as used for corpus
creation can be used, or adapted to specific needs.

26

2.5. Localizing Bugs using Information Retrieval Techniques

Figure 2.11.: Example of possible preprocessing steps applied during lexical analysis
of source code files. It starts with input text: a method signature in
Java programming language in this example. The source code text is
transformed to tokens and finally terms are created, which are used by
the IR system.

2.5.3. Retrieve and Rank Source Code Files

In this last step, a similarity score between the query and each document in the corpus
is calculated and afterwards used to rank the source code files. Various approaches
for this calculation exist (Dit et al. 2013), and a common one uses a Vector Space
Model (VSM) (Manning, Raghavan, and Schütze 2008; Rao and Kak 2011). Here,
the query 𝑞 and the source code files (documents 𝑑) of corpus 𝐷, i.e. 𝑑 ∈ 𝐷, are
represented as weighted vectors 𝑉𝑞, 𝑉𝑑 ∈ ℝ1×𝑛

𝑉𝑑 = (𝑤𝑡0,𝑑, 𝑤𝑡1,𝑑, … , 𝑤𝑡𝑛−1,𝑑)
𝑉𝑞 = (𝑤𝑡0,𝑞, 𝑤𝑡1,𝑞, … , 𝑤𝑡𝑛−1,𝑞)

Each dimension 𝑛 = |Voc| in the vector corresponds to a specific term in the
vocabulary 𝑡𝑖 ∈ Voc. As already mentiond, this bag-of-words model just describes
word occurrences while ignoring the relative position of the words in the document.
Using the vectors, a similarity score sim between the query and each source code file
is calculated using cosine similarity (see Eq. 2.1)

sim(𝑑, 𝑞) =
𝑉𝑑 ⋅ 𝑉 𝑇

𝑞

‖𝑉𝑑‖ ⋅ ‖𝑉𝑞‖
(2.1)

27

2. Background

Cosine similarity caculates the radian angle between the query vector and the
respective source code file vector. The result is in range [0 … 1], where 1 is the
maximum similarity of the vectors and thus the documents are identical, and 0 is
maximum dissimilarity. The vector weights 𝑤𝑡,𝑑 for each term 𝑡 ∈ Voc are determined
using the term frequency (tf) and inverse document frequency (idf). Here tf specifies
how often the term occurs in a document, and idf the number of documents containing
𝑡. Over the years, multiple tf-idf calculation schemes have been proposed, whereas
the logarithmic variant achieves good results (Dumais 1991; W. Bruce Croft, Metzler,
and Strohman 2009)

𝑓𝑡,𝑑 = frequency of term 𝑡 in document 𝑑
tf(𝑡, 𝑑) = log(𝑓𝑡,𝑑) + 1

idf(𝑡, 𝐷) = log |𝐷|
|{𝑑 ∈ 𝐷|𝑡 ∈ 𝑑}|

𝑤𝑡,𝑑 = tf(𝑡, 𝑑) ⋅ idf(𝑡, 𝐷)

(2.2)

The weight 𝑤𝑡,𝑑 is highest when 𝑡 occurs many times in a small source code file,
lowest when 𝑡 occurs in all source code files. Values between these edge cases are
that 𝑡 occurs fewer times in a source code file, or occurs in many source code files.

Finally, after calculating sim for all source code files and the query, the files are ranked
according to this value. This results in a list with the source code file having the
highest similarity on top. In Figure 2.10 the ranking is 𝑓2, 𝑓0, 𝑓1. So the developers
are adviced to look at these source code files in that order to locate the bug.

Besides its rather simplistic idea, the vector space model is still the backbone of
many algorithms used today.

28

3. State of the Art

This thesis investigates bug localization in a project wide, holistic approach. Therefore,
at first an overview on the existing body of work on IR-based bug localization is
given (see Sec. 3.1). Related problems and techniques are found in the domain of
trace link recovery. Here the goal is to automatically establish trace links among
artifacts, to support tasks like change impact analysis, and coverage analysis. Section
3.2 discusses the state of the art in this domain.

3.1. Bug Localization

A common approach in automated bug localization is formulating the search process
as an information retrieval problem (Manning, Raghavan, and Schütze 2008; Rao
and Kak 2011; Gay et al. 2009; Lukins, Kraft, and Etzkorn 2008). Here, the bug
report is treated as one textual document and used to query a list of documents.
The projects’ source code repository constitutes the query list in this context. The
result is a ranked list of most relevant matches among all source code files. Now,
a developer inspects the ranked list and eventually can fix the bug. Such methods
are called information-retrieval-based bug location methods and do not require to
execute a program, which is necessary in spectrum-based fault localization techniques
(Abreu et al. 2009; Jones and Harrold 2005; Liu et al. 2006). A user study has shown,
that developers benefit from high-quality bug reports as much as from IR-based
algorithms (Wang, Parnin, and Orso 2015). Even then, the authors argue, that this
only helps to quickly locate the defective source code files but does not help the
developers to solve the most time consuming task, i.e., fixing the bug.

Multiple techniques have been proposed to improve the matching performance of
IR-based methods (Saha et al. 2013; Wang and Lo 2014; Moreno et al. 2014; Wang
and Lo 2016; Ye, Bunescu, and Liu 2014; Lukins, Kraft, and Etzkorn 2008; Marcus
and Maletic 2003; Zhou, Zhang, and Lo 2012). The differences mainly focus on the
retrieval and ranking of results.

A basic idea is the Vector Space Model (VSM Sec. 2.5.3), which is utilized in many
approaches (Zhou, Zhang, and Lo 2012; Wang and Lo 2014, 2016). When using
VSM, the documents (bug reports and source code files) are encoded as vectors of
token weights. The weights are usually computed using the token frequency (tf), i.e.,

29

3. State of the Art

how often a term occurs in a specific document, and inverse document frequency
(idf), i.e. how often a term occurs in all documents (Manning, Raghavan, and Schütze
2008). The cosine similarity between two vectors, i.e. the representation of a source
code file and that of the bug report, reflects the relationship of these artifacts. A
value of 1.0 reflects a perfect match and 0.0 is maximal dissimilarity.

Latent Semantic Indexing (LSI) extends the vector space model (Marcus and Maletic
2003; Deerwester et al. 1988). This method can identify the relationship between
the terms and concepts contained in an unstructured collection of text. This is
especially import if a (short) query and (longer) documents do not share the same
terms, but similar concepts like “car” and “automobile”. The core idea is to collect
information about the context where a particular word appears, or not, and than
to derive a set of mutual constraints that determine the similarity of sets of words
to each other. The mathematical foundation of LSI is singular value decomposition
(SVD). After constructing a term-by-document matrix from the user corpus, SVD
is applied to create an LSI subspace. For example, in this subspace the original
words “car” and “automobile” would map to the same concept and thus provide a
solution to the synonym problem. New document and query vectors are orthogonally
projected onto the LSI subspace. Cosine similarity is used to calculate the of the
resulting vectors. Marcus et al. applied LSI to trace from documentation to source
code (Marcus and Maletic 2003). In (Poshyvanyk et al. 2006), the authors used LSI
for bug localization.

The Latent Dirichlet Allocation (LDA) is a topic modeling technique based on a
statistical model. Each document is viewed as a mixture of multiple (latent) topics.
A topic is a probability distribution based on frequently co-occurring words over the
vocabulary of a document collection. The words in a topic are often semantically
related and thus provide meaning to the abstract concept of a topic. For example, the
words “human”, “genome” and “dna” might be the words with highest probability in
a topic about “genetics”, because these words often appear together in this context.
LDA possibly assigns multiple topics to a document indicating that the text is related
to the topic “genetics” and “biology”. Thus, after applying LDA to a collection of
documents it is possible to cluster them based on topics and to retrieve all documents
related to “biology”. In bug localization the documents are source code files and bug
reports. The similarity between them is calculated as conditional probability. LDA
is successfully used by Lukins et al. (Lukins, Kraft, and Etzkorn 2008). In two case
studies the authors show, that LDA based bug localization outperforms LSI methods.
In (Nguyen et al. 2011), the LDA model is revised by using two topic models, one
for bug reports and the other for source code files, which are than connected. The
rational behind this design is, that technical topics must be mentioned in a bug
report. Compared to the approach of Lukins et al., this architecture improves the
bug localization performance. However, a comprehensive study by Roa et al. showed,

30

3.1. Bug Localization

that sophisticated models like LSI and LDA do not outperform much simpler models
like VSM (Rao and Kak 2011).

Researchers also introduced machine learning models, such as learning to rank
(Ye, Bunescu, and Liu 2014) or neural networks (Lam et al. 2015) to address bug
localization. Here, the models’ free parameters (e.g. number of topics 𝐾 for LDA) are
no longer manually assigned and instead learned from training data. Further, machine
learning approaches also replace the bag-of-words model by using word embeddings,
and thus also incorporate the token ordering (token context) of the documents (Lam
et al. 2015; Ye et al. 2016). The authors show an improved localization performance
on their respective datasets.

Next to advances in natural language techniques to process bug reports and source
code files, researchers also started to further analyze bug reports. Thus, the bug
reports and source code files are no longer treated as a “just” texts and instead are
seen as structured information (Saha et al. 2013). In (Saha et al. 2013) the authors
construct abstract syntax trees from the source code files to extract different structural
elements (i.e. comments, method names) separately. Also, the bug report title and
description are no longer combined and handled independently. The extracted parts
are used as individual queries, resulting in separate search scores, which are finally
combined using summation. In the evaluation, their structured approach BLUiR
outperforms BugLocator (Zhou, Zhang, and Lo 2012), which applies an unstructured
bug report handling using VSM. Schröter et al. focused on stack traces found in
bug reports (Schröter, Bettenburg, and Premraj 2010). The hypothesis is, that class
and method names found in stack traces helps to find defective code locations. The
author’s evaluation shows, that developers benefit from this information and stack
trace in bug reports speed up the localization process. Therefore, bug localization
algorithms were designed to leverage stack traces as well (Moreno et al. 2014).
However, the authors only provide theoretical results by adjusting parameters in
case the developed algorithm is applied to bug reports not containing stack traces.

The lexical gap between queries (bug reports) and source code files usually limits the
performance of IR-based models (McMillan et al. 2012). Thus, additional information
and project-specific resources are utilized as well. This led to bug localization
algorithms containing an ensemble of components, each calculating a separate ranking
of source code files. These rankings are aggregated to the final ranking result, i.e. the
overall output of the bug localization algorithm. Multiple aggregation methods were
proposed, including summation (Saha et al. 2013), empirically determined weighting
schemes (Zhou, Zhang, and Lo 2012; Wang and Lo 2014), trained weights using
support vector machines (Ye, Bunescu, and Liu 2014), or even neural networks
(Lam et al. 2015). Additional textual resources, e.g. API documentation, were used
to improve localization results (Lam et al. 2015; Ye, Bunescu, and Liu 2014; Ye
et al. 2016). Further, in (Lam et al. 2015) the authors utilize developer names and

31

3. State of the Art

project release information. Next to the (structured) text matching component,
previously solved bug reports (project version history component) are used as another
input for the bug localization algorithm (Zhou, Zhang, and Lo 2012; Saha et al. 2013;
Wang and Lo 2014, 2016; Lam et al. 2015). The reasoning is, if the current bug
report at hand is similar to a previously fixed one, the same source code files may
need to be modified to resolve the current bug report.

Instead of processing the projects’ source code files as a whole, Wong et al. (C. Wong
et al. 2014) dissect each file in equally sized chunks. Afterwards the chunk with the
highest similarity to the bug report is chosen to represent the file.

Wen et al. (Wen, Wu, and Cheung 2016) questioned the usefulness of a ranked list
of source code files, because of the granularity of the results. Thus they designed
the IR-based algorithm Locus to locate bugs from source code changes, which have
a finer granularity as whole source code files. In their evaluation, this approach
outperform file based methods. Further, it reduces the number of source code lines
to analyze in order to locate the defective parts.

A recent study of Akbar et al. investigated the history and development of IR-based
tools for bug localization (Akbar and Kak 2020). The authors divided the tools
in three major generations, (1st gen.) bag-of-words models, (2nd gen.) augmented
bag-of-words models, and (3rd gen.) models based on exploitation of proximity and
term to term relationships. The study concludes, that the third-generation of tools is
superior to the former ones. The most advanced of them is SCOR (Akbar and Kak
2019). Here, the bag-of-words model is replaced with word embeddings to encode
the terms of bug reports and source code files. Additionally, Markov Random Fields
(MRF) are used to model term-term ordering constraints. The MRF framework is
an undirected graph with one node representing a particular source code file and
the other ones the terms of the query, i.e., the bug report. The edges among the
nodes represent probabilistic dependencies between the nodes. This allows to model
for example “full independence” (all query terms are independent), or “sequential
dependence” by connecting subsequent query nodes. The evaluation of SCOR shows,
that using MRF improves bug localization compared to approaches based on the bag
of words model.

3.1.1. Datasets and Collections of Projects used to Evaluate
Approaches

An overview of datasets and projects used to evaluate the reported approaches
is provided in Table 3.1. There is only one dataset specifically designed for bug
localization, iBugs (Dallmeier and Zimmermann 2007a), but it is barely used. Some
approaches, i.e. BugScout, claim to use it, but report different numbers of bug

32

3.1. Bug Localization

reports. However, different algorithm are often evaluated on similar projects. The
other datasets are just enumerated for naming and represent the utilized projects
and number of bug reports used in evaluation of an approach. Often projects stem
from a common pool, such as AspectJ or Eclipse, but with a varying amount of bug
reports and it is rather unclear how the selection was performed. An overview of
utilized projects and number of bug reports is shown in Table 3.1. Beside iBugs,
the dataset names are grouped into clusters and labeled A to H. This allows to
compare different algorithms using the same selection of projects and bug reports
(see Tab. 3.2), which will be discussed in the next section.

Table 3.1.: Summary of datasets and projects used to evaluate bug localization
algorithms. There is only one dedicated dataset, iBugs (Dallmeier and
Zimmermann 2007a, 2007b), the other ones are labeled, A to H, clusters
of projects. These represent projects and the number of bug reports (in
parentheses) used to evaluate a specific algorithm.

Name / Label Projects and number of bug reports

iBugs AspectJ (369)
A ArgoUML (1,764), AspectJ (271, but claims it is iBugs), Eclipse

(4,136), Jazz (6,264)
B AspectJ (286, subset of iBugs), Eclipse (3,075), SWT (98), ZXing

(20)
C Firefox modules: ff-bookmark (1,927), ff-general (1,289)

Mozilla-Core modules: core-js (2,391), core-dom (1,050), core-layout
(2,391), core-style (1,131), core-xpcom (1,059), core-xul (1,260)

D AspectJ (286), Eclipse (3,075), SWT (98)
E AspectJ (593), Birt (4,178), Eclipse (6,495), JDT (6,274), SWT

(4,151), Tomcat (1,056)
F Birt (583), Eclipse (1,656), JDT (632), SWT (817)
G AspectJ (244), JDT 4.5 (94), PDE 4.4 (60), SWT 3.1 (98), Tomcat

8.0 (193), ZXing (20)
H 29 projects including AspectJ (291) and Eclipse (4,035) with ≈

20,000 bug reports in total

3.1.2. Comparison of IR-based Bug Localization Algorithms

An overview of published IR-based bug localization algorithms is given in Table
3.2. It also contains which dataset or project collection was used for evaluation (see
Tab. 3.1), and the outcome of the evaluation, i.e. which algorithm performs best.
Further, novel ideas of the respective algorithm are highlighted. The great variety of

33

3. State of the Art

algorithms and used datasets makes it difficult to judge and compare the different
approaches. Without repeating all the studies, only statements about algorithms
using the same dataset can be made. For example, out of the algorithms BugLocator,
BLUiR, AmaLgam, and AmaLgam+, all evaluated on project collection labeled B,
the latter performs best. But, this gives no clue when comparing AmaLgam+ and
Locus, although both outperform AmaLgam in their respective evaluation. Thus, it
is not clear which of the listed bug localization algorithms performs best overall.

34

3.1.
B

ug
Localization
Table 3.2.: Overview of different IR-based bug localization approaches. The first column assigns a name to the approach

for identification. The second column states the used dataset (see Tab. 3.1). The column ”novelty” highlights
novel techniques and designs differentiating the respective approach from competitors. The last column states
the evaluated algorithms in the publication. The notation ”X > Y” summarizes the compared approaches
and which one performed best: X in this case.

Approach Dataset Novelty Evaluation outcome

BugScout (Nguyen et
al. 2011)

A LDA topic model. BugScout > Lukins (LDA) (Lukins,
Kraft, and Etzkorn 2008) > SVM

BugLocator (Zhou,
Zhang, and Lo 2012)

B Considering information of similar bug re-
ports.

BugLocator > ”SUM approach”

BLUiR (Saha et
al. 2013)

B Structured IR on code constructs. BLUiR > BugLocator

AmaLgam (Wang
and Lo 2014)

B Combining BugLocator and BLUiR. AmaLgam > BLUiR > BugLocator

AmaLgam+ (Wang
and Lo 2016)

B Based on AmaLgam, but also considers
stack traces, and bug reporter information.

AmaLgam+ > AmaLgam > BRTracer
> BLUiR > BugLocator

Usual Suspects (D.
Kim et al. 2013)

C Baseline model suggesting most frequently
modified source code files.

-

”Kim et al.” (D. Kim
et al. 2013)

C Two phase model, which only predicts
source code files when bug report contains
sufficient information.

”Kim et al.” > BugScout > Usual Sus-
pects

BRTracer (C. Wong
et al. 2014)

D Analysing stack traces found in bug re-
ports.

BRTracer > BugLocator

35

3.
State

ofthe
Art

Approach Dataset Novelty Evaluation outcome

Learning to rank
(LR) (Ye, Bunescu,
and Liu 2014)

E Using learning-to-rank technique. LR > BugLocator

HyLoc (Lam et
al. 2015)

E Using deep neural networks. HyLoc > LR > BugLocator

LR+WE (Ye et
al. 2016)

F Using learning-to-rank technique and word
embeddings.

LR+WE > LR > ”Kim et al.”

Locus (Wen, Wu,
and Cheung 2016)

G Sub source code file bug location granular-
ity, and usage of code change history.

Locus > AmaLgam > BLUiR > BR-
Tracer

SCOR (Akbar and
Kak 2019, 2020)

H Combining word embeddings with Markov
Random Fields.

SCOR > BLUiR > BugLocator

36

3.1. Bug Localization

Figure 3.1.: Identified structure of a modern bug localization framework.

3.1.3. Internal Structure of Bug Localization Algorithms

After studying the state-of-the-art a framework for bug localization algorithms was
derived as shown in Figure 3.1. It consist of different components and each component
analyzes a specific input resource. The resources are internally processed by the
dedicated components and result in multiple, intermediate source code file rankings,
reflecting the bug localization only based on the respective input resources. Finally,
all individual rankings are aggregated by a composer component generating the
final source code file ranking. Over the years, different aggregation methods to
combine the rankings have been proposed, including summation (Saha et al. 2013),
empirically determined weighting schemes (Zhou, Zhang, and Lo 2012; Wang and Lo
2014), weights trained by vector support machines (Ye, Bunescu, and Liu 2014), and
neural networks (Lam et al. 2015).

The most common component is the source code (structure) component, which
directly relates a bug report to the contents of the projects source code files. Thus,
the bug report and each source code file are treated as text files and the component
calculates a similarity score for each file using IR techniques. Various text matching
algorithms have been proposed for this purpose (Dit et al. 2013). The resulting
similarity score determines the ranking in the output list. More sophisticated methods

37

3. State of the Art

preprocess the source code and distinguish individual source code parts, such as
identifiers, class and method names, and comments (Saha et al. 2013). Next, these
representations of the source code file are used for similarity analysis to the bug
report.

Studies showed that bugs often occur in bursts and not in isolation (S. Kim et
al. 2007). Thus, the version history component tries to expose this observation.
The key idea is, that source code files responsible for a bug recently are more likely
to be responsible for new bugs in the (near) future.

Next to bug reports and source code files, researches also utilized metadata resulting
in different project metadata components. For example, the bug reports’ project
version, platform and priority is used (D. Kim et al. 2013; Ye, Bunescu, and Liu
2014), or the recency and frequency the source code files were modified as part of bug
fixing activities (Lam et al. 2015). Other often leveraged information is additional
textual input, i.e. API documentation (Lam et al. 2015; McMillan et al. 2012; Ye,
Bunescu, and Liu 2014; Ye et al. 2016).

The similar bug report component takes previously resolved bug reports as input
next to the current one. The assumption is, that the same set of source code files are
potential candidates for modifications in case the bug report is similar to an already
resolved one.

3.2. Localizing Features and Recovering Trace Links

Manually creating and maintaining trace links is associated with high costs (Heindl
and Biffl 2005), and researchers studied the application of IR-based methods to
support automated trace recovery (Cleland-Huang et al. 2007; De Lucia, Fasano,
and Oliveto 2008; Keenan et al. 2012; Mahmoud and Niu 2010, 2011; Niu et al. 2014;
Rempel, Mäder, and Kuschke 2013). Hayes et al. apply a vector space model (VSM)
in combination with a thesaurus to establish new trace links between requirements
(Hayes, Dekhtyar, and Sundaram 2006). Further, approaches based on Latent
Semantic Indexing (LSI) (A. D. Lucia et al. 2004; Rempel, Mäder, and Kuschke
2013) and Latent Dirichlet Allocation (LDA) (Asuncion, Asuncion, and Taylor 2010;
Dekhtyar et al. 2007) were developed, as well. Guo et al. used a recurrent neural
network to integrate semantics or context in which various terms are used (Guo,
Cheng, and Cleland-Huang 2017). Instead of relying on a single technique, researchers
also combined the results of individual algorithms (Dekhtyar et al. 2007; Gethers
et al. 2011; Lohar et al. 2013), and used AI swarm techniques to retrieve trace links
(Sultanov, Hayes, and Kong 2011). Any automated trace recovery approach implies
the risk to create incorrect trace links (Merten et al. 2016; Knethen et al. 2002).

38

3.2. Localizing Features and Recovering Trace Links

Thus researchers leveraged structural artifact Information to improve the correctness
of the recovered trace links and therefore tackle the traceability quality problem
(Panichella et al. 2013).

Another related area is feature localization, which attempts to identify sections
of source code related to a specific requirement or issue. A probabilistic model
and a VSM approach to retrieve trace links between code and documentation was
proposed in (Antoniol et al. 2002). Poshyvanyk et al. (Poshyvanyk et al. 2006)
treated the feature localization as a decision-making problem in the presence of
uncertainty. They combined a probabilistic model and LSI to identify traces from
features, i.e. functionality of a system usually captured by requirements, to parts of a
project’s source code. The systematic literature review of Dit et al. (Dit et al. 2013)
provides a comprehensive overview of feature location algorithms. A large body
of work covers IR-based techniques, including VSM, LSI, and LDA. The authors
summarize, the quality of feature localization is heavily tied to the quality of the
source code naming conventions and the users-issued query, i.e. the lexical gap.
Researchers also investigated the use of dynamic analysis for feature localization
(Kuang et al. 2015; Kuang et al. 2012; Kuang et al. 2017). The combination of static
and dynamic analysis is studied in (Eisenbarth, Koschke, and Simon 2003) to rapidly
focus on the system’s parts that relate to specific features.

Instead of directly tracing from issues (requirements or bug reports) to source code
files researchers also explored ideas to trace to commits as an intermediate step.
Le et al. proposes RCLinker which utilizes textual features and metadata features
to establish the trace links (Le et al. 2015). The textual features are based on
ChangeScribe which automatically generates commit messages by analyzing the
performed source code changes between two commits. The metadata features are
derived from issue such as its priority or the number of attached comments. All
extracted features are used to train a random forest classifier, which is able to predict
whether an issue and a commit should be linked. The approach is evaluated on
six Java projects from the apache software foundation. FRLink revisits RCLinker
by also including non-source code documents and excluding irrelevant source code
files to reduce data noise (Sun, Wang, and Yang 2017). The evaluation shows that
FRLink outperforms RCLinker in term of F-measure. Ruan et al. propose DeepLink
which outperforms FRLink (Ruan et al. 2019). Deeplink utilizes a semantically
enhanced issue-to-commit trace link recovery method based on recurrent neural
networks. Therefore traditional approaches to represent texts like VSM are replaced
by word embeddings, which then are used as inputs for the network.

39

3. State of the Art

3.3. Criticizing the State of the Art

The previous sections outlined how IR-based bug localization algorithms and trace
link recovery approaches evolved over the past years and became more and more
sophisticated. But, one can argue that there is still room for improvement. First,
most approaches focus on improving performance soley based on textual similarity
between bug reports and source code files. Second, the bug localization algorithms
only utilize bug report artifacts at a fixed point in the projects’ development history.
Internally, this is handled by the similar bug report component of the algorithms (see
Sec. 3.1.3). However, this component has not been improved during the last years
and was not subject for detailed research compared the other components (including
the composer component).

Agile software development is driven by constantly implementing small enhancements
and thus altering the project’s code base. These past activities probably also introduce
software bugs, but this knowledge is not leveraged. Further, knowing the code places
realizing specific requirements has high potential to be benefitial for bug localization.
The assumption is that bug reports refer to requirements, either explicitly via trace
links or implicitly by textual similarity, and thus provide an initial guess where to
look for bugs in the source code files. Thus the similar bug report component should
be improved to a similar issue component.

Last, traceability information is not utilized. Especially, the time consuming tagging
procedure of commit messages creates valueable information about issue artifacts and
source code. As described, there are several algorithms to establish trace links from
issue artifacs to commits, but they mainly focus on textual similarity. Knowledge
about the project’s workflow, lifecycle, and stakeholder interaction is not leveraged.
Futher, the approaches end after establishing trace links without further using them,
and thus can be seen as building blocks for advanced algorithms.

To sum up, there is no holistic approach utilizing a project’s historic issue artifacts
combined with augmented trace links among them to tackle the downstream task of
bug localization.

40

4. A Holistic Approach to Improve IR-based
Bug Localization

This section outlines the overall idea of this thesis consisting of three stages. The
following subsections outline the stages and a formal notation and artifact model
used throughout the rest of this thesis is introduced.

4.1. Outlining the Idea

Leveraging requirements, trace links among issue artifacts, and considering the
project’s history are the main assumptions to improve the challenging task of bug
localization within this thesis. Creating trace links among development artifacts,
especially among issues-to-commits, is a common practice in todays development
process. However, the necessary steps to establish these trace links are performed
manually and thus subject for failures.

Figure 4.1 provides an overview of the holistic approach to improve IR-based bug
localization. The projects’ ITS and VCS are used to derive a unified artifact model
which is described in Section 4.2. This model and the input sources are mined
to create the SEOSS1 dataset, which is used throughout this thesis. The mining
process and details of the dataset are described in Section 5. The SEOSS dataset
was specifically created to study the algorithms created in thesis, because no suitable
datasets were available. Section 6 uses the artifact model to derive a traceability
graph model. A novel similar issue component TraceScore is derived by analyzing
the graph. Further, a novel source code structure component, LuceneScore, is also
proposed in this section. Both components are utilized in the bug localization
algorithm ABLoTS. Section 7 defines a tagging model as foundation for the trace
link set augmentation (TSLA) algorithm. This algorithm is used to augment the
traceability graph, i.e. add missing issue-to-commit trace links. Finally, all proposed
algorithms are evaluated in Section 8.

1. Software Engineering in Open-Source Systems

41

4. A Holistic Approach to Improve IR-based Bug Localization

Figure 4.1.: Overview of the holistic approach to improve IR-based bug localization.

42

4.1. Outlining the Idea

4.1.1. Creating a Dataset to Evaluate Bug Localization
Algorithms

Over the years, the development of IR-based localization algorithms led to a couple
of datasets and projects used for evaluation and benchmarking. Tables 3.1, 3.2 show
that there currently is no large benchmark dataset consistently used to compare bug
localization algorithms. The iBugs dataset, specially designed for bug localization
tasks, contains just one project with only 369 bug reports (Dallmeier and Zimmer-
mann 2007a). Further, none of the mentioned datasets does contain any trace link
information, or project history. They consists of a set of curated bug reports, a
snapshot of the projects source code files, and the oracle (truth) information, which
source code files were modified to fix the respective bug. Additionally, their size is
often limited and thus less suitable for machine learning algorithms, which require
large amounts of data for training and testing. Therefore there is the need to create
a new dataset, which is described in Section 5.

4.1.2. Designing a Bug Localization Algorithm utilizing
Traceability

Studying the state of the art of bug localization algorithms revealed (see Sec. 3.1),
that no approach exists which leverages projects trace links, especially those found
in ITS. Section 6 describes the design and implementation of the new approach to
incorporate traceability information to bug localization. The newly created dataset
will be used to evaluate the approach.

4.1.3. Augmenting the Issue-to-Commit Trace Link Set

Creating and maintaining trace links requires a lot of effort and time. Thus, the
amount of available trace links found in projects is limited. In open-source projects it
is a good practice to tag commit messages with issue identifiers to establish trace links,
but often traceability is not mandated or even prescribed. This may additionally
result in less or low quality trace links. Section 7 explores the idea to augment the
existing set of issue-to-commit trace links in a project. The result is enriched project
data which may be beneficial for the developed bug localization algorithm.

43

4. A Holistic Approach to Improve IR-based Bug Localization

4.2. Constructing an Artifact Model

Issue Tracking Systems and Version Control Systems contain a variety of artifacts as
introduced in Sections 2.4.1, 2.4.2. After studying the concepts of Jira and git, the
following artifact model was constructed and is used in this thesis (see Fig. 4.2).

4.2.1. Describing Contained Artifacts

The model consists of issues from the ITS, and commits and source code files from the
VCS. The set of issues of a projects is denoted as ℐ. Out of them, the subset ℬ ⊆ ℐ
denotes all bug reports, and the set ℛ = ℐ ∖ ℬ represents all requirements. The set
of commits 𝒞 stem from the projects’ VCS. Different kinds of files may be contained
within each commit such as source code modifications, changed documentation,
added examples, and tests. However, out of all project files ℱ, only the subset of
source code files is relevant within this model.

Lowercase letters are used to identify individual artifacts, such as the current bug
report at hand 𝑏cur ∈ ℬ, or a source code file 𝑓 ∈ ℱ. Uppercase letters are used for
subsets, such as 𝐼 ⊂ ℐ.

4.2.2. Describing Artifact Relations

Issue tracking systems allow to create typed links between issues. These trace links
are explicitly created and maintained by the project’s developers. For example, it is
used to model dependencies between issues (one feature needs to be implemented
before another one), or simple relations (a bug report relates to a feature). Since
traceability is often not mandated, especially in open-source systems, this set of trace
links may not be complete, i.e. there are issues not tracing to any other artifacts.

Figure 4.2.: UML diagram of used artifact model.

44

4.3. Summary

Bundling file modifications in commits is an inherent feature of VCS. After changing
a set of source code files, a developer commits this changeset to the VCS. In this
process, an atomic commit is created and enriched with additional metadata, i.e. a
timestamp, a commit message and information about the developer performing the
changes.

There is a relation between issues and commits, which is established using the tagging
procedure. To associate a commit to an issue, the developers place the unique issue
identifier within the commit message.

The model enables to trace from issues to individual source code files. This allows
to identify all source code files that have been modified to fix a bug, or where a
specific requirements is implemented in the source code. Several functions and sets
are used to express the outlined process and applied methodologies in a formal way.
Assuming 𝑖 ∈ ℐ, 𝑐 ∈ 𝒞, 𝑓 ∈ ℱ, the following functions are defined.

isLinked ∶ ℐ × 𝒞 → {0, 1}
isLinkedI ∶ ℐ × ℐ → {0, 1}

commits(𝑖) = {𝑐| isLinked(𝑖, 𝑐) = 1}
changedC(𝑐) = {𝑓|𝑐 contains 𝑓}
changedI(𝑖) = {changedC(𝑐)| isLinked(𝑖, 𝑐) = 1}

created ∶ 𝑖 → t
resolved ∶ 𝑖 → t

committed ∶ 𝑐 → t

(4.1)

The function isLinked returns 1, if a given issue and commit are linked, i.e., a
developer tagged the respective commit message with the issue identifier. Similarly,
isLinkedI is 1 if a trace link in the ITS exists between two issue artifacts. The function
commits returns all linked commits for a given issue. The functions changedC and
changedI return all source code files that belong to a given commit, or that were
changed in order to resolve a given issue. Finally, the time-related functions created
and resolved return the respective values when an issue was created or resolved, and
committed returns the time a commit occurred.

4.3. Summary

This section outlined the three steps of the holistic approach to be developed in this
thesis. Further, a formal definition of the underlying artifact model was given.

45

5. Mining Software Repositories to Create
Holistic Datasets

Related Publications This section is based on the following publications

Paper I (Rath, Rempel, and Mäder 2017): M. Rath, P. Rempel, and P.
Mäder “The IlmSeven Dataset” in RE, pages 516-519, 2017

Paper IV (Rath and Mäder 2019b): M. Rath and P. Mäder “The SEOSS
33 dataset - requirements, bug reports, code history, and trace links for
entire projects” in Data in Brief, Vol. 25, 2019

This section describes mining of open-source projects. The lack of suitable datasets
for the novel bug localization approach required to create a new dataset: Software
Engineering in Open-Source Systems (SEOSS). It contains different software artifacts
from issue tracking and version control systems of 33 projects and captures the
artifacts’ history. All artifacts are stored in a database on a per project basis. The
uniform schema of these databases provides a convenient way to access and study
the stored data.

Large amounts of data are required to perform solid scientific investigations. In this
thesis, the data is artifacts resulting from activities performed during the software and
systems development. The artifacts include feature requests, bug reports, commits,
and source code files. Collecting the data initially requires access to representative
data sources. One potential data source are commercial and industrial projects.
However, due to multiple concerns including intellectual property, and competition,
commercial project owners are not willing to give researchers access to their data
(Hassan 2008). With the rise of open-source software during the last decade, large
amounts of projects are freely available. This provides unrestricted access to issue
tracking systems and source code repositories of projects with manifold characteristics
(Kaur and Vig 2016). Next to the source code stored in VCSs, the projects use ITS
to manage requirements artifacts and bug reports. All this information is stored in
heterogeneous systems in different formats and thus is difficult to directly process the
data. The process of extracting information about the artifacts and their relationships
produced and archived during the evolution of a software system is called mining
software repositories (MSR) (Kagdi, Collard, and Maletic 2007). However, most
repositories have no direct support for mining activities. Implementing an automatic

47

5. Mining Software Repositories to Create Holistic Datasets

data extraction for software repositories is complex, takes a lot of effort and time
and are major obstacles for researchers. Actually, many researchers report, that the
mining task is a barrier in the software engineering domain in general (Liebchen
and Shepperd 2016). This task becomes even more difficult in case a project uses
multiple connected repositories (probably dissected by specific software components),
like distributed ITS and separate VCS. Therefore, researchers request convenient
access to already mined repositories available in an easy way to process (Hassan
2008).

The mining framework developed for this thesis evolved over time and was constantly
improved. It first was used to create and publish the IlmSeven Dataset (Rath,
Rempel, and Mäder 2017). Afterwards, multiple studies about traceability also
benefited from its capabilities (Rath, Goman, and Mäder 2017; Tomova, Rath, and
Mäder 2017; Goman, Rath, and Mäder 2017; Tomova, Rath, and Mäder 2018).
Initially only a project’s ITS could be mined. However, also mining the project’s
VCS was added to permit studies that span a wide range of the software development
process. Eventually this led to the creation of the SEOSS Dataset (Rath and Mäder
2019b).

The reminder of this section is structured as follows. First, the project selection
method is described. Afterwards, the implemented mining process is shown as well
as the storage format of the created SEOSS dataset. The section ends with a formal
definition of the dataset.

5.1. Selecting Projects for Mining

Different ITS and VCS implementations exist. Thus, the selection of projects for
mining also includes which ITS and VCS should be supported by the mining process.
Supporting many ITS and VCS combinations increases the complexity of the mining
procedure. Therefore it was decided to, at first, only support one ITS and VCS,
which simplifies the development of the data collection process. However, this (initial)
limitation could later be resolved by adapting the mining tool chain to other systems,
which mainly requires time and effort. Based on popularity (Project Management
Zone 2018; Stackoverflow 2018), ITS Atlassian Jira and VCS Git were chosen.

Accounting for the ITS selection, three major hosting providers were considered to
retrieve projects: the Apache Software Foundation, JBoss, and the Atlassian Cloud.
A pre-study was conducted and provided a preliminary, quantitative overview of the
artifacts and trace links in hosted projects. Finally, the following selection criteria
were defined:

48

5.2. Collecting Project Artifacts from Multiple Repositories

1. All projects should mainly be written in the same programming language.
This simplifies later analysis once the dataset is created. After studying
programming language polls (GitHub, Inc. 2018; IEEE Spectrum 2017), and
Internet searches (TIOBE Software BV 2021), the Java programming language
was selected.

2. Each project shall contain a rich set of artifacts, and the bug report, requirement
and source code file artifacts should be present.

3. The project shall continuously capture trace links within the ITS, i.e. among
the issues, as well as from ITS to VCS.

4. A project shall have deployed stable releases, and shall be under active devel-
opment for at least three years.

Using these criteria, 33 projects (Rath and Mäder 2019b) were chosen by applying
the information oriented selection strategy Maximum Variation Cases (Flyvbjerg
2006). This methods draws representative samples for project’s characteristics, such
as the amount of artifacts, number of existing trace links, and issue types. The so
created dataset is available online1.

5.2. Collecting Project Artifacts from Multiple
Repositories

The collection process previously designed for the IlmSeven Dataset (Rath, Rempel,
and Mäder 2017), which targeted projects to primarily study traceability was refined
to create SEOSS. The result is a sequential capturing process to gather data per
project as shown in Figure 5.1).

5.2.1. Analyzing a Project’s Issue Tracking System

The first collector is used to extract data from the ITS. It is targeted to operate
with the Jira platform, which offers a RESTful web service. This allows to interact
with the platform programmatically using the provided application programming
interface (API). The collector automatically discovers all project’s artifacts and stores
them locally in JavaScript Object Notation (JSON) format. The downloaded files
are analyzed and contained artifact data and trace links are extracted. Lastly, the
collected data is stored in respective tables (see Sec. 5.3) of the project’s database.

Jira ITS uses a common prefix, typically derived from the project’s name, for all
artifacts inside the repository, e.g. “ZOOKEEPER” for project Zookeeper. The

1. https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/PDDZ4Q

49

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/PDDZ4Q

5. Mining Software Repositories to Create Holistic Datasets

Figure 5.1.: The mining process applied per project in the dataset. It gathers
information from each projects’ ITS and VCS, processes it, and finally
stores it in one database.

50

5.2. Collecting Project Artifacts from Multiple Repositories

prefix is followed by an increasing number2 and is used as a unique identifier for the
artifact, the issue id. Usually, all project artifacts are located in a single repository,
and thus share the same prefix. This is true e.g. for the projects Groovy, Maven, and
Kafka in the SEOSS dataset. However, large projects utilize multiple repositories
such as Hadoop. It consists of four repositories3 with the prefixes HADOOP, HDFS,
MAPREDUCE, and YARN, which all need to be mined. The repositories were
determined by visiting the project’s webpages, and the collector was applied to each
of them. The references of utilized repositories are stored as meta data (see table
meta in Fig. 5.2).

5.2.2. Analyzing a Project’s Version Control System

A second collector gathers information about the commits from the project’s VSC.
The retrieved project commit history is traversed in reverse chronological order,
starting with the most recent change, denoted as HEAD version of the master branch,
back to the first recorded commit (initial version). For each visited commit during
the traversal the commit properties are captured, i.e. the unique commit hash, the
author, timestamp, and the names of the modified source code files. The content of
the files is intentionally not stored. Depending on the project’s size and duration of its
development huge amounts of file changes may arise resulting in huge database files.
But, Git is a content-addressable filesystem4 and implements efficient mechanisms
to minimize the required storage. For example, only file modifications (deltas) are
stored, and not the whole file. The deltas are also regularly compressed to further
reduce storage space. Thus, the collector only captures the number of added and
deleted lines for each file change. This provides a first insight for the magnitude
of the change. In case the actual content is required, the unique commit hash
is used to query the Git. For example, the command git show -pretty="" -U
<commit-hash> <file-path> shows the content for a given file and commit hash.
Each commit message is scanned for unique issue identifiers to retrieve existing trace
links to issues from the ITS (see Sec. 2.4.3). However, since tagging the commit
messages is a manual process it is error-prone, and thus not all commits are tagged.
This situation is extensively studied and discussed in Sec. 7. Eventually, the collected
commit properties and identified trace links are stored in the database.

2. Regular expression pattern for Jira identifiers: https://bit.ly/2L2iZHg
3. https://hadoop.apache.org/issue_tracking.html
4. https://git-scm.com/book/en/v2/Git-Internals-Git-Objects

51

https://bit.ly/2L2iZHg
https://hadoop.apache.org/issue_tracking.html
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects

5. Mining Software Repositories to Create Holistic Datasets

5.3. Organizing Project Artifacts in Unified Storage

Every project of the SEOSS dataset is individually stored in a relational database.
SQLite5 is used for this purpose. SQLite does not follow a client-server architecture
and thus can be easily embedded into programs, which allows easy setup. Further,
bindings for many programming languages exists simplifying working with the data.
SQLite also claims to be the most widely deployed and used database engine in the
world6. Figure 5.2 shows the database schema consisting of eight tables storing the
collected artifact data and one meta table. A detailed description of these tables is
shown in Table 5.1.
Table 5.1.: Description of all tables in a project’s database. The relations among the

tables is shown in Figure 5.2

Table Description
issue This table contains all artifacts extracted from project’s issue

tracker. Each issue includes a unique id, summary, a detailed
description, information about type, status, involved developer
names, and time stamps. The names are available as full names
(e.g. ”John Doe”) and as login names (e.g. ”jdoe”). These
two values allow to relate users of the ITS to those in the VCS
and identify same identities.

issue_link This table contains directed, typed trace links between ITS
artifacts. The type is stored in the name column (e.g. ”Ref-
erence”, or ”Duplicate”), and the reading direction from the
source to the target is stored in the outward_label column.
The column is_containment captures, if the link represents
a parent-child relationship.

issue_comment This tables stores the comment attached to an issue. The
commenting developer is identified by its full name and login
name.

issue_component A mapping table from issue to project specific software com-
ponents (e.g. ”web interface”, ”parser”).

issue_fix_version A mapping table containing the software version when the
respective artifact was (or will be) fixed.

change_set This table contains all commits mined from the project’s VCS.
The commits are uniquely identified by their commit_hash.
Additional information such as the author of the commit (with
full name and login name) and a textual description of the
change are stored.

5. https://www.sqlite3.org
6. https://www.sqlite.org/mostdeployed.html

52

https://www.sqlite3.org
https://www.sqlite.org/mostdeployed.html

5.4. Key Figures of the Created Dataset

change_set_link This table holds the parsed trace links between ITS and VCS
artifacts.

code_change This table contains the files modified for the commits. It stores
the file name and the number added and removed lines. The
actual content of the file is not part of the database. Files are
identified by the file_path. In case the path was modified in
the commit, the former path is available in old_file_path.

meta A meta table containing information about the collection
process. This includes the URLs of the processed ITS and
VCS, time stamps when the mining occurred, and used Git
HEAD commit hashes.

The database stores the collected information as is. For example, ITS texts may
contain markup symbols7 as defined by Jira. A few post processing steps are
performed which only add information and do not alter the original data, and
primarily simplify working with the dataset. For example, the time information may
contain time zones (captured in the *_zoned columns). The time stamps are also
available in universal coordinated time (UTC) for simpler comparison. Further, ISO
8601 encoding8 is used to represent time values (e.g. “2021-05-04T11:22:33”), instead
of locale specific formatting (e.g. “11:22:33am 05/04/21”).

5.4. Key Figures of the Created Dataset

Table 5.2 depicts key figures for each project in the dataset. Each row represents
a project, and the columns depict the number of contained issues, the number of
commits, the amount of issue-to-issue trace links, and finally the number of trace links
from issues to commits. Overall it contains about 280.000 issues, 360.000 commits,
100.000 issue-to-issue links, and 200.000 issue-to-commit links. Based on the selection
criteria, the projects represent various combinations for the measures. For example,
there are large projects in terms of issues, such as Hadoop, Hbase, or Spark. Project
Cassandra has nearly the same amount of commits as Hadoop, but only a third of
the issues. There are projects with few links (issue-to-issue, issue-to-commit), like in
project Errai, and ones with multiple thousands as in project Wildfly.

7. https://bit.ly/2Fh8Vd8
8. https://www.iso.org/iso-8601-date-and-time-format.html

53

https://bit.ly/2Fh8Vd8
https://www.iso.org/iso-8601-date-and-time-format.html

5. Mining Software Repositories to Create Holistic Datasets

issue [table]
issue_id TEXT
type TEXT
created_date TEXT
created_date_zoned TEXT
updated_date TEXT
updated_date_zoned TEXT
resolved_date TEXT
resolved_date_zoned TEXT
summary TEXT
description TEXT
priority TEXT
status TEXT
resolution TEXT
assignee TEXT
assignee_username TEXT
reporter TEXT
reporter_username TEXT

issue_link [table]
source_issue_id TEXT
target_issue_id TEXT
name TEXT
outward_label TEXT
is_containment INTEGER

issue_fix_version [table]
issue_id TEXT
fix_version TEXT

issue_component [table]
issue_id TEXT
component TEXT

issue_comment [table]
issue_id TEXT
username TEXT
display_name TEXT
created_date TEXT
created_date_zoned TEXT
message TEXT

change_set_link [table]
issue_id TEXT
commit_hash TEXT

change_set [table]
commit_hash TEXT
author TEXT
author_email TEXT
committed_date TEXT
committed_date_zoned TEXT
message TEXT
is_merge INTEGER

code_change [table]
commit_hash TEXT
file_path TEXT
old_file_path TEXT
change_type TEXT
is_deleted INTEGER
sum_added_lines INTEGER
sum_deleted_lines INTEGER

meta [table]
key TEXT
value TEXT

Figure 5.2.: Database schema used for each project in the dataset. Primary keys
are bold, and arrows depict foreign key references among the tables.
The tables highlighted in contain data retrieved from the project’s
ITS, and those highlighted in from the project’s VCS. The table
change_set_link holds the identified trace links which connect the
artifacts from the two systems.

54

5.4. Key Figures of the Created Dataset

Table 5.2.: Key figures for the projects of the SEOSS dataset.

#Issue-to-issue #Issue-to-commit
Project #Issues #Commits trace links trace links
Archiva 1,929 8,006 510 2,275
Axis2 5,796 13,114 484 2,609
Cassandra 13,965 23,592 3,363 8,835
Derby 6,969 8,156 3,529 7,263
Drools 5,103 11,117 633 5,528
Errai 1,060 7,645 40 638
Flink 8,100 12,419 1,895 5,328
Groovy 8,137 12,378 987 4,901
Hadoop 39,086 27,776 23,626 29,309
Hbase 19,247 14,331 7,694 13,379
Hibernate 11,971 8,173 3,110 6,942
Hive 18,025 11,179 9,110 11,058
Hornetq 3,286 11,121 732 2,283
Infinispan 8,422 10,654 2,350 7,499
Izpack 1,337 5,489 73 1,804
Jbehave 1,243 3,282 4 1,546
JTM 2,887 2,204 814 1,615
Jbpm 10,397 4,919 2,211 1,133
Kafka 6,219 4,426 1,699 2,893
Keycloak 5,523 10,106 1,408 5,443
Log4j2 2,114 9,792 488 3,309
Lucene 17,329 28,995 4,923 19,111
Maven 5,073 10,315 1,971 2,596
Pig 5,234 3,134 1,479 2,980
Railo 3,326 3,990 45 989
Resteasy 1,649 3,684 280 1,345
Seam2 5,031 11,309 953 3,024
Spark 22,205 20,829 8,070 14,306
Switchyard 3,010 2,928 882 2,428
Teiid 4,899 7,266 723 5,858
Weld 2,518 8,086 665 2,555
Wildfly 24,566 36,711 11,033 22,388
Zookeeper 2,907 1,600 966 1,423

∑ 278,563 358,726 96,750 204,593

55

5. Mining Software Repositories to Create Holistic Datasets

5.5. Defining the Mined Dataset

A formal definition for the projects Proj(seoss)
𝑝 , with 𝑝 ∈ SEOSSproject-names =

{Archiva, … , ZooKeeper} in the SEOSS dataset is

𝑝 ∈ SEOSSproject-names

Proj(seoss)
𝑝 = (𝐼 (seoss)

𝑝 , 𝐶(seoss)
𝑝 , 𝐹 (seoss)

𝑝)

SEOSS = ⋃
𝑝

Proj(seoss)
𝑝

(5.1)

A Proj(seoss)
𝑝 is a tuple containing issues 𝐼, commits 𝐶, and source code files 𝐹 as

described in the artifact model (see Sec. 4.2). SEOSS represents the SEOSS dataset
containing 33 project tuples.

5.6. Summary

Conducting empirical studies requires (large) datasets. The lack of datasets containing
a reasonable amount of requirements, commits, source code files and the trace links
among them motivated to create the SEOSS dataset. It contains the mentioned
artifacts of 33 open-source projects. The artifacts were collected by mining the
projects’ issue tracking systems and version control systems. This section first
described how the 33 projects were selected to get a representative sample out
of existing projects. Next the design and implementation of the fully automated
mining process was explained. It consists of two individual data processing pipelines
handling the issue tracker artifacts and version control system artifacts respectively.
An interlinking processing step discovers trace links among the artifacts of the two
pipelines. All collected data is stored in a per project database. Afterwards, the
database schema, which is identical for all projects, was discussed. Next, key figures
and characteristics of the mined projects were presented. The section ended with
a formal definition and notation of the SEOSS dataset, which will be used in the
remainder of this thesis. The SEOSS dataset serves as an essential foundation to
develop, investigate, and study the presented algorithms, especially the novel bug
localization algorithm, of this thesis.

56

6. The ABLoTS Bug Localization Approach

Related Publication This section is based on the publication

Paper II (Rath, Lo, and Mäder 2018): M. Rath, D. Lo, and P. Mäder.
“Analyzing requirements and traceability information to improve bug
localization.” in Mining Software Repositories (MSR), pages 442–453,
2018

A novel component for an IR-based bug localization algorithm is developed in this
section. It utilizes bug reports, issue artifacts and existing issue-to-issue trace links
mined from a project’s ITS. With this information, a TraceScore is calculated for
source code files leveraging the bug report at hand, previously resolved bug reports
and requirements, and the trace links among these artifacts. The resulting source
code file rankings created by this score outperforms existing approaches which
also incorporate previously fixed bug reports (see Section 8.4). Plugged into the
Automated bug localization algorithm using TraceScore (ABLoTS), TraceScore boosts
the overall IR-based bug localization performance.

The hypothesis of this section is, that the “similar report” component of a bug
localization algorithm (see Fig. 3.1) could be considerably improved, by leveraging
two additional information resources. First, instead on only focusing on previously
filed bug reports, the whole history of the development process and created artifacts
should be leveraged. Especially the issues from the ITS are interesting in this regard.
Using all issues overcomes the problem, that the similar report component is only
capable to propose source code files, if these were already part of a previous bug fix.
Instead, source code files modified by other software changes, such as implementing
a new feature, introduce bugs as well (Sliwerski, Zimmermann, and Zeller 2005;
Kim, Jr., and Zhang 2008). Because of this scope extension beyond bug reports, the
novel component is classified as similar issue component throughout this section.
Second, the component should utilize the established trace links between artifacts.
For example in modern system development, once a requirement or improvement is
implemented, trace links to the changed source code files are created (Schermann
et al. 2015; Rath, Rempel, and Mäder 2017). This also applies to bug reports
such that the modified source code files for previously fixed bugs are identifiable.
Thus, related artifacts can be detected independent from their textual representation
utilizing trace links. However, as complete traceability is difficult to create and
maintain, textual similarity can be used as fall-back approach.

57

6. The ABLoTS Bug Localization Approach

Figure 6.1.: Traceability graph example in project Pig. The implemen-
tation of improvement PIG-3979 modifies source code file
SpillableMemoryManager.java and introduces a bug. This is
later removed when resolving bug report PIG-4564, which is explicitly
traced to improvement PIG-3979. Thus considering source code file
changes introduced by implementing requirements may provide valuable
information for bug localization. The novel algorithm TraceScore
introduced in this section exposes this observation.

6.1. Motivating Example to Leverage ITS Project
Data for Bug Localization

Figure 6.1 shows the traceability graph for issue artifacts PIG-39791 and PIG-
45642. The requirement (typed as “improvement”) PIG-3979 modifies four source
code files, distributed over three commits, and is explicitly traced to bug report
PIG-4564. Implementing the improvement introduced a bug in source code file
SpillableMemoryManager.java, which is then fixed by resolving bug report PIG-
4564. Thus also considering requirement documents in the bug localization process
provides valuable information to localize bugs in the projects’ source code.

1. https://issues.apache.org/jira/browse/PIG-3979
2. https://issues.apache.org/jira/browse/PIG-4564

58

https://issues.apache.org/jira/browse/PIG-3979
https://issues.apache.org/jira/browse/PIG-4564

6.2. Multi-Component IR-Based Bug Localization Algorithms

6.2. Multi-Component IR-Based Bug Localization
Algorithms

Bug localization algorithms are usually composed of multiple components (see
Sec. 3.1.3). This section analyzes the internal structure of two existing algorithms.
Further, similar bug report components are studied. The results, especially the
identified shortcomings, if these algorithms lead to the novel approaches presented
in sections after this one.

6.2.1. Dissecting Existing Algorithms

This section takes a closer look at two bug localization algorithms. Especially the
internal components, mechanics, and their interplay are reviewed. The algorithms
were chosen, because they represent the most evolved IR-based approaches with
published source code3. This easily enables their application on new datasets without
relying on previously published ones. Further, there is no need to re-implement the
algorithms, which is especially error-prone for highly sophisticated approaches.

BLUiR BLUiR is a bug localization algorithm using structured information retrieval
based on code constructs, such as class and method names (Saha et al. 2013). It
takes the textual information of a bug report to query the project’s source code. For
each source code file, its abstract syntax tree (AST) is created in order to extract
class names, method names, identifiers, and comments. The Indri toolkit (Strohman
et al. 2005; The Lemur Project 2020) is utilized within BLUiR for efficient indexing
the extracted parts for the entire projects’ code base. Next, the bug report’s summary
and description fields are used to query the index and retrieve similar source code
files. The matching is performed using vector representations of the source code file
parts and the bug report fields, i.e. summary and description. Using these vectors,
a similarity calculation based on BM25 (Okapi) model (Robertson, Walker, and
Beaulieu 2000) is performed. BM25 (Okapi) is a well established variant of the tf-idf
model (see Eq. 2.2). It has two parameters 𝑘1, a term weight scaling parameter,
and the document normalization parameter 𝑏. The authors of BLUiR fine tuned the
usually applied values from 𝑘1 = 1.25, 𝑏 = 1.0, to 1.0 and 0.3 respectively. They
argue, that localization using bug reports is different from traditional text retrieval
parameters need to be adjusted appropriately.

3. The author highly appreciates the descriptions of algorithms within published papers to
outline the core ideas. However, often the presented algorithms are difficult re-implement in order
to re-create achieved results.

59

6. The ABLoTS Bug Localization Approach

Eight individual searches for all combinations of bug report fields and source code
file parts are considered yielding eight separate similarity score values. The final
score is than calculated by summing all individual similarities as

score(𝑓, 𝑏) = ∑
𝑓𝑝

∑
𝑏𝑓

sim(𝑓𝑝, 𝑏𝑓) (6.1)

, where 𝑓𝑝 is a part of a source code file 𝑓 ∈ ℱ, and 𝑏𝑓 is a field of a bug report
𝑏 ∈ ℬ. The function sim(𝑓𝑝, 𝑏𝑓) is the cosine similarity calculation for the vector
representations of 𝑓𝑝 and 𝑏𝑓. The score(𝑓, 𝑏) is used to rank the source code files for
the bug 𝑏.

A compiled version of BLUiR is available online (Ripon Saha 2016).

AmaLgam AmaLgam is an advanced IR-based bug localization algorithm with
publicly available source code (Wang 2017). It consists of three components, each
calculating a suspiciousness score Susp𝑎, 𝑎 ∈ {R, S, H} for a given bug report 𝑏cur ∈ ℬ.
SuspR(𝑏cur) represents SimiScore, which is analyzed in the next section. SuspS(𝑏cur)
is the source code structure component taken from BLUiR, and SuspH(𝑏cur) is
the history component taken from the BugCache algorithm (S. Kim et al. 2007).
BugCache maintains a relatively short list containing the most fault-prone source
code files, i.e. files, that recently were modified to fix bugs. This list is then used to
predict source code files for a new bug report 𝑏cur.

The composer component in AmaLgam uses two weighting factors 𝑎 and 𝑏 to calculate
a final suspiciousness score SuspS,R,H(𝑏cur) using the three described individual scores.
SuspS,R,H is than used to rank the source code files.

6.2.2. Analyzing Algorithms used in Similar Bug Report
Components

Similar report components utilize the knowledge about previously resolved bug
reports and the thereby modified source code files, to relate them to a current,
unresolved bug report. Let 𝐵res ⊆ ℬ be the set of all bug reports that were
resolved before a current new bug report 𝑏cur ∈ ℬ ∧ 𝑏cur ∉ 𝐵res. Further, the set
𝐹res = {changedI(𝑏) | 𝑏 ∈ 𝐵res} denotes the set of all source code files, that were
changed to resolve the bug reports in 𝐵res. Using 𝑏cur, 𝐵res, and 𝐹res, the similar
issue component calculates a score for each source code file 𝑓 ∈ 𝐹res, which is used
to created the ranked output list. It is important to note, that 𝐹res ⊆ ℱ, i.e. the
set might not correspond to all source code files in the project. It only contains
those files that were part of a bug fix before 𝑏cur was filed. This inherently limits the

60

6.3. Designing a Similar Issue Component - TraceScore

search space of the similar issue component. For example, the component is unable
to rank source code files that were never modified in order to fix a bug.

A widely applied similar issue component is SimiScore, which was developed by Zhou
et al. for the bug localization algorithm BugLocator (Zhou, Zhang, and Lo 2012).
SimiScore was later used in the more advanced algorithms BLUiR+ (Saha et al. 2013),
BRTracer (C. Wong et al. 2014), AmaLgam (Wang and Lo 2014), AmaLgam+ (Wang
and Lo 2016), and HyLoc (Lam et al. 2015). It is defined as follows

SimiScore(𝑓, 𝑏cur, 𝐵res) = ∑
𝑏 ∈ {𝑏𝑖|𝑏𝑖 ∈ 𝐵res

∧ 𝑓 ∈ changedI(𝑏𝑖)}

sim(𝑏, 𝑏cur)
| changedI(𝑏)|

(6.2)

The function sim ∶ ℐ × ℐ → {0 … 1} describes the textual similarity (see Eq. 2.1)
between two issues.

The similar issue component Collaborative Filtering Score (CollabScore) was devel-
oped by Ye et al. for the bug localization approach Learning to Rank (LR) (Ye,
Bunescu, and Liu 2014), and later reused in an improved version LR+WE (Ye
et al. 2016). It is defined as follows

CollabScore(𝑏cur, 𝑓) = simcollab (𝑏cur, br(𝑓)) 𝑓 ∈ ℱ

The function br returns the set of resolved bug reports for which a source code file
𝑓 ∈ ℱ was fixed before 𝑏cur was filed

br(𝑓) = {𝑏|𝑏 ∈ 𝐵res ∧ 𝑓 ∈ changedI(𝑏)}

In order to calculate the textual similarity, the summaries of all bug reports returned
by 𝑏𝑟 are combined. CollabScore uses a different function simcollab than SimiScore to
calculate the textual similarity. Further, it does not consider the number of source
code files that have been modified to fix a bug.

6.3. Designing a Similar Issue Component -
TraceScore

This section describes the TraceScore approach, a novel similar bug report component
for IR-based bug localization algorithms. However, it considers all issus from the

61

6. The ABLoTS Bug Localization Approach

Figure 6.2.: Structure of the novel similar issue component TraceScore. The project’s
requirement artifacts and the current bug report 𝑏cur are used as input.
The output is a ranked list of source code files that are relevant for the
bug report.

ITS and thus is classified as similar issue component. Further, the novel component
uses historical project data enriched with trace data, that is currently not leveraged
by existing algorithms. The TraceScore approach differs from previous approaches
SimiScore and CollabScore in two points.

1. It considers all issue artifacts, not only bug reports, that were resolved before
𝑏cur was created. Thus it also covers other development activities that modify
the source code and thus may introduce bugs, such as realizing requirements
or implementing features.

2. Not all previously resolved bug reports and issues are incorporated in the
approach. Instead, the artifacts are conditionally filtered.

Overall, the approach is divided in four steps described in the following sections.
The internal structure of TraceScore is shown in Figure 6.2. The inputs are bug
reports and requirements that have been resolved before the current bug report 𝑏cur.
The output is a ranked source code file list that may contained the bug.

6.3.1. Selecting Project Artifacts

Initially TraceScore considers all previously resolved issues in order to localize a
bug described in bug report 𝑏cur. But, the amount of issues can become quite large,
depending on developer activity and age of the project. Therefore this amount

62

6.3. Designing a Similar Issue Component - TraceScore

is reduced by purposefully selecting issues. First, a filter restricts the number of
changed source code files for resolving an issue. The rationale for this filter is that
large source code changes in multiple files only provide small information gain on
an individual source code file basis. The second filter is time based, which has been
successfully applied in other studies as well (Lewis and Ou 2011). It excludes issue
artifacts, that were resolved a specified time before bug report 𝑏cur was filed. The
reasoning for this filter is, that the maturity of a source code files increases the
longer it has not been modified. The function diff(𝑎, 𝑏) = 𝑑, with 𝑎, 𝑏 ∈ ℐ, 𝑑 ∈ ℕ
calculates the number of days 𝑑 issue 𝑎 was resolved before issue 𝑏 was reported.
However, instead of using a smoothing effect along the time axis (Lewis and Ou
2011), TraceScore applies a hard cut off. Formally, the artifact selection and filtering
leads to the following two artifact sets.

𝑅sel = {𝑟∣| changedI(𝑟)| ≤ 𝑁req ∧ diff(𝑟, 𝑏cur) ≤ 𝐷req} 𝑟 ∈ ℛ
𝐵sel = {𝑏∣| changedI(𝑏)| ≤ 𝑁bug ∧ diff(𝑏, 𝑏cur) ≤ 𝐷bug} 𝑏 ∈ ℬ

(6.3)

The parameters 𝑁req and 𝑁bug define an upper limit for the number of changed
source code files for the respective requirement and bug report. The upper limits for
the time difference is specified by parameters 𝐷req and 𝐷req.

6.3.2. Textual Processing

The summary and description of the issues 𝑖 ∈ {𝑏cur} ∪ 𝐵sel ∪ 𝑅sel are preprocessed
using a standard pipeline as described in Section 2.5.1. First, stop words are removed,
and combined words (CamelCase) are split. Afterwards the tokens are lowercased
and stemmed. The resulting terms built the vocabulary of an issue corpus. Next all
vector space representations of the issues are created like for SimiScore, i.e. using
the logarithmic tf-idf term weighting scheme.

6.3.3. Constructing a Traceability Graph

The selected artifact sets 𝑅sel, 𝐵sel, the current bug report 𝑏cur, and all modified
source code files by these artifacts (𝐹sel) are used as nodes to construct the traceability
graph. The set 𝐹sel is defined as

𝐹sel = {𝑓|𝑓 ∈ {changedI(𝑖)|𝑖 ∈ 𝑅sel ∪ 𝐵sel}}

Edges between the issue artifacts and source code files are added based on respective
changedI sets, i.e. changedI(𝑖, 𝑓) ∀𝑖 ∈ 𝑅𝑠𝑒𝑙 ∪ 𝐵sel, ∀𝑓 ∈ 𝐹sel. Lastly, weighted edges

63

6. The ABLoTS Bug Localization Approach

Figure 6.3.: Example traceability graph according to the defined artifact model
created to recover trace links for bug report 𝑏cur to source code files.

from 𝑏cur to all selected issues 𝑅sel ∪ 𝐵sel are added. The edge weight is defined by
the following weighting function

weight(𝑖, 𝑏) = {
1 if isLinkedI(𝑖, 𝑏) = 1
sim(𝑖, 𝑏) otherwise

𝑖, 𝑏 ∈ ℐ (6.4)

The resulting graph allows to trace from 𝑏cur to all selected source code files in 𝐹sel.
An issue-to-issue edge weight is 1 if 𝑏cur is linked to another issue, i.e. a developer
explicitly created a trace link in the ITS between these issues. In case no such
trace link exists, text based similarity calculated by sim using the same formula as
SimiScore (see Eqs. 2.1, 2.2) is used to determine the edge weight.

Figure 6.3 shows an example for such a traceability graph. Its nodes are the current
bug report 𝑏cur, the selected requirements 𝑅sel = {𝑟0, 𝑟1, 𝑟2}, the selected bug reports
𝐵sel = {𝑏0, … , 𝑏3}, and the respective source code files 𝐹sel = {𝑓0, … , 𝑓11}, that were
changed to resolve the requirements and bug reports.

64

6.3. Designing a Similar Issue Component - TraceScore

6.3.4. Analyzing the Traceability Graph

The traceability graph is used to calculate a TraceScore for each contained source
code file. The formula is an evolved version of the one used by SimiScore (see Eq. 6.2).
Simply applying the SimiScore formula also to requirements is not advantageous.
Incorporating these new artifacts potentially extends the bug localization search
space to more defective files, especially those that were never modified for a bug
fix before. But this larger search space also increases the likelihood to retrieve
false positives. The reason for this is the SimiScore calculation scheme which sums
up ratios for each source code file 𝑓 ∈ ℱ. Each ratio is derived from the textual
similarity of the current bug report 𝑏cur to a bug report 𝑏 ∈ 𝐵res that modified 𝑓
divided by the total number of source code files that were modified to resolve 𝑏. For
example, the SimiScores for the source code files 𝑓0 and 𝑓10 in Figure 6.3 are

SimiScore(𝑓0, 𝑏cur) = sim(𝑟0, 𝑏cur)
4

= 0.8
4

= 0.2

SimiScore(𝑓10, 𝑏cur) = sim(𝑏2, 𝑏cur)
3

+ sim(𝑏3, 𝑏cur)
2

= 0.2
3

+ 0.3
2

≈ 0.22
(6.5)

The source code file 𝑓0 was changed to implement requirement 𝑟0, which has a high
textual similarity to 𝑏𝑐𝑢𝑟. Thus, it is likely, that this source code file needs to be
modified to resolve the bug report. However, the source code file 𝑓10 has a higher
SimiScore. This file was changed for bug fixing multiple bug reports with far less
textual similarity as 𝑏𝑐𝑢𝑟 and therefore it is unlikely it needs to be changed to resolve
𝑏𝑐𝑢𝑟. But the summation (linear combination) of the ratios, which are nonlinear
terms because of the underlying cosine function to calculate the similarity, vanishes
the discriminating similarity terms. Thus 𝑓10 is ranked higher than 𝑓0 by SimiScore
neglecting the textual similarity values.

TraceScore overcomes these deficiencies based on the following assumptions.

1. A small number of source code files 𝐹bug need to be changed to fix a bug:

𝐹bug = | changedI(𝑏)| = small

2. Implementing requirements is more complex than resolving bug reports. Thus,
on average, more source code files 𝐹req = | changedI(𝑟)|, 𝑟 ∈ ℛ need to be
changed:

𝐹req > 𝐹bug

65

6. The ABLoTS Bug Localization Approach

3. Source code files are more often changed by bug fixes than for implementing
requirements:

𝑇bug = ∣{𝑏|𝑏 ∈ ℬ ∧ 𝑓 ∈ changedI(𝑏)}∣
𝑇req = ∣{𝑟|𝑟 ∈ ℛ ∧ 𝑓 ∈ changedI(𝑟)}∣
𝑇bug > 𝑇req

Using these assumptions, TraceScore is defined as

TraceScore(𝑓, 𝑏cur, 𝑅sel, 𝐵sel) = ∑
𝑖 ∈ {𝑥|𝑥 ∈ 𝑅sel ∪ 𝐵sel

∧ 𝑓 ∈ changedI(𝑥)}

weight(𝑖, 𝑏cur)2

| changedI(𝑖)|
(6.6)

The first and second assumption affect the denominators in the formula. For example,
there are two source code files 𝑓0 and 𝑓1, whereas 𝑓0 is changed to implement a
requirement 𝑟, and 𝑓1 to fix a bug 𝑏. Both artifacts are connected to 𝑏cur with
the same edge weights, i.e. weight(𝑟, 𝑏cur) = weight(𝑏, 𝑏cur) = 𝑤. Using the second
assumption, the added ratio for a source code file is larger, if it was changed because
of a bug fix: 𝑤2

𝐹bug
> 𝑤2

𝐹req
.

The third assumption affects the number of summed terms. If a source code file is
modified to fix multiple bugs, the ratio terms add up and, because of assumption
2, would result in similar problems of vanishing textual similarity as described for
SimiScore. The effect is compensated by squaring the edge weights and pruning
the traceability graph. The square function reintroduces nonlinearity by dampening
low textual similarity. However, explicit established trace links with an edge weight
of 1 remain unchanged. The pruning step occurs during the artifact selection (see
Eq. 6.3). The parameters 𝐷req and 𝐷bug limit 𝑇req and 𝑇bug, whereas the parameters
𝑁req and 𝑁bug constrain 𝐹req and 𝐹bug.

Calculating the TraceScore for 𝑓0 and 𝑓10 in Figure 6.3 results in

TraceScore(𝑓0, 𝑏cur) = 0.82

4
= 0.16

TraceScore(𝑓10, 𝑏cur) = 0.22

3
+ 0.32

2
≈ 0.058

(6.7)

Contrasting SimiScore (see Eq. 6.5), TraceScore ranks 𝑓0 higher than 𝑓10, i.e. it is
more likely 𝑓0 needs to be changed to resolve 𝑏cur.

66

6.4. Refining the Source Code Structure Component - LuceneScore

The differences between Equation 6.2 and Equation 6.6 are subtle, but combined
with the artifact selection, have a significant influence for achieved bug localization
performance, as discussed in Section 8.

6.4. Refining the Source Code Structure Component -
LuceneScore

LuceneScore is a source code structure component inspired by BLUiR. BLUiR
performs multiple searches for each bug report and source code file, based on the
bug reports fields and the source code file parts. Then, a final score is calculated
by summing the individual search results (see Eq. 6.1). This summation is handled
internally by the Indri toolkit (The Lemur Project 2020) utilized in the retrieval
process. However, the toolkit is no longer actively developed, difficult to compile
nowadays, and thus hard to adapt to new use cases. Therefore an evolved version of
BLUiR, called LuceneScore, using the open-source project Apache Lucene™ (Apache
Lucene Developers 2021) was developed for this thesis. The motivation is to support
capturing the individual searches results for each source code file part. This allows to
apply more sophisticated methods for integrating source code structure information
rather than a simple sum as in BLUiR (see Eq. 6.1).

The internal structure of LuceneScore is shown in Figure 6.4. LuceneScore creates
the abstract syntax trees for all source code files 𝑓 ∈ ℱ using the open-source
JavaParser toolkit (JavaParser Developers 2021) in order to extract contained class
names, method names, identifiers, and comments. LuceneScore performs the same
text preprocessing steps, i.e. tokenization, stop word removal, and stemming, on the
extracted source code file parts as described in the original BLUiR publication (Saha
et al. 2013). Afterwards, the preprocessed source code parts are indexed with Apache
Lucene™. Like in BLUiR the BM25 (Okapi) model is used, but the default values
of 𝑘1 = 1.25 and 𝑏 = 0.3 are not changed, contrasting BLUiR. For retrieval, the
summary and description of a bug report 𝑏𝑐𝑢𝑟 ∈ ℬ are preprocessed in the same way
as extracted source code file parts. Then, five individual searches are executed, each
resulting in a score value. The first four scores are retrieved by searching only in the
respective source code file parts, i.e. class names, method names, identifiers, and com-
ments, yielding the scores: luceneclass(𝑓, 𝑏cur), lucenemeth(𝑓, 𝑏cur), luceneident(𝑓, 𝑏cur),
and lucenecomm(𝑓, 𝑏cur) using the combined and tokenized summary and description
of the bug report as input. The fifth retrieval is a combined search in all source code
file parts at once yielding lucenecomb(𝑓, 𝑏cur).

To conclude, LuceneScore conceptually operates like BLUiR, but (a) does not change
the commonly used default values of the BM25 model, (b) always uses the combination

67

6. The ABLoTS Bug Localization Approach

of the bug reports’ summary and description for retrieval, (c) is able to output five
individual score values, and (d) supports direct retrieval from all source code file
parts at once.

lucenecomb(𝑓, 𝑏cur) is the score to rank the retrieved source code files in case Luce-
neScore is used as standalone bug localization algorithm.

6.5. Utilizing TraceScore in a Bug Localization
Algorithm - ABLoTS

A new algorithm Automated bug localization algorithm using TraceScore (ABLoTS)
was created for this thesis to study the application of TraceScore component in an
IR-based bug localization algorithm.

6.5.1. Internal Structure of ABLoTS

ABLoTS is based on ideas of AmaLgam (see Sec. 6.2). But, the similar issue compo-
nent SimiScore of AmaLgam, i.e. SuspR, is replaced with TraceScore. Additionally,
the source code structure component SuspS is replaced with the more detailed scores
provided by LuceneScore. Lastly, the composer component, which uses a fixed
weighting scheme in case of AmaLgam, is changed in favor for a supervised classifier.
The resulting structure of ABLoTS is depicted in Figure 6.5.

Supervised learning refers to learn a model from labeled training data. This later
allows to make predictions about future or unseen data. The term supervised means,
that the labels are known. In case the labels are discrete classes, the supervised task
is termed classification and a classifier predicts the class of given data points. In
context of bug localization, the data points are pairs of bug reports and source code
files, represented by features. There are two classes, either the respective source code
file is relevant for the bug report or not.

6.5.2. The Composer Component of ABLoTS

The relationship between a bug report and a candidate source code files needs to be
represented such that it can be processed by the classifier in the composer component.
This leads to the creation of feature vectors. The components of theses vectors are
the five score values calculated by LuceneScore, the TraceScore, and the BugCache
score. For a given bug report 𝑏cur, first LuceneScore is applied yielding a list 𝑙LS of
candidate source code files accompanied with five calculates score values (see Sec. 6.4).

68

6.5. Utilizing TraceScore in a Bug Localization Algorithm - ABLoTS

Figure 6.4.: Structure of LuceneScore, based on the works of Saha et al. (Saha et
al. 2013). The projects’ source code files are separately indexed by class
names, method names, identifiers, and comments using Apache Lucene™.
For retrieval, all textual information of a bug report 𝑏cur is used as a
query against the individually indexed source code parts, as well as all
parts combined. This yields five score values for every retrieved source
code file.

69

6. The ABLoTS Bug Localization Approach

Next, TraceScore(𝑓, 𝑏) is calculated for 𝑏, resulting in a second list 𝑙TS of candidate
source code files and their TraceScore values. After that, the BugCache algorithm
is applied yielding the list 𝑙BC of source code files accompanied by respective score
BugCache(𝑓, 𝑏). Next, the feature vectors are assembled. Therefore, for every source
code file 𝑓 in list 𝑙LS, the five scores are taken, and the respective trace scores of
𝑓 from 𝑙TS, and bug cache scores from 𝑙BC are collected. If no values are available,
the respective score is set to 0.0. For example, based on the TraceScore algorithm,
not every project’s source code file has a TraceScore, because it only is “aware”
of source code files that have been previously modified to resolve another issue,
whereas LuceneScore operates on the whole code base. The collected score values
are represented as feature vector x(𝑖) ∈ ℝ1×7 (see Eq. 6.8) having seven feature
dimensions for each bug report 𝑏 and source code file 𝑓

x(𝑖) =

⎡
⎢
⎢
⎢
⎢
⎣

luceneclass(𝑓, 𝑏)
lucenemeth(𝑓, 𝑏)
luceneident(𝑓, 𝑏)
lucenecomm(𝑓, 𝑏)
lucenecomb(𝑓, 𝑏)
TraceScore(𝑓, 𝑏)
BugCache(𝑓, 𝑏)

⎤
⎥
⎥
⎥
⎥
⎦

𝑇

(6.8)

The notation x𝑖 refers to the column vector for the ith feature dimension, and
𝑥(𝑗)

𝑖 denotes the jth feature in this dimension. Letters in italics, i.e. 𝑥(𝑛) or 𝑥(𝑛)
𝑚 ,

refer to single elements in a vector or matrix. Bold-face letters refer to vectors
(lowercase) or matrices (uppercase). All feature vectors are combined into a feature
matrix X ∈ ℝ𝑛×7, whereas 𝑛 depends on the retrieved source code files per bug
report, which may vary. The column vector y = [𝑦(0) 𝑦(1) … 𝑦(𝑛−1)]𝑇 ∈ ℝ1×𝑛 with
𝑦(𝑖) ∈ {0, 1} encodes, whether the source code file was modified to resolve the bug
report (i.e. 𝑦(𝑖) = 1), which is represented by the respective feature vector x(𝑖). Every
x(𝑖) and 𝑦(𝑖) is an instance representing a particular combination of bug report and
source code file, and each bug report is described by multiple instances (seeTab. 6.1).
It is assured, that an instance for every source code file that was actually fixed to
resolved a bug reports exists. In case none of ABLoTS’ components suggested this
file, an artificial instance with all features set to zero is created.

The feature matrix X and the target vector y are used to train a random forest
classifier implemented in Python scikit-learn package (Buitinck et al. 2013). This
type of classifier was chosen, because it has been successfully applied in other software
engineering studies (Guo et al. 2004). Random forests are highly accurate and robust
against noise, although they may be expensive to run on large datasets (Breiman
2001). The classifier resembles ABLoTS’ composer component, and replaces the fixed
weighting scheme used in AmaLgam (see Sec. 6.2). Instead, during training, the

70

6.5. Utilizing TraceScore in a Bug Localization Algorithm - ABLoTS

Figure 6.5.: Structure of ABLoTS bug localization algorithm utilizing LuceneScore,
TraceScore, and the version history component BugCache. A random
forest classifier is used as composer component to create a ranked list of
source code files that need to be modified to resolve the bug report 𝑏cur.

Table 6.1.: Visualization of the feature vector layout to train the composer component
of ABLoTS. Each row in the table, an instance, encodes a bug report and
source code file pair accompanied by the calculated feature vectors x(𝑖)

and whether this file was fixed to resolve the bug report (𝑦(𝑖)). Typically,
every bug report is represented by multiple instances.

Bug report Source code file Feature vector Target value
𝑏0 𝑓? x(0) 𝑦(0)

⋮ ⋮ ⋮ ⋮
𝑏0 𝑓? x(𝑗) 𝑦(𝑗)

⋮ ⋮ ⋮ ⋮
𝑏𝑚 𝑓? x(𝑘) 𝑦(𝑘)

⋮ ⋮ ⋮ ⋮
𝑏𝑚 𝑓? x(𝑛−1) 𝑦(𝑛−1)

71

6. The ABLoTS Bug Localization Approach

classifier infers a function which maps the features (inputs) to outputs, i.e. whether
a source code file is a candidate for fixing a bug.

Training the classifier requires that the values in a feature dimension x𝑗 ∈ ℝ𝑛×1 are
comparable, i.e. they need to have the same scale. This is not true for the initial
construction of X. The retrieved values from LuceneScore are only valid on a per
bug report basis and cannot be compared across different searches. For example, the
maximum lucenecomb score for a bug report 𝑏0 might be orders of magnitudes larger
than that for bug report 𝑏1. These scores are only valid to rank source code files
for a given bug report, not to compare source code files from different queries. Also,
the magnitude of the score does not quantify its quality. The score only states, that
the best match in a lucene search has the highest value, independent of the actual
magnitude. The same applies to TraceScore, where the values might be arbitrarily
small or large, depending on the weight distribution and number of terms in the
calculated sum (see Eq. 6.6). To address the scaling issues, the feature matrix X is
normalized per feature dimension on a per bug report basis. Afterwards each 𝑥(𝑖)

𝑗 is
in the range 0.0 … 1.0.

6.6. Summary

This section described IR-based bug localization in detail. It started with the
idea to integrate requirement artifacts and issue-to-issue trace links motivated by
an example. Next, the internal structure of IR-based bug localization algorithms
was reviewed. Here, the similar issue component was of special interest. Adding
the ability to leverage requirement artifacts and trace links among them has the
potential to improve the bug localization performance. Therefore two existing
similar issue components were studied, current limitations discussed, and how the
aforementioned artifacts can be integrated. With the gained knowledge a novel
similar issue component TraceScore was created. Afterwards, an existing approach
analyzing the source code structure was refined and LuceneScore created. Finally,
both approaches TraceScore and LuceneScore were combined with a random forest
to build the novel IR-based bug localization algorithm ABLoTS.

72

7. Automatically Augmenting Incomplete
Issue-to-Commit Trace Links

Related Publications This section is based on the following publications

Paper III (Rath et al. 2018): M. Rath, J. Rendall, J. L. C. Guo, J.
Cleland-Huang, and P. Mäder “Traceability in the wild: automatically
augmenting incomplete trace links” in ICSE, pages 834-845, 2018

Paper V (Rath, Tomova, and Mäder 2020): Michael Rath, Mihaela
T. Tomova, and Patrick Mäder “SpojitR: Intelligently link development
artifacts” in International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2020

The bug localization approach developed in the previous section showed, that issue
artifacts and trace links can be utilized to improve the bug localization performance.
It relies on trace links from issues to source code files. Manually establishing and
maintaining these links requires a lot of effort. In non-regulated domains such as
open-source systems this task is often perceived as prohibitively expensive. The
majority of papers addressing traceability in open-source systems have focused on
directly establishing trace links between issues and source code (Canfora and Cerulo
2005; Zhou, Zhang, and Lo 2012; Kuang et al. 2012; Kuang et al. 2015; Kuang
et al. 2017). Therefore, a novel approach focusing on generating the missing trace
links at the commit level is proposed. It also incorporates information of the project’s
workflow, lifecycle and stakeholder interaction, and thus not solely relies on textual
similarities as most trace link recovery algorithms do. This provides traceability
support within the natural context in which developers are creating trace links. The
key figures of dataset shown in Table 5.2 revealed, that trace links exist in every
project, but are not complete. The developers failed to create or simply forgot to
add them in the first place (Bachmann and Bernstein 2009; Romo, Capiluppi, and
Hall 2014). Therefore there is potential to augment the existing issue to source code
trace link set for the projects. The trace links between issues and commits further
provide building blocks for inferring project-wide traceability, which enables more
accurate support for defect prevention (Rempel and Mäder 2017), change impact
analysis, coverage analysis, and enhanced support for recommending developers for
bug fixing (Anvik, Hiew, and Gail C. Murphy 2006). Thus an automated approach
called trace link set augmentation (TLSA) based on machine learning techniques is

73

7. Automatically Augmenting Incomplete Issue-to-Commit Trace Links

proposed in this section. It leverages existing issue-to-commit trace links in a project
which have been created by tagging commit messages. Additionally, information of
the commit process and textual similarities is used.

7.1. Analyzing Existing Issue-to-Commit Trace Links

The Tables 7.1, 7.2 show key figures of existing trace links for a subset of the SEOSS
projects1. In particular, Table 7.1 depicts the linkage from the commit perspective,
i.e. a commit is linked to exactly one bug or requirement (1:1 columns), to multiple
issues (1:n column), or not linked at all. If linked, a commit is most commonly linked
to exactly one issue. An exception is project Hadoop, where a larger proportion of
commits are tagged with multiple issue identifiers. An example for such a commit is
04cc1d6142 which reads “HADOOP-8251. Fix SecurityUtil.fetchServiceTicket after
HADOOP-6941. Contributed by [developer name left out]”. It contains two issue
references and thus the commit is traced to these issues. However, this seems to
be a pattern specific for project Hadoop. Interestingly, there are different ratios for
unlinked commits ranging from low linked project Errai (91% of commit are not
linked), up to highly linked project Zookeeper, where only 8% of commits are not
linked. On average, 40% of all commits are not linked in the studied projects.

Table 7.2 shows the trace links viewed the other way around, i.e. from the issue
perspective. An issue, either bug report or requirement, is linked to exactly one
commit (1:1 columns), or to multiple commits (1:n columns). It is important to
note, that in this specific subset of the SEOSS dataset all selected issues are linked
to at least one commit, and thus no nonlinked issues exist. There is a trend, that it
is more likely a bug is traced to exactly one commit. For example, in project Hive
this is true for 98% of all bug reports. On the lower end is project Keycloak, where
only 26% of all bug reports follow this pattern. On average 77% of all bug reports
are traced to exactly one commit. A similar behavior can be seen for requirements,
but lower in magnitude. Revisiting the mentioned example projects, 93% percent of
requirements are linked to one commit (project Hive), and 26% for project Keycloak.
On average 68% of all requirements are linked to exactly one commit.

1. The motivation for this special subset is given in the evaluation (see Sec. 8.2.1)
2. https://bit.ly/3iP6IY9

74

https://bit.ly/3iP6IY9

7.1. Analyzing Existing Issue-to-Commit Trace Links

Table 7.1.: Linkage from commit perspective in (subset of) SEOSS. A commit is either
linked to exactly one requirement (Req.) or bug report (1:1 columns), to
multiple ones (1:n columns) or not linked at all.

#Linked #Linked #Linked Unlinked
Project 1:1 Bug Reports Req. 1:n #Unlinked Ratio
Archiva 485 796 125 2,396 0.64
Derby 2,547 2,902 287 909 0.14
Drools 1,937 2,322 156 4,164 0.49
Errai 315 222 11 5,497 0.91
Flink 1,452 1,792 70 5,912 0.64
Groovy 2,275 1,147 127 4,382 0.56
Hadoop 9,849 10,652 1,685 267 0.01
Hbase 5,092 4,880 328 622 0.06
Hibernate 2,781 2,568 151 778 0.13
Hive 4,879 3,959 183 311 0.03
Infinispan 2,908 2,952 137 2,286 0.28
Izpack 781 441 44 2,615 0.68
Jbehave 212 928 13 685 0.38
JTM 459 385 14 277 0.25
Jbpm 383 463 21 2,718 0.76
Kafka 655 647 41 649 0.33
Keycloak 1,780 1,691 131 3,253 0.48
Log4j2 843 1,273 98 4,858 0.69
Maven 868 879 50 4,074 0.70
Railo 588 202 10 1,866 0.70
Resteasy 534 446 41 1,748 0.63
Seam2 953 650 48 4,095 0.72
Spark 311 852 132 485 0.28
Switchyard 532 1,013 12 144 0.08
Teiid 1,897 2,374 303 1,082 0.20
Weld 937 943 46 2,958 0.61
Zookeeper 500 336 11 73 0.08

Table 7.2.: Linkage from issue perspective in (subset of) SEOSS. A bug report or
requirement (Req.), is either linked to exactly one commit (1:1 columns),
or to multiple ones (1:n columns). Please note, in this special subset all
issues are linked to at least one commit.

#Linked #Linked
#Bug 1:1 Bug 1:n Bug #Linked #Linked

Project Reports #Req. Reports Reports 1:1 Req. 1:n Req.
Archiva 84 265 51 33 142 123

75

7. Automatically Augmenting Incomplete Issue-to-Commit Trace Links

Table 7.2.: (continued) Linkage from issue perspective in (subset of) SEOSS. A bug
report or requirement (Req.), is either linked to exactly one commit (1:1
columns), or to multiple ones (1:n columns). Please note, in this special
subset all issues are linked to at least one commit.

#Linked #Linked
#Bug 1:1 Bug 1:n Bug #Linked #Linked

Project Reports #Req. Reports Reports 1:1 Req. 1:n Req.
Derby 1,782 1,302 1,380 402 768 534
Drools 1,386 731 1,162 224 379 352
Errai 233 162 207 26 122 40
Flink 1,289 1,418 1,167 122 1,163 255
Groovy 424 783 324 100 570 213
Hadoop 6,408 7,422 3,382 3,026 4,190 3,232
Hbase 4,353 4,070 4,041 312 3,422 648
Hibernate 1,604 1,336 1,112 492 852 484
Hive 4,623 3,643 4,548 75 3,393 250
Infinispan 2,274 1,761 1,946 328 1,315 446
Izpack 363 210 125 238 86 124
Jbehave 50 373 31 19 206 167
JTM 308 258 215 93 176 82
Jbpm 328 300 287 41 222 78
Kafka 594 592 577 17 523 69
Keycloak 945 799 247 698 210 589
Log4j2 488 402 382 106 221 181
Maven 151 419 124 27 336 83
Railo 300 173 270 30 153 20
Resteasy 322 173 196 126 96 77
Seam2 776 551 690 86 467 84
Spark 290 961 280 10 866 95
Switchyard 415 600 329 86 315 285
Teiid 1,406 1,293 1,123 283 696 597
Weld 623 515 492 131 344 171
Zookeeper 456 310 431 25 292 18

The goal is trying to tag each commit with at least on issue identifier, based on
the observations depicted in Tab. 7.1, i.e. commits rarely tag multiple issues. Only
nonlinked commits are considered in the TLSA approach. For these, there are two
viable case: either an appropriate issue exists and a trace link can be established, or
there is no such issue. Sometimes it is not possible or desirable to tag a commit. For
example commits fixing trivial tasks are not required to be linked to any issue like
commit bf1d080 of project Groovy reading “Fixed typo in method name (interval
takes a single ending L)”.

76

7.2. Motivating Example to Automatically Tag Commit Messages

7.2. Motivating Example to Automatically Tag
Commit Messages

Figure 7.1 shows bug report GROOVY-50823 and commit b1bb2ab4 of project Groovy.
Carefully reading the commit message reveals, that there is a spelling mistake of the
issue identifier, because an O is missing. Thus the attempt of the developer to trace
from the commit to the bug reports fails. This is just one example for missing trace
links in a project. Arguably the most frequent case is that developers simply forget
to add issue identifiers to commit messages. However, there are still potential clues,
that the commit is related to the depicted bug report. The bug reports’ description
exhibits textual similarity with the commit message, as well as with the content
of the source code file AsmClassGenerator.java modified by the commit. Further,
the bug report was resolved on the same day as the commit was filed. Finally, the
assignee of the bug report and the committer (both obfuscated in the screenshots)
are the same person. Thus, the three observations provide a degree of evidence that
there should be a trace link between the depicted artifacts. Therefore, an approach
could leverage this information to assist the developers to automatically establish
trace links by tagging the commit messages. The proposed, novel TLSA algorithm is
a solution to solve this problem.

7.3. Developing a Commit Message Tagging Model

This section introduces a model, which is then used to derive an automated approach
to tag commit messages. This commit message tagging model is based on the agile
software development workflow were artifacts, i.e. issues, commits, and source code
files are constantly created and modified over a project’s lifetime. Therefore the
artifact model depicted in Figure 4.2) is leveraged.

The TLSA approach considers clues from the software development process to aid
the generation of trace links between issues and commits. Obviously, this process
depends on time: issues are constantly created and resolved (see Fig. 2.5), and
commits are submitted to the version control system. Figure 7.2 demonstrates
this scenario showing two bugs reports {𝑏0, 𝑏1}, four requirements {𝑟0, … , 𝑟3}, ten
commits {𝑐0, … , 𝑐9}, and six source code files {𝑓0, … , 𝑓5}. The artifacts are ordered
across the projects lifetime, e.g. requirement 𝑟0 was created at the start of the project
(𝑡 = 0) and resolved at time 𝑡 = 3.5, whereas the first commit 𝑐0 occurred at time 0.5.
There are four linked issue-commit pairs {(𝑟0, 𝑐0), (𝑟1, 𝑐4), (𝑟3, 𝑐8), (𝑏0, 𝑐9)}. The

3. https://issues.apache.org/jira/browse/GROOVY-5082
4. https://bit.ly/2WcKwjw

77

https://issues.apache.org/jira/browse/GROOVY-5082
https://bit.ly/2WcKwjw

7. Automatically Augmenting Incomplete Issue-to-Commit Trace Links

(a) Bug report GROOVY-5082 of project Groovy.

(b) Commit b1bb2ab with spelling mistake of issue identifier.

Figure 7.1.: Example of failed attempt to create a trace link between an issue and a
commit in project Groovy because of a spelling mistake in issue identifier
of the commit message (missing O).

78

7.3. Developing a Commit Message Tagging Model

Figure 7.2.: Temporal and structural relations between issues ℐ, commits 𝒞, and
source code files ℱ artifacts during a project’s lifetime. Issues and
commits are constantly created. Some commit messages are tagged with
issue identifiers and thus create a trace link to the respective issue.

given examples can be formally described with the sets and functions introduced in
Equation 4.1

created(𝑟0) = 0
resolved(𝑟0) = 3.5

committed(𝑐0) = 0.5
commits(𝑟0) = {𝑐0}
commits(𝑟1) = {𝑐4}
commits(𝑟3) = {𝑐8}
commits(𝑏0) = {𝑐9} .

(7.1)

7.3.1. Analyzing the Development Process

Several relations of the development process can be stated based on the commit
tagging model introduced in the previous section. The example development process

79

7. Automatically Augmenting Incomplete Issue-to-Commit Trace Links

shown in Figure 7.2 contains temporal relations, i.e. ordering along the project’s
lifetime, among the artifacts. Three constraints can be derived regarding the creation
of issues and commits. Further, structural relations can be stated, which consider
the the modified source code files in a series of commits. Using these relations allows
to define issue commit candidate pairs to be linked.

Temporal relations Considering a nonlinked commit 𝑐 ∈ 𝒞, the temporal structure
imposes several constraints on possible link candidates 𝑖 ∈ ℐ.

1. committed(𝑐) < created(𝑖): Due to causality, a commit 𝑐 is not considered to
be a trace link candidate for 𝑖, if 𝑐 is committed before 𝑖 was created. For
example in Figure 7.2 the commit 𝑐1 is not a link candidate for requirement 𝑟1.

2. created(𝑖) ≤ committed(𝑐) ≤ resolved(𝑖): This situation resembles the ordi-
nary development workflow. Once an issue is created, the developers modify
the project’s source code to resolve it. Therefore commits are submitted and
traced to the respective issue. Eventually the issue is resolved and no further
commits for the issue occur. Thus, in Figure 7.2 the nonlinked commit 𝑐6 is a
link candidate for requirement for 𝑟2.

3. resolved(𝑖) < committed(𝑐): In this case, the commit 𝑐 is not considered as
a link candidate for 𝑖, because it was created after 𝑖 was resolved. However,
this situation still might occur. One reason for this is, that the developers
forgot to submit the commit before resolving the issue. Figure 7.3 shows the
median time of these “late” commits for the subset of the SEOSS dataset. For
example, in project Flink this value is 21 days, i.e. half of the commits filed for
an issue after it was resolved occurred within three weeks. However, there are
also extreme cases like commit 0d2e8b25 for improvement FLINK-32326 which
was filed in November 2016 nearly one year after the improvement was resolved.
Another reason are unsynchronized clocks. The ITS and VCS are decentralized,
independent, and unconnected systems often running on different computer
systems. This also prevents strict time comparisons.

These three temporal constraints limit the number of potential issue-commit candidate
pairs that may be considered for linking.

Structural relations Table 7.2 shows (1:n columns), that it is not uncommon that
a series of commits are submitted to resolve an issue. The developers decompose the
work into small pieces, and ideally all commits are traced to this issue. However,
often only one commit in such a series is explicitly tagged with relevant issue 𝑖.
Schermann et al. term these commits as phantoms (Schermann et al. 2015). But,
all commits in the series share commonalities. First of all, they are sequential in

5. https://bit.ly/3Cqs0EA
6. https://issues.apache.org/jira/browse/FLINK-3232

80

https://bit.ly/3Cqs0EA
https://issues.apache.org/jira/browse/FLINK-3232

7.3. Developing a Commit Message Tagging Model

Ar
ch

iv
a

De
rb

y
Dr

oo
ls

Er
ra

i
Fl

in
k

Gr
oo

vy
H

ad
oo

p
H

ba
se

H
ib

er
na

te
H

iv
e

In
fin

isp
an

Iz
pa

ck
Jb

eh
av

e
JT

M
Jb

pm
Ka

fk
a

Ke
yc

lo
ak

Lo
g4

j2
M

av
en

Ra
ilo

Re
ste

as
y

Se
am

2
Sp

ar
k

Sw
itc

hy
ar

d
Te

iid
W

eld
Zo

ok
ee

pe
r

Project

0

5

10

15

20

25

30
Da

ys

Figure 7.3.: Median time (in days) of commits linked to issues that have been resolved
before the commit was submitted.

time. Next, the commits may modify a similar set of source code files as they are all
purposed to resolve the same issue 𝑖. This is expressed by the function overlap

overlap(𝑐𝑎, 𝑐𝑏) = | changedC(𝑐𝑎) ∩ changedC(𝑐𝑏)|
max (| changedC(𝑐𝑎)|, | changedC(𝑐𝑏)|)

(7.2)

with 𝑐𝑎, 𝑐𝑏 ∈ 𝒞. In Figure 7.2 the overlap of commits 𝑐0 and 𝑐1 is overlap(𝑐0, 𝑐1) =
|{𝑓0}|/ max(1, 2) = 0.5, whereas overlap(𝑐2, 𝑐3) = 0. The depicted commits 𝑐0
and 𝑐1 have a large overlap and are temporally close, and thus 𝑐1 may also be
traced to 𝑟0 like 𝑐0. This situation may also occur forward in time, i.e. 𝑐7 was
committed closely before 𝑐9, and both commits also have a high overlap. Therefore
𝑐7 is also a possible link candidate for 𝑏1. The average source code file overlap of
consecutive commit linked to the same issue is shown in Figure 7.4. For example, for
project Groovy this value is above 50%, i.e. on average consecutive commits have
every second source code file in common. Sometimes all source code files are equal,
e.g. for bug report GROOVY-60947 the commits 93628658 and b3686e99 both modify
the same three source code files AntlrParserPlugin.java, ModuleNode.java, and
ASTHelper.java.

7. https://issues.apache.org/jira/browse/GROOVY-6094
8. https://bit.ly/3yxLFjk
9. https://bit.ly/3fG4SIt

81

https://issues.apache.org/jira/browse/GROOVY-6094
https://bit.ly/3yxLFjk
https://bit.ly/3fG4SIt

7. Automatically Augmenting Incomplete Issue-to-Commit Trace Links

Ar
ch

iv
a

De
rb

y
Dr

oo
ls

Er
ra

i
Fl

in
k

Gr
oo

vy
H

ad
oo

p
H

ba
se

H
ib

er
na

te
H

iv
e

In
fin

isp
an

Iz
pa

ck
Jb

eh
av

e
JT

M
Jb

pm
Ka

fk
a

Ke
yc

lo
ak

Lo
g4

j2
M

av
en

Ra
ilo

Re
ste

as
y

Se
am

2
Sp

ar
k

Sw
itc

hy
ar

d
Te

iid
W

eld
Zo

ok
ee

pe
r

Project

0
10
20
30
40
50
60
70

%

Figure 7.4.: Average source code file overlap of consecutive commits linked to the
same issue for a subset of the SEOSS dataset.

7.3.2. Analyzing the Projects’ Stakeholder Activities

Issue and commit artifacts both carry information about the author, which might
be useful for the tagging model. The idea is to analyze the stakeholder activities
and identify specific patterns. For example, consecutive commits performed by the
same developer may belong together and thus should be tagged with the same issue
identifier. Further, the developer who created an issue also might contribute in
resolving it by modifying the source code and submitting commits. But, tracking
the individual developers is difficult, because of the decoupled ITS and VCS that
do not share a common stakeholder model. Each system maintains the stakeholder
separately. To overcome this problem, the following approach was developed to
identify identical developers in both systems. Both systems represent developers by
name and login (either a nickname or an email address). With this knowledge, the
first step is to collect this data. Next, names are merged when the same login is used,
i.e. it is an alias for the same developer within either the ITS or VCS. Now, two lists
with users and possible aliases exist and a heuristic is applied to unify the lists and
thus create a unified stakeholder model. It is based on name comparison to identify
identical developers in the ITS and VCS. For example, a developer having the same
email address in both systems is likely to be the same person. To fully respect and
protect the user privacy, all identified developers are assigned a unique number (user
id). The function userid ∶ 𝑢 → ℕ returns this id for a user 𝑢 of the ITS or VCS.

82

7.4. Creating a Trace Link Classifier

7.4. Creating a Trace Link Classifier

The models introduced in Sections 7.3.1, 7.3.2 are used to create a classifier that could
identify issues associated with a commit. This classifier shall predict whether any
issue-commit pair is related or not. Overall eleven features were identified for each
issue-commit pair. The features fall into two categories: process-related information,
and textual similarity between artifacts.

7.4.1. Deriving Process Related Features

The following nine process-related features are considered to model the relationship
between issues, commits, and source code files. The features capture stakeholder-
related, temporal, and structural characteristics of a candidate issue-commit pair
(𝑖cur, 𝑐cur) ∈ ℐ × 𝒞.

Stakeholder-related information, feat0: This feature represents whether the
identities of the assignee of 𝑖cur is identical to the committer of 𝑐cur (see Eq. 7.3).
It is important to note, that the identity values cannot be leveraged as features,
because they are specific for a project. Only using project independent features will
be important for the evaluation in Section 8.7. For example, the user with userid = 3
in Proj𝑎 is very unlikely to be identical to user with userid = 3 in Proj𝑏. However,
feature feat0 provides a project independent feature and still captures the relevant
relationship between the two stakeholder as described in Section 7.3.2.

feat0 = {
1 if userid(assignee of 𝑖cur) = userid(assignee of 𝑐cur)
0 otherwise

(7.3)

Temporal relations between issue and commit, feat1: Based on temporal
properties of 𝑖cur and 𝑐cur, the feature feat1 represents the time difference between
the issue creation and the commit time (see Eq. 7.4). This value is always positive
as described in the process model. For candidate issue-commit pair (𝑖2, 𝑐6) in Figure
7.2 this feature is feat1 = 1.

feat1 = committed(𝑐cur) − created(𝑖cur) (7.4)

Closest linked commit, feat2…4: To calculate these features, first the set of all
linked commits to 𝑖cur is determined as 𝐶linked (Eq. 7.5). If not empty, the closest
commit 𝑐closest ∈ 𝐶linked is selected. The closest commit 𝑐closest has the minimal,
absolute time difference, for all 𝑐 ∈ 𝐶linked. Feature feat2 captures this value. The
feature feat3 = overlap(𝑐cur, 𝑐closest) captures the resource overlap. Lastly, the binary

83

7. Automatically Augmenting Incomplete Issue-to-Commit Trace Links

feature feat4 models whether 𝑐cur and 𝑐closest were committed by the same developer.
In Fig. 7.2 the closest commit for 𝑐7 is 𝑐8. Therefore feat2 = |9.5 − 10| = 1.5, and
feat3 = 0.

𝐶linked = commits(𝑖cur)
𝑐closest = min |(committed(𝑐cur) − committed(𝑐)| ∧ 𝑐 ∈ 𝐶linked

feat2 = |(committed(𝑐𝑐𝑢𝑟) − committed(𝑐𝑐𝑙𝑜𝑠𝑒𝑠𝑡)|
feat3 = overlap(𝑐cur, 𝑐closest)

feat4 = {
1 if userid(𝑐cur) = userid(𝑐closest)
0 otherwise

(7.5)

Issue related information, feat5…8: The feature feat5 captures the total number
of linked commits for 𝑖cur before 𝑐cur was committed (see Eq. 7.6). The set 𝐼unres
represents all unresolved issues at the commit time of 𝑐cur and feature feat6 captures
its cardinality. In Figure 7.2 the candidate pair (𝑏0, 𝑐7) yields 𝐼unres = {𝑏0, 𝑟2, 𝑟3}
and thus feat6 = 3. The feature feat7 represents the number of unresolved issues
for the committer of 𝑐cur at the point in time of the commit. At last, feature feat8
captures the issue type of 𝑖cur.

feat5 = |{𝑐|𝑐 ∈ commits(𝑖cur) ∧ committed(𝑐) < committed(𝑐cur)}|
𝐼unres = {𝑖| created(𝑖) ≤ committed(𝑐cur) ≤ resolved(𝑖) ∧ 𝑖 ∈ ℐ}
feat6 = |𝐼unres|
feat7 = |{𝑖| userid(assignee of 𝑖) = userid(committer of 𝑐cur) ∧ 𝑖 ∈ 𝐼unres}|

feat8 = {
1 if 𝑖cur ∈ ℬ
0 otherwise

(7.6)

7.4.2. Deriving Textual Similarity Features

Next to the process related features, two features represent textual between issues,
commit messages, and source code.

Textual similarity of a commit and an issue, feat9: The feature feat9 is the
textual similarity between the commit message of 𝑐cur and the textual contents of
𝑖cur, i.e. the summary and description. The previously described cosine similarity
sim with logarithmic tf-idf scheme is leveraged (see Eq. 2.1).

Textual similarity of committed source code files and an issue, feat10: This
feature captures the textual similarity between source code and the textual contents

84

7.4. Creating a Trace Link Classifier

of 𝑖cur. Thus, the combined summary and description of 𝑖cur is used as query against
the source code files modified by 𝑐cur, i.e. changedC(𝑐cur). This is performed using
LuceneScore (see Sec. 6.4) and the value of lucenecomb of the topmost result, i.e. the
one with the highest similarity, is assigned to feature feat10.

7.4.3. Creating Feature Vectors

The trace link prediction problem is formulated as a classification task that predicts
for each issue-commit combination whether it is traced or not. Therefore, the
aforementioned features are calculated for a given project as follows. First, the set 𝑃
of candidate issue-commit pairs is constructed

𝑃 = {(𝑖, 𝑐)| isCandidate(𝑖, 𝑐)} 𝑐 ∈ 𝒞, 𝑖 ∈ ℐ (7.7)

with the predicate isCandidate defined as

isCandidate(𝑖, 𝑐) = created(𝑖) ≤ committed(𝑐)
∧ committed(𝑐) ≤ resolved(𝑖) + 𝜖

(7.8)

based on observations made in the process model in Section 7.3.1. The predicate
models the temporal relations and limits the number of possible pairs according to
causality. No strict time comparison is possible. The parameter 𝜖 allows to break
strict temporal causality. Ideally, source code modifications (commits) occur before
the respective issue is resolved. However, an empirical analysis of the SEOSS dataset
showed, that this is not true and sometimes tagged commits were created after issue
resolution. This situation is modelled using 𝜖 and thus commits with this range after
issue resolution are still considered as commit candidates. 50% of the late commits
in the SEOSS dataset occurred within less than two days on a project basis (see
Fig. 7.3) and thus 𝜖 was set to 36 hours.

It is important to note, that there may be multiple candidate commits for a given
issue, which is not unusual as shown in Table 7.2 (1:n columns). Further, a commit
may be candidate for multiple issues. The exception is, that an issue-commit pair
(𝑖, 𝑐) ∈ 𝑃 represents an existing trace link, i.,e. and isLinked(𝑖, 𝑐) = 1. In this case,
the commit 𝑐 is not considered as candidate for other issues, because the scenario
where a commit is tagged with multiple issues ids is rather rare (see Tab. 7.1). The
issue-commit pairs for artifacts in Figure 7.2 are shown in Equation 7.9. The blue
highlighted ones represent pairs with an established trace link, e.g. (𝑟0, 𝑐0). The
commit 𝑐2 is candidate for two requirements 𝑟0, 𝑟1, and there is no pair containing
bug report 𝑏1.

85

7. Automatically Augmenting Incomplete Issue-to-Commit Trace Links

Table 7.3.: Visualization of the feature vector layout to train the TLSA classifier.
Each row in the table, an instance, encodes an issue-commit pair accom-
panied by the calculated features x(𝑖) and whether the two artifacts are
linked (𝑦(𝑖)).

Issue Commit Feature vector Target value
𝑖0 𝑐0 x(0) 𝑦(0)

𝑖0 𝑐1 x(1) 𝑦(1)

⋮ ⋮ ⋮ ⋮
𝑖? 𝑐? x(𝑛−1) 𝑦(𝑛−1)

(𝑟0, 𝑐0), (𝑟0, 𝑐1), (𝑟0, 𝑐2)
(𝑟1, 𝑐2), (𝑟1, 𝑐3), (𝑟1, 𝑐4), (𝑟1, 𝑐5)
(𝑟2, 𝑐6), (𝑟2, 𝑐7)
(𝑟3, 𝑐7), (𝑟3, 𝑐8)
(𝑏0, 𝑐7), (𝑏0, 𝑐9)

(7.9)

Next, the 11 features are calculated for each issue-commit pair and organized as a
feature vector x(𝑖) similarly as for the ABLoTS composer component (see Sec. 6.5.2).
All vectors are combined in feature matrix X ∈ R𝑛×11. The elements of the target
vector y = [𝑦(0) 𝑦(1), … 𝑦(𝑛−1)]𝑇 with 𝑦(𝑖) ∈ {0, 1} encodes isLinked(𝑖, 𝑐), i.e. whether
a trace link exists between the artifacts. x(𝑖) and 𝑦(𝑖) represent an instance for the
ith issue-commit pair. All instances can be visualized as shown in Table 7.3.

Like for the ABLoTS composer component (see Sec. 6.5.2), a random forest classifier
was chosen with the same reasoning, and this type of classifier has been successfully
used in a similar use case (Le et al. 2015). It is trained by directly using X and
y, i.e. without the need for feature scaling. The feature dimensions either encode
boolean values represented as {0, 1} (boolean decisions), numerical values that are
inherently limited to the range 0 … 1 (textual similarities, and overlap), or numerical
values representing time differences. Thus, individual elements 𝑥(𝑗)

𝑖 and 𝑥(𝑗+1)
𝑖 of

feature dimension 𝑖 are already on the same scale.

7.5. Summary

This section motivated that integrating requirement artifacts and trace links to bug
localization algorithms can be advantageous to improve bug localization performance.
However, the analysis of the 33 projects of SEOSS dataset showed, that often the

86

7.5. Summary

required trace links between issue and commit artifacts are missing. The developers
failed or simply forgot to create trace links during the development workflow. Thus,
the typical development workflow was analyzed to exploit possibilities to automatically
add issue-to-commit trace links. Therefore a process model, a temporal model,
and a stakeholder model were derived from the developers workflow. The models’
capabilities were captured in 11 features, leading to the design of the Trace Link Set
Augmentation approach based on machine learning techniques. This binary classifier
takes issue-to-commit pairs and predicts, whether a trace link between these two
artifacts should be established or not.

87

8. Evaluation

This section evaluates the algorithms introduced in the previous sections. Hereby an
adapted subset of projects from the SEOSS dataset (see Sec. 5.4) is used. Overall
five different experiments are described and conducted.

8.1. Research Questions

The evaluation seeks to answer the following six research questions. For each question,
except for the last one, a dedicated experiment is performed.

RQ-1: Effectiveness of the TraceScore component How effective is the pro-
posed approach for bug report to source code trace link recovery? The question
answers whether the ideas to create TraceScore result in an improved similar issue
component. Therefore its performance is compared with two previous work similar
issue components CollabFilter and SimiScore.

RQ-2: Impact of TraceScore Parameterization What is the impact of the
four TraceScore parameters, i.e. utilization of requirement artifacts, trace links, and
filtering of historical artifact data? Here, the tunable parameters 𝐷bug, 𝐷req, 𝑁bug,
and 𝑁req of TraceScore are evaluated to provide a baseline configuration for the
component.

RQ-3: Effectiveness of an IR-based bug localization algorithm using
TraceScore Do IR-based bug localization algorithms benefit from TraceScore?
TraceScore is just one component of a bug localization algorithm. This research
question answers its’ usefulness when plugged into the novel multi-component bug lo-
calization algorithm ABLoTS. The performance is compared with existing algorithms
previous work BLUiR, AmaLgam, and the novel algorithm LuceneScore.

RQ-4: Effectiveness of trace link set augmentation How effective is the
developed TLSA approach? Manual trace link creation is tedious, so here the
approach to automatically create issue-to-commit trace links is evaluated. This
research question answers to what extend this automatic link augmentation is
possible and the quality of the created links.

89

8. Evaluation

RQ-5: Effectiveness of IR-Based Bug Localization Algorithms on Projects
with Augmented Trace Link Sets What is the performance of four IR base
bug localization algorithms on projects with augmented issue-to-commit trace links?
Assuming a project with incomplete issue-to-commit trace links, which has been
augmented to (re-)create missing links. This question answers if IR-based bug
localization is still possible on such a project, and what performance measures can
be achieved. Here the same algorithms as for experiment III (RQ-3) are evaluated.

RQ-6: Limitations of Studied Approaches The last research question discusses
the limitations of the developed algorithms TraceScore, LuceneScore, ABLoTS and
TLSA. Further, limitations of applying them on a project is investigated, especially
their interplay.

8.2. Introducing the Evaluation Datasets

Several datasets are used for evaluation. They all are based on the published SEOSS
dataset (see Sec. 5.4), and address different evaluation aspects. This section motivates,
defines and explains the created datasets. Figure 8.1 depicts the overall creation
process.

8.2.1. Creating a Gold Standard Dataset GS

This dataset is a curated subset of the SEOSS dataset and serves as gold standard in
the evaluation. Therefore three constraints are applied to build it. This is visualized
in the top two boxes in Figure 8.1.

First step (curating project) SEOSS does not contain any source code and just
records the git repository URL and hash value of the latest analyzed git commit hash
in a meta table. For the three projects Axis2, HornetQ, and Pig the URLs were no
longer valid or commit hashes could no longer be retrieved when writing this thesis.
Further, the projects Cassandra, Lucene, and Wildfly are too complex in terms of
number of issues, commits and their temporal coherence, that the calculation of the
features for TLSA took too long1. Thus, these six projects were excluded and only
27 projects remain and are used for the evaluation, i.e.

GSproject-names = SEOSSproject-names ∖ {Axis2, Cassandra, HornetQ,
Lucene, Pig, Wildfly}

1. The feature calculation did not finish for each of these projects within a day.

90

8.2. Introducing the Evaluation Datasets

, where GSproject-names is the set of project names (see also Eq. 5.1).

Second step (filtering issues) SEOSS is a snapshot of all project artifacts. Thus,
contained issues may be in any state of their workflow. However, the studied concepts
require a well defined state for issue artifacts, i.e. they have to represent finished work.
The selected issue artifacts need to have the resolution set to FIXED or DONE and
the status has to be RESOLVED or CLOSED (see Tab. 2.1). Thus it can be assumed,
that all necessary source code file modifications have been made. This condition is
implemented by the function finished(𝑖) ← {1, 0} with 𝑖 ∈ ℐ. Additionally, a trace
link to at least one commit containing at least one source code file needs to exist
for each issue artifact. Without this, it is impossible to figure out where in the code
base a requirement was implemented or a bug report resolved. These constraints are
captured by the already introduced function changedI(𝑖), and hasSCF(𝑐) → {1, 0}
(read: has source code files) with 𝑖 ∈ ℐ, 𝑐 ∈ 𝒞. Commits that contain only none
source code files, such as ones updating the documentation or modifying the projects’
build system are not considered, because these are irrelevant for bug localization.
Thus, the artifact selection for the curated projects is defined as:

𝑝 ∈ GSproject-names

Proj𝑝 = (𝐼𝑝, 𝐶𝑝, 𝐹𝑝)

𝐼𝑝 = {𝑖|𝑖 ∈ 𝐼 (seoss)
𝑝 ∧ 𝑐 ∈ 𝐶(seoss)

𝑝 ∧ finished(𝑖) ∧ isLinked(𝑖, 𝑐)} ⊆ 𝐼 (seoss)
𝑝

𝐶𝑝 = {𝑐|𝑐 ∈ 𝐶(seoss)
𝑝 ∧ 𝑖 ∈ 𝐼𝑝 ∧ isLinked(𝑖, 𝑐) ∧ hasSCF(𝑐)} ⊆ 𝐶(seoss)

𝑝

Third step (filtering source code files). From all commits only those changing
source code files are considered. Thus, for mixed commits, i.e. commits containing
modifications of different file types like source code files and e.g. project build system
configurations (Makefiles etc.), only the source code files are relevant. The source
code files are identified by file extension, defined as function isSCF(𝑓) → {1, 0} (read:
is source code file), with 𝑓 ∈ ℱ. This is modeled as

𝐹𝑝 = {𝑓|𝑓 ∈ 𝐹 (seoss)
𝑝 ∧ isSCF(𝑓) ∧ 𝑓 ∈ changedC(𝑐) ∧ 𝑐 ∈ 𝐶𝑝} ⊆ 𝐹 (seoss)

𝑝

Combined, the three constraints filter the SEOSS dataset, first on project level, and
than for each remaining project on an artifact level. For example, applying the
introduced formulas on project 𝑝 = Derby ∈ GSproject-names results in

91

8. Evaluation

ProjDerby = (𝐼Derby, 𝐶Derby, 𝐹Derby)

𝐼Derby ⊆ 𝐼(seoss)
Derby i.e. filtered issues

𝐶Derby ⊆ 𝐶(seoss)
Derby i.e. filtered commits

𝐹Derby ⊆ 𝐹 (seoss)
Derby i.e. filtered source code files

Eventually, GS is the set of all projects defined as

𝑝 ∈ GSproject-names

GS = ⋃
𝑝

Proj𝑝
. (8.1)

It is important to highlight, that GS is trusted, and therefore used as gold standard.
All source code files modified by the issues are treated as correct, i.e. have been
intentionally modified by the developers to implement the respective requirement, or
resolve a bug report. This assumption may not be correct, such that some source
code files may have been modified during a commit although it was not necessary
(e.g. correcting a spelling mistake in source code comments). Automatic identification
of such changes is a hard task and would require manual inspection. This inspection
is infeasible, because of the shear amount of commits, and the lack of required
expert knowledge, i.e. to detect if a source code change was indeed necessary, but is
irrelevant for the respective issue.

Table 8.1 provides an overview of GS. It shows key figures such as the time period,
the contained bug reports, and requirements for each of the 27 included projects.
For example, project Hadoop contains the most artifacts with 6,408 bug reports, and
7,422 requirements. Further, the median, mean, and max number of modified source
code files for bug reports and requirements is shown. Please note, the minimum
number of modified source code files is one, as assured by the curating process.

The golden standard GS used to answer the research questions RQ-1, RQ-2, and
RQ-3, whereas for the remaining research questions additional datasets are used.
Other statistics of GS, especially the poor existing issue-to-commit linkage, is shown
in Table 7.2, which motivated the creation of the TLSA approach. It is important to
emphasize, that Table 7.1 does not show GS. This table uses 𝐼𝑝, but also depicts
nonlinked commits taken from SEOSS, which are per design (constraint two) not
contained in GS.

92

8.2. Introducing the Evaluation Datasets

Figure 8.1.: Creation process for the datasets based on SEOSS used for evaluation.
The gold standard dataset GS is created by filtering projects and artifacts
from SEOSS. Next, five datasets RED𝑖, 𝑖 ∈ {0, … , 4} are derived from
GS by removing issue-to-commit trace links. These are than processed
by TLSA algorithm to construct datasets AUG𝑖 with augmented trace
link sets.

93

8.
Evaluation

Table 8.1.: Key figures of studied projects in the curated dataset GS with project lifetime, number of bug report,
requirements, trace links among them, and statistics about the number of modified source code files per
issue type. Each bug report and requirement modifies at least one source code file, according to the dataset
creation constraints.

Project Time Period #Bug #Changed Source #Re- #Changed Source #Trace
Reports Code Files per Bug Report quire- Code Files per Req. Links

median mean max ments median mean max
Archiva 2005-03 - 2017-08 84 2 9.0 719 265 5 14.9 526 207
Derby 2004-09 - 2017-09 1,782 2 5.5 1,919 1,302 3 10.5 674 1,997
Drools 2005-12 - 2017-11 1,386 3 6.3 168 731 9 38.1 1,835 234
Errai 2009-12 - 2017-11 233 3 5.1 75 162 6 13.4 231 18
Flink 2014-06 - 2017-11 1,289 2 5.4 128 1,418 7 17.8 490 463
Groovy 2003-09 - 2017-05 424 1 2.0 40 783 1 3.3 482 458
Hadoop 2006-05 - 2017-11 6,408 2 3.4 312 7,422 4 13.1 8,913 10,303
Hbase 2007-05 - 2017-11 4,353 2 4.4 754 4,070 3 13.2 2,005 3,509
Hibernate 2004-07 - 2017-11 1,604 3 7.2 1,213 1,336 5 37.0 7,540 1,049
Hive 2008-09 - 2017-11 4,623 2 4.0 359 3,643 3 12.7 3,055 4,177
Infinispan 2009-03 - 2017-11 2,274 3 5.3 167 1,761 6 21.6 2,851 1,037
Izpack 2009-01 - 2017-10 363 2 4.4 69 210 5 13.5 160 58
Jbehave 2008-11 - 2017-11 50 2 3.0 31 373 4 10.4 186 2
JTM 2009-01 - 2017-11 308 2 4.2 130 258 4 14.5 301 374
Jbpm 2010-01 - 2017-11 328 3 5.2 97 300 5 26.2 2,192 495
Kafka 2011-07 - 2017-11 594 2 4.4 69 592 6 12.4 130 682
Keycloak 2013-07 - 2017-11 945 2 7.5 324 799 6 20.9 2,326 592
Log4j2 2008-12 - 2017-11 488 2 5.2 230 402 4 16.7 717 261
Maven 2004-06 - 2017-10 151 2 3.4 77 419 2 8.6 396 560
Railo 2008-07 - 2013-12 300 2 8.1 721 173 4 7.3 140 17
Resteasy 2008-03 - 2017-11 322 3 6.0 142 173 5 56.6 5,218 145

94

8.2.
Introducing

the
Evaluation

D
atasets

Table 8.1.: (continued) Key figures of studied projects in the curated dataset GS with project lifetime, number of bug
report, requirements, trace links among them, and statistics about the number of modified source code files
per issue type. Each bug report and requirement modifies at least one source code file, according to the
dataset creation constraints.

Project Time Period #Bug #Changed Source #Re- #Changed Source #Trace
Reports Code Files per Bug Report quire- Code Files per Req. Links

median mean max ments median mean max
Seam2 2005-08 - 2014-03 776 1 2.4 47 551 2 9.6 1,700 312
Spark 2011-11 - 2017-11 290 2 3.1 45 961 2 5.3 173 3,699
Switchyard 2010-11 - 2017-02 415 2 64.4 1,818 600 9 42.0 2,076 483
Teiid 2004-04 - 2017-11 1,406 3 6.2 325 1,293 6 28.2 3,616 396
Weld 2008-06 - 2017-11 623 4 7.2 570 515 7 18.6 1,361 328
Zookeeper 2008-06 - 2017-11 456 2 3.3 36 310 3 11.6 695 304

95

8. Evaluation

8.2.2. Creating Datasets with Reduced Trace Link Sets RED𝑖

The TLSA algorithm described in Section 7 is designed to enhance the existing trace
links set of issues ℐ to commits 𝒞. Applying this task to GS may and should create
new issue-to-commit trace links. But, the evaluation of the correctness of these traces
is similar as proofing the correctness of trace links in GS: it is hard to automate, has
do be done by expert human users (ideally the projects’ developers), and would be
very time consuming. Thus a different approach is applied. Instead of creating new
trace links, the existing set of issue-to-commit trace links is reduced by randomly
removing links. Then, the TLSA classifier is trained and applied to this reduced
issue-to-commit link set to augment the missing trace links. Their correctness is
then validated against the set of trace links found in GS, which per definition are
treated to be correct. Thus, a perfect TLSA classifier would recreate GS out of the
projects with randomly removed issue-to-commit trace links.

The creation of the reduced issue-to-commit link set is done automatically and takes
care of certain constraints.

First constraint (trace link removal rate) Table 7.1 reveals, the average number
of nonlinked commits across all projects is about 40% in SEOSS dataset. Thus the
developers failed or forgot to tag two out of five commits with an issue identifier.
Per design, GS does not contain any nonlinked commits, i.e. every issue and commit
is part of a trace link. Therefore, following the original developer behavior from the
SEOSS projects, 40% of the existing trace links in GS are removed. This models the
original trace link failure rate as found in the projects.

Second constraint (trace link distribution) The TSLA classifier needs to be
trained on a part of issue-to-commit trace links of a project (training data) and then
applied on the remaining ones (testing data). The details of the process are discussed
in Section 8.6.1. Randomly removing trace links could lead to undesired effects.
For example, when splitting the project data in training and testing data after the
link removal, there is the chance that more (in a percentage sense) trace links are
removed in either set leading to an unequal distribution. Additionally, more trace
links between requirements and commits could have been removed than between bug
reports and commits. To ensure an equal distribution for all these cases, the 40%
removal rate is individually applied to training and testing data, and within these
splits individually for bug reports to commit trace links and requirement to commit
trace links.

Third constraint (trace link preservation) The process model in the TLSA
approach contains structural features between commits (linked and nonlinked) to
issues (see Sec. 7.4). A pure random removal of trace links could lead to a situation,
that an issue is no longer linked to any commit and thus no longer fits the process

96

8.2. Introducing the Evaluation Datasets

model, because the calculation of structural features is infeasible. To prevent this,
at least one trace link to a commit needs to remain for each issue artifact. This is
always possible, because during creation of the GS only issues having one or more
trace links to commits were chosen (see Eq. 8.1).

The random removal of trace links may introduce a bias. In an (unlikely) circumstance,
simply the first (in a temporal sense, i.e. the start of a project’s lifecycle) 40% of
issue-to-commit links are removed. To mitigate this threat, the removal is repeated
five times, which creates multiple issue-to-commit trace link sets per project (see the
middle part of Fig. 8.1). Each removal builds a separate dataset denoted by index 𝑖.
Formally, the reduced datasets are derived from GS by removing issue-to-commit
links. Removing commits also removes source code files that were only contained in
these commits. However, the set of issue artifacts remains unchanged (see Eq. 8.2):

𝑝 ∈ GSproject-names

𝑖 ∈ {0, … , 4}
Proj𝑝,red,𝑖 = (𝐼𝑝, 𝐶𝑝,red,𝑖 ⊂ 𝐶𝑝, 𝐹𝑝,red,𝑖 ⊆ 𝐹𝑝)

RED𝑖 = ⋃
𝑝

Proj𝑝,red,𝑖

(8.2)

For example ProjDerby,red,0 ∈ RED0 is project Derby with the first randomly reduced
trace link set, ProjDerby,red,1 the second reduced trace link set and so on. The five
RED𝑖 datasets are used for answering RQ-4 studying the performance of the TLSA
algorithm.

8.2.3. Augmenting Trace Link Sets to Create Datasets AUG𝑖

The last five datasets are created by TLSA algorithm. They contain all issue-to-
commit trace links of the reduced datasets, along with augmented ones. If TLSA
is perfect, it would recreate GS for each reduced dataset RED𝑖, i.e. all previously
removed trace links would be correctly recovered. However, it is expected that trace
links between issues and commits are missing (false negatives), and some incorrect
trace links are added (false positives). Since trace link removal is repeated five times,
one augmented dataset AUG𝑖 exists for each reduced one denoted by index 𝑖 (see
Eq. 8.3, and bottom of Fig. 8.1).

97

8. Evaluation

𝑝 ∈ GSproject-names

𝑖 ∈ {0, … , 4}

Proj𝑝,aug,𝑖 = (𝐼𝑝, 𝐶𝑝,aug,𝑖 ⊆ 𝐶(seoss)
𝑝 , 𝐹𝑝,aug,𝑖 ⊆ 𝐹 (seoss)

𝑝)

AUG𝑖 = ⋃
𝑝

Proj𝑝,aug,𝑖

(8.3)

For example ProjDerby,aug,0 ∈ AUG0 is project Derby with an augmented trace link
set created by TLSA algorithm applied on ProjDerby,red,0, i.e. the first randomly
reduced variant. The definition of 𝐶𝑝,aug,𝑖 is important, because all commits from
the respective original project Proj(seoss)

𝑝 are considered, and not only the linked ones
from GS. Thus, the TLSA algorithm considers all commits, i.e. the ones were a trace
link was removed from RED𝑖 and those which were never linked to an issue from
Proj(seoss)

𝑝 . This is much more challenging than just considering the removed ones,
but also more realistic: all untagged commits are eligible candidates for trace link
creation. The augmented datasets are used to evaluate the performance of TLSA
algorithm in RQ-4, as well as to perform bug localization when answering RQ-5.

8.3. Evaluation Metrics

This section describes common evaluation metrics. This includes ones used for bug
localization performance like Top@k, MAP, and MRR (C. Wong et al. 2014; Saha
et al. 2013; Wang and Lo 2014, 2016). Further, common information retrieval metrics
used to evaluate the TLSA classifier like precision and recall are introduced. Lastly,
the concept of effect sizes to quantify differences between measures is described.

8.3.1. Top@k

Top@k, sometimes also called Hit@k, measures the percentage of bug reports for
which at least one correct source code file is among the top k ranked files. Thus, a
given bug report 𝑏 is considered successfully located, if at least one correct source
code file is in the k highest ranked files. The larger the value of Top@k, the better
the performance of an approach.

98

8.3. Evaluation Metrics

8.3.2. Mean Average Precision (MAP)

A commonly used measure to evaluate ranking approaches is mean average precision
(MAP) (Manning and Schütze 2001). It provides a single measure of quality across
multiple query results. The average precision (AP) for each query is calculated as

𝐴𝑃 =
𝑀

∑
𝑘=1

P(𝑘) × pos(𝑘)
𝑀relevant

where 𝑘 is the rank, i.e. the position in the ranked query list starting at 1. The
parameter 𝑀 is the number of retrieved source code files and 𝑀relevant the number
of relevant source code files for the given bug report. The binary function pos(𝑘)
returns 1, if the source code file at rank 𝑘 is relevant, i.e. indeed contained a bug,
and 0 otherwise. Last, P(𝑘) specifies the precision at rank 𝑘. AP favors recall over
precision and thus is suited for bug localization. Here, the developers have to scan
through the ranked source code file list created for a bug report to identify the
relevant files. Ideally the list is short and contains the most relevant files on top.
MAP is the mean value across all AP scores.

Whereas the measures Top@k and RR focus on the rank of the first correctly localized
source code files, MAP considers all correctly localized files. For example, a ranked
result list with one correct source code file on rank five has an AP of 0.2. In case there
is another correct source code file on rank six, the AP increases to 0.26, but the other
metrics Top@k and RR remain unchanged. Therefore MAP is the primary metric
throughout this thesis to judge the performance of a bug localization algorithm.

8.3.3. Mean Reciprocal Rank

The reciprocal rank (RR) is defined as the reciprocal of the rank of the first relevant
source code file in the retrieved ranked list of source code files for a given bug report.
RR emphasizes on high precision contrary to average precision. Therefore relevant
files should be at the beginning of the list, ideally at the first position. The mean
reciprocal rank (MRR) is the average across all queries (Voorhees 1999). MRR is
suitable for developers to identify only one (the most relevant) source code file.

8.3.4. Cliff’s delta

Cliff’s delta |𝛿| is used to calculate effect sizes when comparing evaluation metrics to
quantitatively measure the difference in magnitude (Cliff 1993). For example, when
comparing MAP measures of two populations (e.g. set of projects), the statistical

99

8. Evaluation

Table 8.2.: Confusion matrix for a binary classifier.

Predicted
Negative Positive

Actual Negative 𝑇 𝑁 𝐹𝑃
Positive 𝐹𝑁 𝑇 𝑃

difference might be significant, but the effect size could be negligible and therefore the
difference has no practical relevance. The metric is nonparametric and thus makes
no assumptions about sample sizes, shape, or spread of the compared distributions.
It is used in combination with hypothesis testing, which may indicate statistical
significance on a metric, but the amount of that discrepancy remains unknown. Cliff’s
delta ranges from 0 … 1.0 and guidelines suggest the following interpretation (Grissom
and Kim 2012). A value of |𝛿| ≤ 0.147 is considered negligible, 0.147 < |𝛿| ≤ 0.33 is
small, 0.33 < |𝛿| ≤ 0.474 is medium, and otherwise the effect size is large.

8.3.5. Precision, Recall, and F-score

The performance of a binary classifier such as the TLSA classifier can be judged
using precision and recall, inherently calculated for the positive class. These metrics
are defined as

Precisionpos = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃

Recallpos = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁

(8.4)

𝑇 𝑃 is the number of true positives, i.e. the classifier correctly identified the positive
case. The number of false positives is written as 𝐹𝑃, where the classifier incorrectly
identified the positive case. The opposites are false negatives (𝐹𝑁), i.e. the classifier
incorrectly identified the negative case. Lastly, there are true negatives (𝑇 𝑁) in which
the classifier correctly identified the negative case. (Olson and Delen 2008) Precision
is the number of correctly identified positive cases, out of all positive identified cases.
On the other hand, recall specifies the number of correctly identified positive cases
within all existing positive cases. The values stem from the confusion matrix, which
records the achieved counts for the classifier. The confusion matrix is special table
layout used to visualize these counts (see Tab. 8.2).

Precision and recall also can be calculated for the negative class, i.e. Precisionneg and
Recallneg, in a similar way as shown in Equation 8.4. The precision and recall for
both classes can be calculated by simply averaging the respective values. However, a
weighted average is also possible

100

8.3. Evaluation Metrics

Precisionwavg =
Precisionneg ⋅ (𝑇 𝑁 + 𝐹𝑃) + Precisionpos ⋅ (𝐹𝑁 + 𝑇 𝑃)

𝑇 𝑁 + 𝐹𝑁 + 𝐹𝑃 + 𝑇 𝑃

Recallwavg =
Recallneg ⋅ (𝑇 𝑁 + 𝐹𝑃) + Recallpos ⋅ (𝐹𝑁 + 𝑇 𝑃)

𝑇 𝑁 + 𝐹𝑁 + 𝐹𝑃 + 𝑇 𝑃
,

which takes the actual class distribution into account, i.e. the number of samples in
the negative class (𝑇 𝑁 + 𝐹𝑃), and those of the positive class: 𝐹𝑁 + 𝑇 𝑃. This is
especially suitable in case there is an imbalance in the existing positive and negative
examples.

The 𝐹𝛽-score combines precision and recall into a single measurement to assess the
accuracy of a classification approach

𝐹𝛽 = (1 + 𝛽)2 ⋅
Precisionpos ⋅ Recallpos

(𝛽2 ⋅ Precisionpos) + Recallpos

Setting 𝛽 = 1 results in the geometric mean of precision and recall and gives equal
importance for both measures. Other common values are 𝛽 = 2, which favors recall,
or 𝛽 = 0.5 which weighs precision over recall.

101

8. Evaluation

Table 8.3.: Studied parameter settings of TraceScore.

Issue-to-issue
Configuration name trace links 𝑁bug 𝑁req 𝐷bug[𝑑𝑎𝑦𝑠] 𝐷req[𝑑𝑎𝑦𝑠]
Baseline ✓ 10 20 365 365
No requirements ✓ 10 0 365 365
No explicit dependencies - 10 20 365 365
All source code files ✓ ∞ ∞ 365 365

8.4. Experiment I: Effectiveness of Similar Issue
Component TraceScore (RQ-1)

Experiment I evaluates the effectiveness of the similar issue component TraceScore.
A baseline configuration for the four parameters of TraceScore is shown in Table
8.3. These values were determined by investigating the average number of fixed
source code files in the dataset (see Tab. 8.1), which is 7.2 for bug reports, and
18 for requirements across all projects. Additionally, bugs and requirements older
than 𝐷bug = 𝐷req = 356 days are not considered when calculating the score for the
current bug report. This configuration is chosen as an initial choice when looking at
the projects’ lifetimes. The quality of this choice is evaluated by also investigating
other configurations: 90 days (quarter of baseline history), 180 days (half of baseline
history), and 730 days (double baseline history) for both values, 𝐷bug, and 𝐷req (see
Figures A.1, A.2).

All project data from dataset GS is used for evaluation (see schema in Fig. 8.2). The
achieved metrics in terms of Top@k, MAP, and MRR are captured and compared
among the evaluated algorithms (see Fig. 8.2). Figure 8.3 visualizes the captured
MAP and MRR metrics, and detailed results are provided in Table A.1 in the
appendix. The x-axis represents the projects, and the y-axis the achieved MAP and
MRR values, respectively. These values are represented as color coded bars for the
studied algorithms, whereas a higher bar represents a better performance.

102

8.5. Experiment II: Impact of TraceScore Parameterization (RQ-2)

Figure 8.2.: Visualization of experiment I to run the algorithms TraceScore, SimiScore,
and CollabScore on a project Proj𝑝.

8.5. Experiment II: Impact of TraceScore
Parameterization (RQ-2)

Experiment II evaluates the influence of TraceScore parameters, three configurations
derived from baseline configuration were created (see Tab. 8.3).

The first configuration “No requirements” only considers previously resolved bug
reports and no requirements. It therefore resembles the behavior of SimiScore in
this aspect. Thus, all requirement information that modified source code files (see
Tab. 8.1) and that might also introduce bugs is ignored. The second configuration
“No explicit dependencies” ignores explicit trace links among issue artifacts in the
ITS and only relies on text similarity. In this configuration TraceScore is not allowed
to leverage existing issue-to-issue trace links captured during dataset mining. The
last configuration “All source code files” applies no filtering based on the amount
of modified source code files. The schema to perform this experiment in shown in
Figure 8.4. The achieved performance values in terms of MAP and MRR compared
to baseline configuration of TraceScore are shown in Figure 8.5.

103

8. Evaluation

Ar
ch

iv
a

De
rb

y
Dr

oo
ls

Er
ra

i
Fl

in
k

Gr
oo

vy
H

ad
oo

p
H

ba
se

H
ib

er
na

te
H

iv
e

In
fin

isp
an

Iz
pa

ck
JT

M
Jb

eh
av

e
Jb

pm
Ka

fk
a

Ke
yc

lo
ak

Lo
g4

j2
M

av
en

Ra
ilo

Re
ste

as
y

Se
am

2
Sp

ar
k

Sw
itc

hy
ar

d
Te

iid
W

eld
Zo

ok
ee

pe
r

Project

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

M
AP

TraceScore (ours) SimiScore CollabScore

(a) MAP

Ar
ch

iv
a

De
rb

y
Dr

oo
ls

Er
ra

i
Fl

in
k

Gr
oo

vy
H

ad
oo

p
H

ba
se

H
ib

er
na

te
H

iv
e

In
fin

isp
an

Iz
pa

ck
JT

M
Jb

eh
av

e
Jb

pm
Ka

fk
a

Ke
yc

lo
ak

Lo
g4

j2
M

av
en

Ra
ilo

Re
ste

as
y

Se
am

2
Sp

ar
k

Sw
itc

hy
ar

d
Te

iid
W

eld
Zo

ok
ee

pe
r

Project

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

M
RR

TraceScore (ours) SimiScore CollabScore

(b) MRR

Figure 8.3.: Comparision of CollabFilter, SimiScore, and TraceScore in terms of MAP
and MRR (higher is better).

104

8.6. Experiment III: Effectiveness of IR-Based Bug Localization Algorithm using
TraceScore

Figure 8.4.: Visualization of experiment II to evaluate different parameterization of
TraceScore on Proj𝑝.

8.6. Experiment III: Effectiveness of IR-Based Bug
Localization Algorithm using TraceScore

TraceScore is a similar issue component for a bug localization algorithm. ABLoTS
(see Sec. 6.5) was proposed as a IR-based bug localization algorithm using this
component. In experiment III, the bug localization performance in terms of Top@k,
MAP, and MRR is compared with IR-based bug localization algorithms BLUiR,
AmaLgam, as well as the improved version of BLUiR: LuceneScore.

8.6.1. Training and Running ABLoTS on a Project

ABLoTS leverages machine learning techniques to predict a mapping from features
of the bug report to source code files pairs to decide whether the respective file needs
to be fixed. Thus, no predefined calculation scheme, such as the one used by BLUiR
or AmaLgam (see Sec. 6.2), is used to programmatically calculate a score used to
rank the source code files. The used classifier algorithm is a random forest, which is
trained individually for each project Proj𝑝 ∈ GS as follows.

First the feature matrix X and the target vector y is calculated as described in Section
6.5. Next, X and y are split into a training and testing set. The split is time based
by chronologically sorting the bug reports according to their resolved date and using
approximately the first 80% for training (training bug reports), and the remaining
20% for testing (testing bugs reports). 𝑡𝑝,80% marks this split point. A time based
split procedure is necessary, because calculating TraceScore requires the notion of
“previously fixed bug reports”, which may not hold by randomly selecting bug reports
for testing. Once the bug reports used for training and testing are determined, X and

105

8. Evaluation

Ar
ch

iv
a

De
rb

y
Dr

oo
ls

Er
ra

i
Fl

in
k

Gr
oo

vy
H

ad
oo

p
H

ba
se

H
ib

er
na

te
H

iv
e

In
fin

isp
an

Iz
pa

ck
JT

M
Jb

eh
av

e
Jb

pm
Ka

fk
a

Ke
yc

lo
ak

Lo
g4

j2
M

av
en

Ra
ilo

Re
ste

as
y

Se
am

2
Sp

ar
k

Sw
itc

hy
ar

d
Te

iid
W

eld
Zo

ok
ee

pe
r

Project

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

M
AP

Baseline
No requirements

No explicit dependencies
All source code files

(a) MAP

Ar
ch

iv
a

De
rb

y
Dr

oo
ls

Er
ra

i
Fl

in
k

Gr
oo

vy
H

ad
oo

p
H

ba
se

H
ib

er
na

te
H

iv
e

In
fin

isp
an

Iz
pa

ck
JT

M
Jb

eh
av

e
Jb

pm
Ka

fk
a

Ke
yc

lo
ak

Lo
g4

j2
M

av
en

Ra
ilo

Re
ste

as
y

Se
am

2
Sp

ar
k

Sw
itc

hy
ar

d
Te

iid
W

eld
Zo

ok
ee

pe
r

Project

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

M
RR

Baseline
No requirements

No explicit dependencies
All source code files

(b) MRR

Figure 8.5.: Comparison of different TraceScore configurations (see Tab. 8.3) in terms
of MAP and MRR (higher is better).

106

8.6. Experiment III: Effectiveness of IR-Based Bug Localization Algorithm using
TraceScore

y are split in Xtrain, Xtest and ytrain, ytest accordingly, i.e. whether the respective
feature vector belongs to a bug report from the training or testing bug reports.
Afterwards the random forest classifier is trained using Xtrain and ytrain.

Special care needs to be taken for the training, because feature matrix X is highly
imbalanced and contains much more feature vectors x(𝑖) with 𝑦(𝑖) = 0. These
instances describe bug report to source code file pairs, where the source code file
doesn’t need to be modified. Therefore a classifier could simply predict 𝑦(𝑖) = 0 for
any given feature vector x(𝑖), resulting in no predictive power overall. To address this
issue, X is subsampled to the minority class, i.e. instance representing that the source
code file is necessary to be modified to resolve the bug report. The subsampling
is done on a per bug report basis (see Tab. 6.1). All feature vectors for a bug
report representing fixed source code files are taken, and a random equal amount of
feature vectors for source code files that weren’t modified. Training the classifier and
evaluation is repeated five times to mitigate the random effects of subsampling. The
reported metrics Top@k, MAP, and MRR on the testing bug reports is represented
as macro averaged values of the individual ABLoTS evaluations.

A random forest has a set of hyperparameters, i.e. parameters that are not determined
by classifier training and thus require manual setup. For example, this includes the
number of trees in the forest or their individual depth. The best hyperparameter
settings are dependent on X, y and are usually unknown. Therefore different
hyperparameter values are considered to find the best setup. The identification of
this setup is done by evaluating the performance (e.g. in terms of MAP) on data
different from the training and testing data. However, introducing the so called
validation data for every project would drastically reduce available training data
which is used to learn the model. For example using 60% of bug reports for training,
20% for validation, and the remaining 20% testing. Instead, a k-fold cross-validation
approach with 𝑘 = 5 was chosen for ABLoTS, which solely operates on the 80%
training data without touching the 20% testing data. The execution strategy is
shown in Figure 8.6. The subsampled Xtrain and ytrain data is split in five equal
parts (the folds) on a per bug report basis, such that each fold contains the same
amount of bug reports. Using k-fold cross-validation means, that the classifier is
trained on 𝑘 − 1 folds, combined into one training set, and then the last fold is used
as test set (Albon 2018). This is repeated 𝑘 times, each time using a different fold
as test set. The achieved performance of the model for each of the 𝑘 iterations is
then averaged to produce an overall measurement. In case of ABLoTS, the first
iteration to train the classifier uses the folds 1, 2, 3, 4, and is tested using fold 0, and
the achieved metrics are saved. For the next iteration, the folds 0, 2, 3, 4 are used
for training, and fold 1 for testing. The 5-fold cross-validation is executed for each
hyperparameter combination and the one yielding the highest MAP value is selected
as final setting. Eventually, this hyperparameter configuration is used to train the
classifier, which is than applied to Xtest, ytest.

107

8. Evaluation

Figure 8.6.: Visualization of k-fold cross-validation with 𝑘 = 5 on training data
(adopted from (Sklearn Documentation 2021)). Five iterations with
different combinations of training and testing folds are performed, the
achieved metrics are collected and finally averaged. For each iteration
different portions from the training data is used for actual training, and
one portion from the training data is used for validation, i.e. testing the
hyperparameter performance. The actual testing data is not considered
for cross-validattion.

To recap, running ABLoTS on a Proj𝑝 ∈ GS is (a) subsampling the training bug
reports, (b) applying a 5-fold cross-validation (i.e. not wasting training data) on
this data for every hyperparameter combination, (c) selecting the hyperparameters
achieving the largest MAP value, (d) individually train five classifiers on subsampled
training data using the best hyperparameter settings, run the classifiers on testing
data, and lastly (f) macro average the individual metrics of each test run (see
Fig. 8.7).

The other three bug localization algorithms require no training and are simply applied
on the test set of bug reports (see Fig. 8.8) and performance measures are captured.
For BLUiR and LuceneScore, the project’s source code is indexed at the point in
time, when the last training bug report was resolved. The composer component of
AmaLgam has two parameters 𝑎 and 𝑏. These values were empirically determined
by the authors of AmaLgam and set to 𝑎 = 0.2 and 𝑏 = 0.3, which are therefore
used for all setups in the evaluation. The chosen values prioritize the source code
structure component over the similar issue component, and both over the history
component.

108

8.6. Experiment III: Effectiveness of IR-Based Bug Localization Algorithm using
TraceScore

Figure 8.7.: Visualization of experiment III to apply ABLoTS to a project. First,
the project data is split into training and test data. Next the training
data is used to find best hyperparameters. Using these, the classifier of
ABLoTS is trained and applied to the testing bug reports.

Figure 8.8.: Visualization of experiment III for bug localization algorithms BLUiR,
AmaLgam, and LuceneScore on Proj𝑝.

109

8. Evaluation

Ar
ch

iv
a

De
rb

y
Dr

oo
ls

Er
ra

i
Fl

in
k

Gr
oo

vy
H

ad
oo

p
H

ba
se

H
ib

er
na

te
H

iv
e

In
fin

isp
an

Iz
pa

ck
JT

M
Jb

eh
av

e
Jb

pm
Ka

fk
a

Ke
yc

lo
ak

Lo
g4

j2
M

av
en

Ra
ilo

Re
ste

as
y

Se
am

2
Sp

ar
k

Sw
itc

hy
ar

d
Te

iid
W

eld
Zo

ok
ee

pe
r

Project

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

M
AP

ABLoTS (ours)
LuceneScore (ours)

AmaLgam
BLUiR

Figure 8.9.: Comparison of different bug localization algorithms in terms of MAP on
the testing data of each project (higher is better).

8.6.2. Results

The achieved performance in terms of MAP for the four algorithms on the testing
data is shown in Figure 8.9. It exhibits, that the proposed algorithms ABLoTS
and LuceneScore outperform the previous work of BLUiR and AmaLgam. Detailed
metrics also including Top@k, and MRR are listed in Table A.2.

110

8.7. Experiment IV: Effectiveness of Trace Link Set Augmentation (RQ-4)

8.7. Experiment IV: Effectiveness of Trace Link Set
Augmentation (RQ-4)

Experiment IV evaluates the proposed TSLA algorithm (see Sec. 7.4). It serves
as a pre-requisite to investigate IR-based bug localization performance on projects
containing augmented trace links, which is evaluated in experiment V.

8.7.1. Training and Running the Trace Link Set Augmentation
Classifier

Using the same training and test split introduced in experiment III for training and
running TSLA is not possible. This would result in augmented issue-to-commit trace
links only on a portion of all project data, i.e. no augmented trace links are available
in the training part of the dataset. Augmenting these links using the trained TLSA
classifier would violate a fundamental principle in machine learning to never mix
training and testing data. However, the trace link set in training data also needs
to be augmented, so that the bug localization algorithms, foremost ABLoTS, could
benefit from these links.

Therefore a more sophisticated scheme is used to augment issue-to-commit links
throughout the whole lifetime of a project. This is accomplished by training a project
independent classifier, which then augments trace links in a different project. For
a given project 𝑝 ∈ GSproject-names and one of its reduced issue-to-commit link sets
Proj𝑝,red,𝑖, the following leave one out scheme is used. A classifier is trained on all
projects, the training projects different from 𝑝, i.e. GS ∖ Proj𝑝, and then augments
trace links in Proj𝑝,red,𝑖. The feature matrices X and target vectors y for the training
projects are calculated using GS and combined (stacked) into on large matrix Xtrain
and vector ytrain, respectively. Next, Xtest and ytest for the project to augment are
created from the specific reduced data Proj𝑝,red,𝑖. Now, the classifier is trained on
Xtrain, ytrain, and applied on Xtest, which yield the augmented project Proj𝑝,aug,𝑖.

The actual classifier training is similar to the training of ABLoTS described in
Section 8.6.1 and also requires finding hyperparameters, and use subsampling. The
hyperparameters for the random forest are determined using a 5-fold cross-validation
on Xtrain, ytrain to retrieve the configuration with the best 𝐹1 score. This metric is
chosen as tradeoff between precision (the augmentation algorithm should only create
correct trace links), and recall (the augmentation algorithm should re-create all trace
links). Xtrain is highly imbalanced, i.e. there are much more instances representing
an issue-commit pair without a link, than those representing a linked pair. Thus,
Xtrain and Xtest are randomly subsampled to the minority class to balance the data

111

8. Evaluation

as explained in training the ABLoTS classifier. To mitigate the random subsampling
effects, five different random forests using the best hyperparameter settings are
trained, and are individually applied to Xtest. This possibly results in different
predictions, i.e. one classifier suggests a trace link between a particual issue-commit
pair, and another random forest recommends not to trace these two artifacts. To
break these ties, a voting with simple majority is used, i.e. three out of five classifiers
need to recommend the issue-commit pair to be considered as a correct trace link.
The recommended trace links are added to Proj𝑝,red,𝑖 and thus yield Proj𝑝,aug,𝑖.
Figure 8.10 visualizes this execution scheme. Eventually, the augmentation routine is
performed for each project, repeated five times once for every reduced link dataset.

112

8.7. Experiment IV: Effectiveness of Trace Link Set Augmentation (RQ-4)

Figure 8.10.: Visualization of experiment IV. All project data, except for the project
𝑝 to augment, are used to train the TSLA classifier. This project
independent classifier is used to augment one reduced link dataset
𝑃𝑟𝑜𝑗𝑝,𝑟𝑒𝑑,𝑖 yielding the respective augmented project 𝑃𝑟𝑜𝑗𝑝,𝑎𝑢𝑔,𝑖. This
routine is repeated for all five reduced linked project data for every
project.

113

8. Evaluation

8.7.2. Results

The augmentation performance is measured in terms of precision, and recall and is
shown in Figure 8.11. To get single measures, the individual results achieved on each
Proj𝑝,aug,𝑖 per project are averaged. There are two color coded bars per project on
the x-axis. The blue bar represents the achieved precision, and the green one the
recall. Both metrics range from 0% to 100% (higher values are better).

Ar
ch

iv
a

De
rb

y
Dr

oo
ls

Er
ra

i
Fl

in
k

Gr
oo

vy
H

ad
oo

p
H

ba
se

H
ib

er
na

te
H

iv
e

In
fin

isp
an

Iz
pa

ck
Jb

eh
av

e
JT

M
Jb

pm
Ka

fk
a

Ke
yc

lo
ak

Lo
g4

j2
M

av
en

Ra
ilo

Re
ste

as
y

Se
am

2
Sp

ar
k

Sw
itc

hy
ar

d
Te

iid
W

eld
Zo

ok
ee

pe
r

Project

0
10
20
30
40
50
60
70
80
90

100

%

Precision Recall

Figure 8.11.: Trace link set augmentation performance in terms of precision, recall,
for all projects (higher is better). 40% of the original trace links per
project were randomly removed and TSLA algorithm was trained to
restore them. This was repeated five times, and the depicted measures
are averages (micro).

114

8.8. Experiment V: Effectiveness of IR-Based Bug Localization Algorithms on
Projects with Augmented Trace Link Sets (RQ-5)

8.8. Experiment V: Effectiveness of IR-Based Bug
Localization Algorithms on Projects with
Augmented Trace Link Sets (RQ-5)

Experiment V is similar to experiment III (see Sec. 8.6). Instead of performing bug
localization on GS, the five issue-to-commit trace link augmented datasets AUG𝑖 are
used (see Fig. 8.12). Each Proj𝑝,aug,𝑖 ∈ AUG𝑖 is split into training bug reports and
testing bug reports using the identical split points 𝑡𝑝,80% as described in experiment
III (Sec. 8.6). The algorithms LuceneScore and BLUiR do not leverage trace link
information and thus are unaffected by the augmentation process. BLUiR, AmaLgam
and LuceneScore require no training and are simply applied to the testing data of
the augmented trace links sets (see Fig. 8.13). ABLoTS is trained on training bug
reports, and applied to testing bug reports.

The achieved metrics Top@k, MAP, and MRR for each augmented project 𝑃𝑟𝑜𝑗𝑝,aug,𝑖
are collected and afterwards averaged. Fig. 8.14 shows the performance in terms
of MAP. For ease of comparision, the results from experiment III for ABLoTS,
LuceneScore, AmaLgam, and BLUiR are also depicted. The algorithms labeled
“augmented” differentiate the performance on GS and the averaged results on AUG𝑖.

115

8. Evaluation

Figure 8.12.: Visualization of experiment V to apply ABLoTS to a project, which is
similar to experiment III (see Figure 8.7). Bug localization is performed
on each augmented project Proj𝑝,aug,𝑖 and the achieved results are
averaged. This procedure is repeated for all projects.

Figure 8.13.: Visualization of experiment V for AmaLgam for each project Proj𝑝,aug,𝑖.
Bug localization is performed on each augmented project Proj𝑝,aug,𝑖
and the achieved results are averaged. This procedure is repeated for
all projects.

116

8.8.
Experim

entV
:Effectiveness

ofIR
-B

ased
B

ug
Localization

A
lgorithm

s
on

Projects
with

Augm
ented

Trace
Link

Sets
(R

Q
-5)

Ar
ch

iv
a

De
rb

y

Dr
oo

ls

Er
ra

i

Fl
in

k

Gr
oo

vy

H
ad

oo
p

H
ba

se

H
ib

er
na

te

H
iv

e

In
fin

isp
an

Iz
pa

ck

JT
M

Jb
eh

av
e

Jb
pm

Ka
fk

a

Ke
yc

lo
ak

Lo
g4

j2

M
av

en

Ra
ilo

Re
ste

as
y

Se
am

2

Sp
ar

k

Sw
itc

hy
ar

d

Te
iid

W
eld

Zo
ok

ee
pe

r

Project

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
M

AP

ABLoTS (ours) augmented
ABLoTS (ours)

Lucene (ours)
AmaLgam augmented

AmaLgam
BLUiR

Figure 8.14.: Comparision of different bug localization algorithms in terms of MAP (higher is better). The bug
localization is performed on AUG𝑖 and averaged for the algorithms ABLoTS (ours) and AmaLgam. For
ease of comparision, the performance in terms of MAP from experiment II are depicted as well. The
algorithms labeled with ”augmented” were applied on augmented datasets, the others on reference GS.117

9. Discussion

In this section the results from the five evaluation experiments are discussed. Each
experiment is handled separately and the corresponding research question is answered.
The section ends with an analysis of potential threats to validity and how they were
addressed.

9.1. RQ-1 - Effectiveness of Similar Issue Component
TraceScore

TraceScore with baseline configuration outperforms previous approaches, i.e. Col-
labScore and SimiScore, in 25 out of 27 projects (see Figs. 8.3a, 8.3b). SimiScore
achieves slightly higher Top@1 values for projects Weld and Zookeeper, and thus
resulting in higher values in terms of MAP and MRR. CollabScore performs worst
in all metrics and on every project. This most likely stems from its rather simple
algorithm only relying on textual similarity of bug reports’ summaries (see Sec. 6.2.2).
On average, TraceScore achieves a 53% better Top@1, 24% better Top@5, 23%
better Top@10, 33% better MAP, and 32% better MRR than SimiScore. The
nonparametric1 Wilcoxon signed-rank test (Wilcoxon 1992) showed, that the null
hypothesis stating “TraceScore is equal or worse than SimiScore” is rejected for every
metric with a significance level of 𝑝 < 0.05. The effect size on the Top@1 metrics is
considered large with |𝛿| = 0.5, and medium (|𝛿| ≈ 0.4) for the other metrics.

The following example illustrates the ability of TraceScore to utilize additional
artifact and trace link data. Four source code files were modified to fix bug report
DERBY-42142 from project Derby. Both, SimiScore and TraceScore rank one of the
modified source code files, DD_Version.java, on 4th place. However, TraceScore
also correctly ranks DataDictionaryImpl.java on 3rd place. This source code file
was previously modified to implement improvement DERBY-37693.

1. A nonparametric test does not assume a specific distribution, e.g. normal distribution, of the
independent variables.

2. DERBY-4214: https://issues.apache.org/jira/browse/DERBY-4214, fixed files: https:
//bit.ly/3jf6lbg

3. DERBY-3769: https://issues.apache.org/jira/browse/DERBY-3769, fixed files: https:
//bit.ly/3gX5kCQ

119

https://issues.apache.org/jira/browse/DERBY-4214
https://bit.ly/3jf6lbg
https://bit.ly/3jf6lbg
https://issues.apache.org/jira/browse/DERBY-3769
https://bit.ly/3gX5kCQ
https://bit.ly/3gX5kCQ

9. Discussion

Finding TraceScore effectively localizes bugs in source code files. It outperforms
existing similar issue components in terms of Top-1, Top-5, Top-10, MAP, and
MRR. In particular, it achieves on average a 53% higher Top-1, and 33% better
MAP than its closest competitor resulting in more correctly identified source code
files on higher ranks.

9.2. RQ-2 - Impact of TraceScore Parameterization

Changing the parameterization of TraceScore, i.e. 𝑁bug, 𝑁req, 𝐷bug, 𝐷req, affects
its performance. The chosen temporal values 𝐷bug = 𝐷req ≡ 365 for TraceScore
baseline yield reasonable results in terms of MAP and MRR compared to other
choices (see Figs. A.1, A.2). Especially shortening the history length to 180 days, or
even down to 90 days, significantly reduces the performance in most projects. Using
these parameter values, TraceScore loses information by limiting the time interval of
previously resolved bug reports and implemented requirements. For example, the
bug report DERBY-67054 was created and resolved in August 2014. This report has
an explicit trace link to bug report DERBY-63755, which was resolved in October
2013. However, this information is lost in case the history is too short.

Increasing the considered history by setting 𝐷bug and 𝐷req to 730 days provides
slightly better results as the chosen baseline value of 365 days. Thus, it is possible
the extract additional information from even older bug fixes and implemented
requirements. However, this process does not continue indefinitely. In case of the
unbounded value choice for 𝐷bug and 𝐷req, i.e. to use all available past artifacts,
MAP and MRR generally decrease below that achieved for 730 days. Sometimes it is
even worse than baseline, e.g. for project Hbase. This indicates, that very old source
code changes provide no information for a current bug report at hand. There is one
exception, project Zookeeper, where utilizing all past issues results in highest MAP
and MRR.

Despite changing TraceScore’s history length, modifying the other parameters also
affects the performance of TraceScore in terms of MAP and MRR as shown in
Figures 8.5a, 8.5b. The most impact on TraceScore performance in this regard
has the exclusion of requirement artifacts (see “No requirements” configuration).
Thus, all previous source code modifications and not only bug fixes provide useful
information for handling the current bug report. The achieved MAP and MRR
metrics drop for all projects when requirements are excluded. The highest drop occurs
for project Archiva, where MAP is reduced by 35% and MRR by 41%. Ignoring

4. https://issues.apache.org/jira/browse/DERBY-6705
5. https://issues.apache.org/jira/browse/DERBY-6375

120

https://issues.apache.org/jira/browse/DERBY-6705
https://issues.apache.org/jira/browse/DERBY-6375

9.3. RQ-3 - Effectiveness of an IR-based Bug Localization Algorithm using
TraceScore

requirement artifacts for bug localization has nearly no effect on project Drools.
Nevertheless, even without using requirement artifacts, TraceScore achieves higher
MAP values than SimiScore in 19 projects, and better MRR values in 17 projects.

The second configuration, “No explicit dependencies”, uses the same parameters as
baseline configuration, but ignores explicitly defined trace links among issue artifacts
in the issue tracking system. Interestingly, this does not affect the performance of
TraceScore, neither in terms of MAP nor MRR. Considering only bug localization,
the developers could skip the elaborate task to create these trace links in the first
place. An explanation might be, that linked artifacts already have a high textual
similarity, and thus a high edge weight in the constructed traceability graph.

The last configuration, “All source code files”, does not filter issue artifacts based
on the number of modified source code files. This results in nearly identical metrics
as the baseline configuration. However, it has an effect on the cost to compute
TraceScore, because potentially a large amount of ratios need to be summed up (see
Eq. 6.6). Thus, a simpler solution, i.e. baseline configuration, should be preferred.

The parameter study underlines the chosen TraceScore baseline configuration is a
sensible choice for studied projects.

Finding Requirement artifacts in the issue tracker improve the bug localization
performance of TraceScore. Explicitly created issue-to-issue trace links only provide
a minor impact on the performance and thus their creation should not be the
focus of the developers. The baseline parameterization of TraceScore performs
best and can be used for all projects.

9.3. RQ-3 - Effectiveness of an IR-based Bug
Localization Algorithm using TraceScore

The competitor algorithms BLUiR and AmaLgam both perform worse in terms of
MAP compared to the novel algorithms LuceneScore, and ABLoTS (see Fig. 8.9).
On average, ABLoTS achieves more than 100% of Top@5, Top@10, MAP, and MRR
compared to AmaLgam, and even 150% at Top@1. The measures for AmaLgam are
comparable to those reported by Wang et al. (Wang and Lo 2014) on their dataset
consisting of only four projects. AmaLgam also consistently outperforms BLUiR as
in evaluation in that paper, but the difference in terms of MAP is much closer on
the dataset used in this thesis.

LuceneScore also performs very good and ranks second on each project in terms
of MAP. For many bug reports the algorithm is able to identify one out of the on
average five (see Tab. 8.1) modified source code files per bug report and ranks it first.

121

9. Discussion

Bug reports often directly mention class names or identifiers found in the source
code. For example, bug report ZOOKEEPER-27866 from project Zookeeper reads
“Flaky test: org.apache.zookeeper .test.ClientTest testNonExistingOpCode”, which
contains a full qualified name of a test case implemented in Java class ClientTest.
The modified source code files for that bug report are ClientTest.java,
NettyServerCnxn.java, and TestableZookeeper.java. LuceneScore ranks
ClientTest.java first, because matches are found within identifiers and class names
and thus lucenecomb (ClientTest.java, ZOOKEEPER-2768) is high (see Sec. 6.4). It
is the common practice in the Java programming language to implement a single
class in a source code file and name that file after the class. Thus, ClientTest.java
represents the implementation of class ClientTest, which is mentioned in the bug
report and is correctly identified by LuceneScore. Neither NettyServerCnxn.java
nor TestableZookeeper.java appear in the ranked source code file list resulting
in a Top@1 hit and thus a perfect average precision for this bug report. A similar
example is bug report KAFKA-48407 of project Kafka whose description starts with
“There are several problems dealing with errors in BufferPool.allocate,(int size, long
maxTimeToBlockMs) […]”. In this case a whole method signature is contained in the
bug report. The source code files modified for the bug report are BufferPool.java,
and BufferPoolTest.java. Both files are on high places of the ranked file list
created by LuceneScore, because of high score values from lucenecomp.

However, if there are no direct clues mentioned in the bug report, i.e. having a
generic summary and description, LuceneScore performs weak. For example, bug
report KAFKA-62108 reads “IllegalArgumentException if 1.0.0 is used for inter.bro-
ker,.protocol.version or log.message .format.version” with the fixed source code file
ApiVersionsResponseTest.java. Misled by the description, LuceneScore ranks
arbitrary source code files on top, because of the terms “IllegalArgumentException”
or “log.message”, which often appear in the source code.

BLUiR and LuceneScore, share the same fundamental concepts and thus should
produce similar results (see Sec. 6.4). This is true for the above mentioned bug
reports, ZOOKEEPER-2786, KAFKA-4840, for which both algorithms are able to yield
a perfect result, and KAFKA-6210, for which both fail to identify any source code
file that need to be fixed. However, LuceneScore still performs better, because it
more often predicts correct source code files at higher ranks as BLUiR. For example,
bug report ZOOKEEPER-21419 reads “ACL cache in DataTree never removes entries”,
and LuceneScore ranks DataTree.java correctly at the first place, whereas BLUiR
puts it second and has Login.java as top result. Thus the applied modifications,

6. https://issues.apache.org/jira/browse/ZOOKEEPER-2786
7. https://issues.apache.org/jira/browse/KAFKA-4840
8. https://issues.apache.org/jira/browse/KAFKA-6210
9. https://issues.apache.org/jira/browse/ZOOKEEPER-2141

122

https://issues.apache.org/jira/browse/ZOOKEEPER-2786
https://issues.apache.org/jira/browse/KAFKA-4840
https://issues.apache.org/jira/browse/KAFKA-6210
https://issues.apache.org/jira/browse/ZOOKEEPER-2141

9.3. RQ-3 - Effectiveness of an IR-based Bug Localization Algorithm using
TraceScore

e.g. more sophisticated textual analysis, when implementing LuceneScore proof their
usefulness (see end of Sec. 6.4).

ABLoTS achieves higher values on most measures in all projects compared to Luce-
neScore. An application of the nonparametric Wilcoxon signed-rank test (Wilcoxon
1992) showed, that these differences are significant (p < 0.05) and ABLoTS outper-
forms LuceneScore. Calculating cliff’s delta results in |𝛿| ≈ 0.2 for each of the five
reported metrics, which indicate small but substantial differences. Thus, combining
traceability information from TraceScore with the source code structure information
significantly improves bug localization performance.

In order to investigate the contribution of different components TraceScore, SimiScore,
and BugCache score on testing data have been calculated and evaluated in terms
of MAP (see Fig. 9.1). The achieved MAP values for TraceScore and SimiScore
are comparable with those calculated on the whole project data (see Fig. 8.3a),
and TraceScore still performs best on most projects. The only exceptions are the
projects Jbehave, which only contains ten test bugs and thus is neglectable, project
Derby and project Zookeeper, where SimiScore performs best in terms of MAP. The
contribution of BugCache is least, ranging from 0 to about 0.1 MAP points per
project, whereas the other scores go up to > 0.4 MAP points. Comparing Figure
8.9 and Figure 9.1 shows that the different bug localization algorithm components
not only benefit from each other when combined, i.e. the final score is not simply
the sum of the component scores. For example, for project Hive, ABLoTS (the
combination of LuceneScore, TraceScore, and BugCache) achieves a MAP of 0.48,
whereas the individual components achieve 0.42, 0.33, and 0.05 for LuceneScore,
TraceScore, and BugCache respectively. This value is much lower as one would
expect when considering the individual component scores. One reason for this is,
that the different components correctly rank the same candidate source code files on
top, resulting in good metrics individually, but not changing the overall metrics when
combined. This combination effect is also present for AmaLgam, which combines
BLUiR, SimiScore, and BugCache. For project Hive, AmaLgam achieves a MAP
of 0.32, and the individual component scores are 0.28, 0.19, and 0.05 for BLUiR,
SimiScore, and BugCache.

Finding The novel IR-based bug localization algorithm ABLoTS benefits from
TraceScore. It outperforms two competitor algorithms by 100% on all measures.
The modifications applied in LuceneScore improved the structured source code
search compared to baseline algorithm.

123

9. Discussion

Ar
ch

iv
a

De
rb

y
Dr

oo
ls

Er
ra

i
Fl

in
k

Gr
oo

vy
H

ad
oo

p
H

ba
se

H
ib

er
na

te
H

iv
e

In
fin

isp
an

Iz
pa

ck
JT

M
Jb

eh
av

e
Jb

pm
Ka

fk
a

Ke
yc

lo
ak

Lo
g4

j2
M

av
en

Ra
ilo

Re
ste

as
y

Se
am

2
Sp

ar
k

Sw
itc

hy
ar

d
Te

iid
W

eld
Zo

ok
ee

pe
r

Project

0.0

0.1

0.2

0.3

0.4

0.5

M
AP

TraceScore (ours) SimiScore BugCache

Figure 9.1.: Comparison of different bug localization algorithms components in terms
of MAP on testing data of each project (higher is better). TraceScore
(ours), and SimiScore are similar issue components used in ABLoTS
(ours) and AmaLgam, respectively. The history component BugCache is
used in both, ABLoTS (ours) and AmaLgam.

124

9.4. RQ-4 - Effectiveness of Trace Link Set Augmentation

Ar
ch

iv
a

De
rb

y
Dr

oo
ls

Er
ra

i
Fl

in
k

Gr
oo

vy
H

ad
oo

p
H

ba
se

H
ib

er
na

te
H

iv
e

In
fin

isp
an

Iz
pa

ck
Jb

eh
av

e
JT

M
Jb

pm
Ka

fk
a

Ke
yc

lo
ak

Lo
g4

j2
M

av
en

Ra
ilo

Re
ste

as
y

Se
am

2
Sp

ar
k

Sw
itc

hy
ar

d
Te

iid
W

eld
Zo

ok
ee

pe
r

Project

0
10
20
30
40
50
60
70
80
90

100

%

Weighted precision Weighted recall

Figure 9.2.: Trace link set augmentation performance in terms of weighted precision
and recall for all projects (higher is better). These metrics take the
class distribution into account contrasting Figure 8.11. The depicted
measures are averages achieved on RED𝑖.

9.4. RQ-4 - Effectiveness of Trace Link Set
Augmentation

The results for augmenting issue-to-commit trace links on the reduced datasets
in terms of precision, and recall are shown in Figure 8.11. Overall, the recall for
all projects is 90% or higher (97% on average). Thus, the augmentation process
creates few false negatives and is able to restore nearly all of the previously removed
trace links. The precision of the augmenter is more diverse. Especially for projects
Maven, and Railo it is less than 10%, and the lowest precision is achieved for project
Errai with 4.5%. Thus, TLSA algorithm creates lots of issue-to-commit trace links,
that are not linked (false positives) in gold standard GS. On the other hand, high
precision values of 90% or above are achieved for projects Hbase, Hive, and it reaches
a maximum of 97% for project Zookeeper, i.e. nearly no superfluous trace links
are created. Taking the actual class distribution into account, i.e. the number of
nonlinked and linked issue commit pairs, the weighted average precision (see Sec. 8.3)
is above 90% for all projects, and 98% on average across all projects (see Fig. 9.2).

The reason for the mixed precision results is likely the construction of the augemented
datasets AUG𝑖 (see Eq. 8.3). In gold standard GS only linked issue-commit pairs

125

9. Discussion

exist, in the reduced datasets GSred,𝑖 linked issue-commit pairs are present, as well as
nonlinked ones, i.e. artificially removed ones. But, the augmentation process considers
all commits from the orginial SEOSS project Proj(seoss). This also includes commits
that never traced to an issue (see column “unlinked” in Tab. 7.1, and issue-commit
example pairs in Eq. 7.9). So, the amount of these commits describes the difficulty for
the augmentation process. For example, in project ProjZookeeper there are 835 linked
issue-commit pairs. In original Proj(seoss)

Zookeeper are additional 73 nonlinked commits,
which matches the low unlinked commit ratio of 8% as reported in Table 7.1. Thus,
when creating the features for project Zookeeper, fewer issue-commit combinations
are possible that represent a candidate pair which will never be linked. The same
applies for other projects with high precision values, e.g. projects Hadoop and Hive.
These projects also have a very high issue-to-commit link ratio of 99% and 97%,
respectively. Only 267 and 311 unlinked commits are added from Proj(seoss)

Hadoop and
Proj(seoss)

Hive repectively, constrasting the ≈ 21, 000 and ≈ 9, 000 linked ones.

The TLSA algorithm only achieves 5% precision on project Errai. ProjErrai has
542 linked issue-commit pairs. However, the nonlinked commit ratio of 91% in
Proj(seoss33)

Errai results in ≈ 5, 500 possible issue-commit pairs of considered for tracing,
which resembles the opposite for projects Hadoop, Hive, and Zookeeper. Every
8th instance in the feature matrices created for ProjHadoop,red,0 and ProjHive,red,0
encodes a true issue-to-commit pair. For ProjErrai,red,0 it is every 160th, and for
ProjMaven,red,0 every 130th. Assuming a constant error rate of the augmenter per
instance to introduce a false positive this imbalance results in low precision metrics.

9.4.1. Evaluating Additional Trace Link Removal Settings

In datasets RED𝑖 40% of existing issue-to-commit trace links are removed, emulating
developer behavior based on statistics of GS (see Sec. 8.2.2). Other removal rates
are also instresting to study the augmentation behavior. For example, does the
augmentation perform better in terms of precision, if fewer trace links are removed?
Or considering the worst scenario and removing all trace links, and thus answer the
question: “Is it possible to augment a project, which does not have any trace links at
all?”. If so, the time consuming manual trace link creation could be replaced by a
fully automated process. The first question is evaluated by repeating experiment IV,
but using five datasets RED𝑖,20%, 𝑖 ∈ {0, … , 4} with only 20% of issue-to-commit
trace links removed. The achieved performance in terms of weighted precision and
recall is shown in Figure 9.3. Changing the trace link removal rate does not affect the
training of the augmentation classifier for a project 𝑝 ∈ GSproject-names, because the
training process always uses ⋃𝑞 Proj𝑞 with 𝑝 ≠ 𝑞, 𝑞 ∈ GSproject-names (see Fig. 8.10).
The only difference is the feature vector generation for Proj𝑝,red,𝑖,20%, because now

126

9.4. RQ-4 - Effectiveness of Trace Link Set Augmentation

Ar
ch

iv
a

De
rb

y
Dr

oo
ls

Er
ra

i
Fl

in
k

Gr
oo

vy
H

ad
oo

p
H

ba
se

H
ib

er
na

te
H

iv
e

In
fin

isp
an

Iz
pa

ck
Jb

eh
av

e
JT

M
Jb

pm
Ka

fk
a

Ke
yc

lo
ak

Lo
g4

j2
M

av
en

Ra
ilo

Re
ste

as
y

Se
am

2
Sp

ar
k

Sw
itc

hy
ar

d
Te

iid
W

eld
Zo

ok
ee

pe
r

Project

0
10
20
30
40
50
60
70
80
90

100

%

Weighted precision Weighted recall

Figure 9.3.: Trace link augmentation performance in terms of weighted precision
and recall for all projects (higher is better). Instead of removing 40%
of issue-to-commit links, only 20% have been removed. The depicted
measures are averages achieved on RED𝑖,20%.

the feature matrix X contains more issue-commit instances encoding a true trace
link. However, the generated feature matrices are still highly imbalanced (but less
compared to 40% removal).

The augmentation classifier does benefit from increased number of true trace link
instances. Comparing Figure 9.3 and Figure 9.2 the achieved measures are rather
similar for all projects. In detail, the weighted precision slightly increases for most
projects and reaches on average 99% for RED𝑖,20% instead of on average 98% on
RED𝑖. There is also a slight increase in averaged recall for all projects.

Lastly, the behavior of TLSA is evaluated using dataset RED100% where all existing
issue-to-commit trace links have been removed. In this case only one dataset exists,
because removing all issue-commit trace links does not involve randomness. The
augmentation performance in terms of precision and recall10 is shown in Figure 9.4.
The classifier recommends a trace link for every issue-commit pair, resulting in perfect
recall and worse precision for every project, of course. The exceptions are projects,
which were highly linked in the first place, e.g. projects Hadoop, Hbase, or Hive (see
Tab. 7.1). In this case, always recommending a link for a given issue-commit pair is

10. The classifier failed to distinguish the linked and nonlinked case, and therefore plotting
weighted measures for pecision and recall is inappropriate.

127

9. Discussion

Ar
ch

iv
a

De
rb

y
Dr

oo
ls

Er
ra

i
Fl

in
k

Gr
oo

vy
H

ad
oo

p
H

ba
se

H
ib

er
na

te
H

iv
e

In
fin

isp
an

Iz
pa

ck
Jb

eh
av

e
JT

M
Jb

pm
Ka

fk
a

Ke
yc

lo
ak

Lo
g4

j2
M

av
en

Ra
ilo

Re
ste

as
y

Se
am

2
Sp

ar
k

Sw
itc

hy
ar

d
Te

iid
W

eld
Zo

ok
ee

pe
r

Project

0
10
20
30
40
50
60
70
80
90

100

%
Precision Recall

Figure 9.4.: Trace link set augmentation performance in terms of precision and recall
(higher is better). Instead of removing 40% of issue-to-commit links, all
issue-to-commit links are removed. The depicted measures are achieved
on REDred,100%.

corrcect, of course. Indeed, precision nearly follows the linked issue-to-commit ratio
of the projects. For example, project Seam2 has an unlinked issue-to-commit ratio
of 72%, thus 28% are linked, which matches the achieved precision of 27.6% of the
augmenter.

The reason for the poor augmentation results is the very limited feature data
when creating the feature matrices for the projects in RED𝑖,100%. The features
feat2 … , feat4 of the process model describing relations to the closest linked commit
are always 0.0, because of the absence of linked issue-commit pairs (see Sec. 7.4). The
random forest classifier relies on these important features, and the stakeholder and
similarity features alone do not permit good issue-to-commit trace link recovery.

Finding The Trace Link Set Augmentation classifier is able to recreate issue-to-
commit trace links on projects with 40% nonlinked commits. The augmentation
reliably reconstructs the correct links (barely false negatives), and only introduces
few additional issue-to-commit trace links (false positives). The algorithm is
project independent, and once trained can be used to recommend trace links on
unknown projects. The classifier requires at least some existing issue-commit links,
and cannot be applied to a project without any trace links.

128

9.5. RQ-5 - Effectiveness of IR-based Bug Localization Algorithms on Projects with
Augmented Trace Link Sets

9.5. RQ-5 - Effectiveness of IR-based Bug Localization
Algorithms on Projects with Augmented Trace
Link Sets

The bug localization algorithm ABLoTS outperforms AmaLgam on the augmented
datasets AUG𝑖 in terms of MAP (see Fig. 8.14) for all projects. On average MAP
performance is 99% compared to reference dataset GS studied in experiment III. The
largest difference is −0.03 MAP points for project Jbehave. Intrestingly, ABLoTS
sometimes performs better on the augmented dataset, i.e. on project Archiva, or
on project Hive, with about 2% better MAP. But, the Wilcoxon signed-rank test
showes, that the MAP performance on GS is still significantly better (𝑝 < 0.05), but
with negligible effect size (Cliffs |𝛿| = 0.018). Nevertheless, the good performance
on the datasets AUG𝑖 shows, that bug localization using ABLoTS is still possible,
even on projects containing incorrect issue-to-commit trace links (i.e. false positives
introduced by the augmentation algorithm).

On average, the performance of AmaLgam in terms of MAP on AUG𝑖 is identical to
that achieved on gold standard GS. This is supported by the Wilcoxon signed-rank
test, which cannot reject the null hypothesis, and thus there is no evidence, that the
performance of AmaLgam on either dataset is different.

Changing the set of issue-commit links via removal or augmentation only affects the
similar issue components, i.e. TraceScore in ABLoTS and SimiScore in AmaLgam, for
the studied bug localization algorithms. The other components do not leverage this
information. Thus any changes when comparing the achieved performance on GS and
AUG𝑖 stem from the performance of the similar issue component or the behavior of the
composer component, which models to interactions between contained components
(see Fig. 3.1). The later is difficult to investigate, especially for ABLoTS because its
composer component is trained and no trivial formula is applied as for AmaLgam.
The other possible reason can be investigated by comparing the performance of the
similar issue components on gold standard GS and AUG𝑖 as shown in Figure 9.5. It
visualizes the achieved performance in terms of MAP macro averaged across the five
datasets AUG𝑖 labeled with “augmented”. For ease of comparision, the performance
on reference data from experiment I is also added (see Fig. 8.3a).

129

9.
D

iscussion

Ar
ch

iv
a

De
rb

y

Dr
oo

ls

Er
ra

i

Fl
in

k

Gr
oo

vy

H
ad

oo
p

H
ba

se

H
ib

er
na

te

H
iv

e

In
fin

isp
an

Iz
pa

ck

JT
M

Jb
eh

av
e

Jb
pm

Ka
fk

a

Ke
yc

lo
ak

Lo
g4

j2

M
av

en

Ra
ilo

Re
ste

as
y

Se
am

2

Sp
ar

k

Sw
itc

hy
ar

d

Te
iid

W
eld

Zo
ok

ee
pe

r

Project

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
M

AP
TraceScore (ours) augmented TraceScore (ours) SimiScore augmented SimiScore

Figure 9.5.: Comparision of similar issue components in terms of MAP (higher is better). The bug localization is
performed on AUG𝑖 and averaged for TraceScore (ours) and SimiScore. For ease of comparision, the
performance in terms of MAP from experiment I are depicted as well. The algorithms labeled ”augmented”
were applied on issue-to-commit trace link augmented datasets, the others on reference GS.

130

9.5. RQ-5 - Effectiveness of IR-based Bug Localization Algorithms on Projects with
Augmented Trace Link Sets

The results of experiment IV showed varing precision values depending on the project,
ranging from less than 10% to above 90% stemming from false positive issue-to-
commit trace links. These should impact the similar issue component performance,
because these links directly affect the calculation of SimiScore and TraceScore (see
Eqs. 6.2, 6.6). Especially for TraceScore much larger traceability graphs are expected
introducing many irrelevant source code files. However Figure 9.5 only shows minor
changes in achieved MAP values, and TraceScore proofs robust to wrong issue-commit
pairs. The applied traceability graph pruning controlled by parameters 𝑁bug and
𝑁req is responsible for this behaviour. It limits the inclusion of issues that modify
too many source code files, resulting in similar traceability graphs created for GS
and AUG𝑖. This situation is examplified in Figure 9.6.

Figure 9.6a shows a traceability graph created on reference GS for bug report 𝑏cur.
It contains two issues tracing to four source code files, i.e. the potential ones that
need to be modified to resolve 𝑏cur. The augmentation process introduces many false
positive issue-to-commit trace links as experiment IV revealed. This is depicted in
Figure 9.6b containing three augmented issue-to-commit trace links (𝑏0, 𝑐2), (𝑟0, 𝑐3),
and (𝑟0, 𝑐4), leading to 24 candidate source code files for 𝑏cur (all highlighted in red).
However, the TraceScore pruning process removes requirement 𝑟0, because it traces
to 21 source code files exceeding the baseline configuration limit of 𝑁req = 20. The
resulting traceability graph is shown in Figure 9.6c which finally is used in AUG𝑖,
quite similar to the original one. Both traceability graphs share the candidate source
code files 𝑓0 and 𝑓1. The files 𝑓2, 𝑓3 are only contained in the original graph, whereas
the augmented and than pruned graph exclusively contains source code files 𝑓4 and
𝑓5. Thus, similar performance measures in terms of Top@k, AP, and RR for bug
report 𝑏cur in GS and AUG𝑖 are expected.

The differences in number of source code files exclusively contained in reference
traceability graph (green line) and the augmented and then pruned traceability
graph (blue line) are visualized for projects Kafka and Spark in Figure 9.7. The
x-axis represents the bug reports ordered by resolved date, i.e. 0 is the first (oldest)
bug report, and that on far right the most recently resolved one. For example, the
traceability graph created from the original data for the 100th bug report in project
Spark contains 4 source code files, that are not present in the augmented and then
pruned traceability graph. On the other hand, the augmented and then pruned
traceability graph exclusively contains 13 source code files. Both graphs have 333
source code files in common (which is not depicted). For project Spark there are little
differences between the two graphs, e.g. at max 10 files per bug report along the project
lifetime (see Fig. 9.7a). Thus, the bug localization performance in terms of MAP
on ProjSpark and ProjSpark,aug,i is expected to be similar, which is true (see Fig. 9.5).
For project Kafka, the achieved MAP for TraceScore on ProjKafka,aug,𝑖 is 2 points
worse than on gold standard ProjKafka. This stems from much higher differences of

131

9. Discussion

(a) Gold standard (b) Augmented (c) Pruned

Figure 9.6.: Example for pruning of an augmented traceability graph. The left
figure (a) shows the original traceablity graph for 𝑏cur which traces to 4
source code files. The middle figure (b) shows the same graph, but with
augmented issue-commit links (highlighted in red). Three additional
(false positive) trace links (𝑏0, 𝑐2), (𝑟0, 𝑐3), and (𝑟0, 𝑐4) have been added
and 𝑏cur traces to 24 source code files in total. The right figure (c)
depicts the graph after pruning. Issue 𝑖0 traces to 21 source code files,
which exceeds 𝑁req = 20 of TraceScore baseline configuration. Thus 𝑟0
is removed, and 𝑏cur also traces to 4 source code files like the original.
However the source code files differ. The figure uses the same legend as
Figure 6.3.

132

9.5. RQ-5 - Effectiveness of IR-based Bug Localization Algorithms on Projects with
Augmented Trace Link Sets

(a) Project Spark

(b) Project Kafka

Figure 9.7.: Differences in number of source code files exclusively contained in the
traceability graph in original project and those in trace link augmented
project.

133

9. Discussion

the constructed traceability graphs (see Fig. 9.7b). Following the projects lifetime,
the exclusively contained source code files in either graph is continuously increasing,
reaching about 30 source code files for the most recent bug report.

Finding The IR-based bug localization algorithm ABLoTS can be applied on
projects with augmented issue-to-commit trace links with nearly no performance
decrease. Its similar issue component TraceScore is robust against incorrectly
added issue-to-commit trace links because of the applied traceability graph pruning
process.

9.6. RQ-6 - Limitations of Studied Approaches

The last research question discusses the limitations of the developed approach, includ-
ing the algorithms TraceScore, LuceneScore, ABLoTS, TLSA, and their interplay.

9.6.1. ABLoTS Requires a Project History

The novel IR-based bug localization algorithm ABLoTS is project specific. Further,
its internal structure requires historic project data to train its composer component
and thus being applicable. Therefore, ABLoTS cannot be used for new projects,
i.e. it is technically not possible to locate defective source code files for the first bug
reports. Further, it is currently unknown how much historical data is required for
training ABLoTS to provide acceptable results. The chosen time based 80% − 20%
split of bug reports in experiment III (see Sec. 8.6) results in training history lengths,
i.e. the time between the first train bug report was created and the last training bug
report was resolved, ranging from 1,024 days in project Flink, up to 3,736 days in
project Maven (≈ 2,400 days on average).

9.6.2. Augmenting Issue-to-Commit Trace Link Set in Large
Projects

There is a limitation concerning the augmentation of trace links sets for certain
projects. For example, the projects Cassandra, Lucene, and Wildfly had to be
excluded during the construction of GS out of SEOSS. The feature creation routine
of TLSA algorithm (see Sec. 7.4.3) could not handle these projects. This routine of
creating issue-commit pairs depends on the amount of respective artifacts present in a
project. However, comparing the number of issues and commits in project Cassandra
and Hadoop (see Tab. 5.2), project Cassandra contains fewer numbers in both figures.

134

9.7. Threats to Validity

Nevertheless, project Cassandra is more difficult and currently infeasible to process.
The issue-commit pair creation also depends on temporal relationships. In case a
commit is filed when lots of unresolved issues exists, this commit is subject to be
traced to all of these issues. For example, in Figure 7.2 the commit 𝑐7 is a candidate
to be traced to requirements 𝑟2, 𝑟3 and bug report 𝑏0, and respective feature vectors
are calculated. The more issues are in active development, i.e. not in status CLOSED
or RESOLVED, when a commit occurs, the more issue-commit pairs are possible.
These temporal relations exaggerate the amount for reasonable issue-commit pairs
for projects Cassandra, Lucene, and Wildfly, although the amount of issues and
commits in these projects is less than as that of project Hadoop, which is processed
unproblematically. Thus, the current valid constraints based on casuality are not
sufficient to handle these edge cases. Further investigations are required.

9.6.3. Issue-to-Commit Trace Link Set Augmentation Requires
Existing Links

The TLSA algorithm is project independent. However, it can not be applied to
a project containing no issue-to-commit trace links at all, as a dedicated study in
experiment IV revealed (see Sec. 9.4). In case no issue-to-commit links exist, the
crucial process related features feat2, … , feat4 cannot be calculated and thus are all
set to 0.0 (see Sec. 7.4). These features are designed to detect bursts of consequitive
commits, and only one (or few) are traced to an issue. However, these commits still
share similarities with respect to temporal closeness and resource overlap, even in
case none of them is explicitly linked to an issue. Eleborate strategies are required to
handle these cases and thus assign purposeful values for features feat2, … , feat4.

9.7. Threats to Validity

There are several potential threats to the validity of applied methods and conducted
experiments in this thesis. The discussion includes four common categories (Runeson
and Höst 2009; Yin 2009). Construct validity reflects to which extent the operational
measures that are studied represent what is investigated according to research
questions. Internal validity is of concern when investigating casual relations, i.e. to
what extent a piece of evidence supports a claim about cause and effect. External
validity deals with the possibility to generalize findings outside of the context of a
study. Last, reliability is concerned with to what extent the analysis and data are
dependent on researchers that conducted a study.

135

9. Discussion

The discussion is separated in several sections each concerned with a specific topic
of the thesis. For each topic, the potential threats to validity and how they were
mitigated are reviewed.

9.7.1. Project Selection and Dataset Creation

Construct Validity The analyzed trace links were created manually by project
members in all analyzed projects. This implies the risk that semantically incorrect
trace links were created or trace links were forgotten by mistake. Many projects
outside of safety critical domains do not have reliable traceability information
(Cleland-Huang et al. 2014). The following three aspects indicate a very high trace
link quality in all projects. First, all projects’ quality assurance process is based on
the created trace links. The projects established a manual process where changes are
reviewed and tested by humans. All 33 projects have in common that the quality of
the established trace links is implicitly verified through this process. Second, the
explicit change approval process in all 33 projects ensures that the four-eyes-principle
is applied for each manually created trace link. Third, the openness of all 33 projects
(all development artifacts are publicly available) enables anyone to participate in the
project and review the created trace links. Due to these facts, the author considers
the risk of incorrect or forgotten trace links is sufficiently mitigated.

Internal Validity The issue artifacts were mined from projects’ ITS. The used
issue type, bug report or requirement, is subject to misclassification (Herzig, Just,
and Zeller 2013), i.e. a bug report is actually a feature or vice versa. Indeed,
misclassification affects bug localization, but the effect size is negligible (Kochhar,
Tian, and Lo 2014). Table 8.1 shows that the median values of modified source code
files for bug reports are lower than that for requirements. This indicates, that the
bug reports in the golden set GS are not inflated.

The construction of golden set GS explicitly only considers specific issue artifacts,
i.e. those having a status RESOLVED or CLOSED. The assumption is, that all
necessary source code modifications had taken place. To mitigate this threat, the
respective issue resolution was also taken into account and needs to be set to FIXED
or DONE.

A guided, random issue-to-commit trace link removal process was performed to derive
reduced datasets RED𝑖 from GS. To mitigate the random effects, this process was
repeated five times with different seed values for the random number generator. All
following experiments were separately performed on each dataset RED𝑖 and results
were averaged. However, choosing a repetition rate other than five might result in
different averaged metrics.

136

9.7. Threats to Validity

External Validity All selected projects are open-source software, since those were
the only available projects that provided all the necessary information to conduct the
studies. Generalizing the findings to a wider population including commercial projects
poses a potential threat to external validity. However, the applied software lifecycle
management tools Atlassian Jira and Git are also a popular combination of tools
within closed-source projects. Actually, Atlassian provides and sells Bitbucket, a Git-
based source code repository hosting service similar to GitHub. Jira and Bitbucket
have a tight integration11. In open-source and closed-source project development
agile methodologies are widely adopted. Due to the similarities, there is evidence
to generalize the findings to a large population of closed-source projects. However,
replications of the conducted study with commercial projects are required to justify
this assumption.

The project selection only includes those using Jira as ITS and Git as VSC, which
raises another threat to external validity. This specific tool configuration was chosen
based on popularity polls, which also showed that other tool combinations are
available and actively used. These tools and platforms might provide or encourage a
different trace link creation behavior.

Reliability The 33 projects mined for the SEOSS dataset were selected by the
author. This selection might be biased due to certain experiences or preferences. To
mitigate this threat, a set of selection criteria were defined upfront. Further, the
applied maximum variation case strategy ensures to draw representative samples
based on project’s characteristics. However, other researchers could have selected
other projects.

Another potential threat exists in the collection and preparation of the project
data. To avoid especially manual bias during project data preparation and to ensure
reproducible results, a fully automated data mining process was used. Due to the
public availability of the project artifacts and the fully automated collection and
analysis process, it can be replicated and additional projects could be included
to further broaden the data corpus. The used tooling to automate this process
was carefully verified. Therefore, intermediate results were manually validated and
continuously cross-checked for inconsistencies and contradictions.

9.7.2. Experiments I-V

External Validity All reported results are only valid for the 27 example projects.
Conducting the experiments on another set of projects may provide different results.
The initial project selection tries to mitigate this threat, by selecting a wide variety
of projects with different characteristics also including edge cases.

11. https://bitbucket.org/product/integrations

137

https://bitbucket.org/product/integrations

9. Discussion

9.7.3. Specifically for Experiments I and II

Internal Validity The TraceScore algorithm has four parameters to filter artifacts
based on amount of modified source code files and time. A baseline set of values for the
parameters were given, claiming to provide good project independent performance.
To mitigate this threat, additional configurations have been evaluated, but not
exhaustively and better configurations might exist.

9.7.4. Specifically for Experiment III

Internal Validity The composer component of ABLoTS is a binary classifier. This
requires to be trained and therefore the available data for each project was split into
80% − 20% of the bug reports retaining the temporal ordering. Choosing another
split point may produce different evaluation results.

The training data for ABLoTS is severely imbalanced. Thus it was randomly
subsampled to create balanced data. To mitigate the random effects, training and
testing was repeated five times and achieved performance results are averages of the
individual runs.

9.7.5. Specifically for Experiment IV

Internal Validity The TLSA algorithm also uses a binary classifier, like the
ABLoTS composer component. Again, the training data is highly imbalanced, and
was randomly subsampled to create balanced data. To mitigate the random effects,
training and testing was repeated five times. The achieved results were derived based
on a majority vote, i.e. at least three out of the five results need to agree.

138

10. Conclusion and Future Work

This section summarizes the conclusions that can be drawn from this thesis. Research
possibly never ends and there is always potential to proceed and improve. Thus
further research directions are also outlined.

10.1. Summary

This thesis contributes to the body of knowledge in bug localization, automatic trace
link creation and software maintenance. The hypothesis of this dissertation is that
bug localization performance benefits by integrating additional traced artifacts, i.e. a
project’s requirements and existing trace links, especially those from bug reports
and requirements to source code files. Therefore a holistic approach was proposed to
achieve this goal.

Section 4 outlined the approach and introduced an artifact model and its mathemat-
ical foundation used throughout this thesis.

Reviewing the state of the art revealed, that no suitable dataset containing the
required artifacts and trace links to explore novel algorithms exists. Further, existing
datasets used to evaluate state-of-the-art bug localization algorithms are rather
small. Therefore, Section 5 introduced a mining process to create the SEOSS dataset
consisting of 33 open-source projects. It contains 600,000 artifacts and 300,000 trace
links collected by analyzing projects’ issue tracking systems and version control
systems. All gathered data is stored in relational databases, that allow a convenient
access to query relevant information. The complete projects’ lifecycle is captured,
enables empirical studies, and is not limited to the field of bug localization.

Section 6 gave an in-depth discussion of IR-based bug localization algorithms. First,
the internal architecture of two algorithms were studied to exploit requirement and
trace link information. The similar issue component, a component found in many IR-
based bug localization algorithms, was identified as candidate to leverage traceability
information. This resulted in the design of the similar issue component TraceScore.
It utilizes information of previously implemented requirements, resolved bug reports,
and trace links among them to suggest candidate source code files that are relevant
to fix a current bug report at hand. TraceScore is one of many components including

139

10. Conclusion and Future Work

the source code component and the history component of a modern IR-based bug
localization algorithm. Therefore a novel algorithm ABLoTS was created utilizing
TraceScore. ABLoTS also incorporates a novel component, LuceneScore, to analyze
the structure of a project’s source code. LuceneScore is an improved version of a
source code structure component studied at the beginning of Section 6.

The SEOSS dataset contains hundreds of thousands trace links from requirement
to source code artifacts. However, a study conducted in Section 7 revealed, that
on average 40% of a project’s commit artifacts are not traced to any requirement
or bug report. Reducing this amount by establishing new trace links has the
potential to improve ABLoTS’ bug localization performance, because its contained
TraceScore component is able to utilize trace link information. Therefore the typical
development workflow of an agile software project was studied. Three models were
derived capturing essentials aspects of the workflow. Leveraging these, eleven features
were identified that describe a trace link between issue artifacts and commit artifacts.
Last, the novel TLSA algorithm based on machine learning techniques was designed
to automatically augment the project’s existing set of issue-to-commit trace links.

All developed algorithms were exhaustively evaluated in Section 8 and the achieved
results were discussed in Section 9. The evaluation was performed on a curated subset
of the previously created SEOSS dataset. Five experiments were conducted each an-
swering a specific research question. The first experiment questioned the effectiveness
of TraceScore compared to two other similar issue components. TraceScore achieves
on average a 53% higher Top-1, and 33% better MAP as its closest competitor.
The second experiment studied different parameter configurations of TraceScore.
The result was a baseline configuration suitable for all evaluated projects, providing
a starting point when used for new projects. Next, an experiment was presented
comparing the bug localization performance of ABLoTS compared to three other
algorithms. ABLoTS outperformed the closest competitors by 100% in terms of
Top@k, MAP, and MRR on average. Therefore, leveraging requirement artifacts and
trace link information proofs its effectiveness. The fourth experiment studied the
automatic issue-to-commit trace link augmentation using the novel TLSA algorithm.
It showed, that it is possible to correctly augment the majority of missing trace links.
Further, the created TLSA algorithm is project independent and thus can be applied
to a project out of the box. The last experiment attempted to answer, whether
IR-based bug localization benefits from augmented issue-to-commit trace links sets.
The achieved performance for ABLoTS algorithm is comparable to those when all
issue-to-commit trace links were manually created and maintained.

140

10.2. Future Work

10.2. Future Work

The developed IR-based bug localization algorithm ABLoTS takes a bug report
and queries the project’s code base to identify a list of candidate source code files
that need to be modified in order to fix the bug. In this IR-based approach, a
query is formulated using the bug report’s textual elements and applying a common
text pre-processing pipeline. This pipeline is applied to the bug report’s texts’
regardless of the content (assuming it is natural language). No differences of the
actual content are made, and the evaluation in this thesis showed the effectiveness of
this approach. However, Wang et al. reported the performance of IR-based algorithms
heavily relies on the usefulness of the pre-processed queries (Wang, Parnin, and Orso
2015). Previous studies showed that bug report descriptions may contain additional
rich information such as stack traces and source code snippets next to natural
language (Bettenburg et al. 2008; Moreno et al. 2014). A study on seven open-source
projects provides evidence, that the presence of this additional information affects
the performance of IR-based algorithms, but the effect size is small (Rath and Mäder
2019a). The authors analyzed the structure of bug reports’ descriptions and applied
different query formulation strategies based on found information. It would be
interesting to also integrate this regime to ABLoTS and study its impact on bug
localization performance.

The performed experiments are analytical, which is common in many studies con-
cerning bug localization. The localization performance is measured by evaluating
whether defective source code files appear on top of the generated ranked source
code file lists. However, researchers questioned the usefulness of these lists to aid
the developers in locating the bug (Wang, Parnin, and Orso 2015). Further, the
authors argue that the source code file level is to coarse-grained and still leaves the
developers with a large amount of code (in terms of lines) to examine. Wang et
al. suggest to conduct user studies to investigate the effectiveness of ranked source
code file lists. Thus, conducting a user study involving project developers to evaluate
the approaches of this thesis is a potential future work. One step in this direction
was already performed by Rath et al. (Rath and Mäder 2019a). In this work, a user
study was conducted and the participants should identify the defective source code
file based on a given ranked list. The authors also proposed a visualization technique
to assist the participants during this task. Thus, highlighted source code snippets of
the files were provided next to the ranked list of source code file names. The applied
semantic highlighting is based on the bug report’s text and matching tokens found
in the source code and thus provides more details and finer grained bug locations.
The evaluation showed that the combination of ranked lists and the visualization
technique is beneficial to distinguish false positive source code file recommendations
from true ones. A different approach to address the coarse granularity of files was
proposed by Wen et al. (Wen, Wu, and Cheung 2016). They argue, that the software

141

10. Conclusion and Future Work

change level, i.e. single commits, is better suited than the source code file level.
Extending ABLoTS with this functionality provides an interesting challenge. Instead
of generating a list of source code files, a list of defective commits could be presented
to the responsible developer.

Another avenue for future work is to extend the evaluation to a large scale of projects
including commercial ones. From a tooling perspective, the approaches developed in
this thesis should be applicable, because the combination of ITS Jira and VCS Git
are used in commercially developed software as well. To simplify the deployment
process, the developed approaches ABLoTS and TLSA should be combined to a
prototype. A first step in this direction has already been made. The recommendation
system spojitR (Rath, Tomova, and Mäder 2020) partially implements TLSA and a
prototype is available1. It tightly integrates into the commit process, and reminds the
developer to tag each commit message. Therefore it proposes the three most suitable
issues from the ITS. This enables the developer to easily choose the correct one and
the commit is automatically tagged. The developed tool could also be extended to
retrospectively augment missing issue-to-commit trace links.

1. https://github.com/SECSY-Group/spojitr

142

https://github.com/SECSY-Group/spojitr

A. Appendix

A.1. Evaluating Different Temporal Settings for
TraceScore

The Figures A.1, A.2 show the performance of TraceScore for different settings for
the history length parameters 𝐷bug and 𝐷req in terms of MAP and MRR as outlined
in Section 8.4. The x-axis shows the project, and the y-axis the respective measure:
MAP or MRR. The configuration is color coded.

I

A
.

A
ppendix

Ar
ch

iv
a

De
rb

y

Dr
oo

ls

Er
ra

i

Fl
in

k

Gr
oo

vy

H
ad

oo
p

H
ba

se

H
ib

er
na

te

H
iv

e

In
fin

isp
an

Iz
pa

ck

JT
M

Jb
eh

av
e

Jb
pm

Ka
fk

a

Ke
yc

lo
ak

Lo
g4

j2

M
av

en

Ra
ilo

Re
ste

as
y

Se
am

2

Sp
ar

k

Sw
itc

hy
ar

d

Te
iid

W
eld

Zo
ok

ee
pe

r

Project

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
AP

90 days 180 days 365 days (Baseline) 730 days No limit

Figure A.1.: Comparision of different history lengths (𝐷bug = 𝐷req) for TraceScore in terms of MAP (higher is better).

II

A
.1.

Evaluating
D

ifferentTem
poralSettings

for
TraceScore

Ar
ch

iv
a

De
rb

y

Dr
oo

ls

Er
ra

i

Fl
in

k

Gr
oo

vy

H
ad

oo
p

H
ba

se

H
ib

er
na

te

H
iv

e

In
fin

isp
an

Iz
pa

ck

JT
M

Jb
eh

av
e

Jb
pm

Ka
fk

a

Ke
yc

lo
ak

Lo
g4

j2

M
av

en

Ra
ilo

Re
ste

as
y

Se
am

2

Sp
ar

k

Sw
itc

hy
ar

d

Te
iid

W
eld

Zo
ok

ee
pe

r

Project

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
RR

90 days 180 days 365 days (Baseline) 730 days No limit

Figure A.2.: Comparision of different history lengths (𝐷bug = 𝐷req) for TraceScore in terms of MRR (higher is better).

III

A. Appendix

A.2. Evaluation Details for Similar Issue Components

Table A.1 depicts details of the performance of different similar issue components in
terms of Top@k, MAP, and MRR as described in Section 8.4. Each row represent a
projects, sub divided by evaluated similar issue component. The columns are the
different achieved performance metrics. The top performance measure (higher is
better) per project is highlighted using bold font.

Table A.1.: Comparison of different similar issue components in terms of Top@1,
Top@5, Top@10, MAP, and MRR (higher values are better, highest value
is bold).

Project Algorithm Top@1 Top@5 Top@10 MAP MRR

Archiva
CollabScore 0.071 0.107 0.107 0.068 0.081
SimiScore 0.024 0.107 0.131 0.066 0.066
TraceScore (ours) 0.085 0.110 0.256 0.112 0.121

Derby
CollabScore 0.052 0.112 0.147 0.079 0.082
SimiScore 0.109 0.259 0.345 0.160 0.181
TraceScore (ours) 0.128 0.281 0.368 0.180 0.202

Drools
CollabScore 0.059 0.139 0.186 0.092 0.100
SimiScore 0.136 0.371 0.477 0.212 0.248
TraceScore (ours) 0.239 0.478 0.572 0.297 0.345

Errai
CollabScore 0.034 0.086 0.120 0.059 0.061
SimiScore 0.094 0.240 0.352 0.149 0.165
TraceScore (ours) 0.139 0.274 0.361 0.187 0.202

Flink
CollabScore 0.059 0.132 0.153 0.085 0.089
SimiScore 0.104 0.245 0.303 0.147 0.168
TraceScore (ours) 0.134 0.298 0.375 0.191 0.212

Groovy
CollabScore 0.054 0.111 0.123 0.075 0.079
SimiScore 0.118 0.323 0.422 0.201 0.218
TraceScore (ours) 0.159 0.349 0.428 0.231 0.247

Hadoop
CollabScore 0.073 0.139 0.166 0.098 0.103
SimiScore 0.087 0.273 0.353 0.156 0.175
TraceScore (ours) 0.210 0.419 0.503 0.270 0.304

Hbase
CollabScore 0.051 0.113 0.147 0.078 0.082
SimiScore 0.089 0.241 0.338 0.148 0.165
TraceScore (ours) 0.233 0.472 0.563 0.298 0.339

Hibernate
CollabScore 0.032 0.059 0.074 0.043 0.044
SimiScore 0.065 0.160 0.210 0.104 0.112
TraceScore (ours) 0.110 0.218 0.292 0.153 0.165

Hive
CollabScore 0.073 0.177 0.236 0.112 0.123
SimiScore 0.124 0.364 0.464 0.206 0.237

IV

A.2. Evaluation Details for Similar Issue Components

TraceScore (ours) 0.238 0.475 0.570 0.304 0.345

Infinispan
CollabScore 0.053 0.113 0.142 0.078 0.082
SimiScore 0.098 0.239 0.314 0.144 0.166
TraceScore (ours) 0.129 0.295 0.383 0.183 0.207

Izpack
CollabScore 0.077 0.140 0.174 0.096 0.107
SimiScore 0.165 0.322 0.397 0.203 0.238
TraceScore (ours) 0.187 0.358 0.457 0.232 0.268

JTM
CollabScore 0.042 0.114 0.133 0.070 0.073
SimiScore 0.117 0.211 0.292 0.158 0.167
TraceScore (ours) 0.133 0.231 0.286 0.162 0.177

Jbehave
CollabScore 0.080 0.100 0.100 0.088 0.088
SimiScore 0.260 0.440 0.520 0.324 0.334
TraceScore (ours) 0.300 0.540 0.580 0.381 0.388

Jbpm
CollabScore 0.043 0.082 0.091 0.057 0.062
SimiScore 0.058 0.165 0.216 0.095 0.106
TraceScore (ours) 0.074 0.225 0.320 0.140 0.148

Kafka
CollabScore 0.082 0.184 0.261 0.120 0.135
SimiScore 0.157 0.399 0.481 0.221 0.265
TraceScore (ours) 0.254 0.524 0.611 0.321 0.376

Keycloak
CollabScore 0.031 0.077 0.102 0.051 0.053
SimiScore 0.084 0.207 0.294 0.128 0.144
TraceScore (ours) 0.123 0.276 0.353 0.173 0.199

Log4j2
CollabScore 0.051 0.086 0.107 0.066 0.069
SimiScore 0.113 0.248 0.334 0.163 0.180
TraceScore (ours) 0.154 0.314 0.388 0.203 0.227

Maven
CollabScore 0.040 0.106 0.139 0.058 0.070
SimiScore 0.093 0.219 0.278 0.127 0.149
TraceScore (ours) 0.126 0.259 0.364 0.169 0.193

Railo
CollabScore 0.023 0.093 0.133 0.054 0.061
SimiScore 0.100 0.213 0.300 0.138 0.157
TraceScore (ours) 0.094 0.246 0.323 0.156 0.166

Resteasy
CollabScore 0.040 0.084 0.096 0.056 0.058
SimiScore 0.056 0.183 0.242 0.109 0.111
TraceScore (ours) 0.088 0.200 0.241 0.134 0.137

Seam2
CollabScore 0.039 0.107 0.135 0.069 0.073
SimiScore 0.115 0.244 0.313 0.164 0.174
TraceScore (ours) 0.163 0.342 0.414 0.223 0.243

Spark
CollabScore 0.038 0.121 0.155 0.070 0.076
SimiScore 0.110 0.310 0.376 0.188 0.199
TraceScore (ours) 0.221 0.464 0.567 0.306 0.330

Switchyard
CollabScore 0.041 0.065 0.087 0.051 0.055
SimiScore 0.084 0.183 0.239 0.116 0.131

V

A. Appendix

TraceScore (ours) 0.113 0.224 0.311 0.155 0.172

Teiid
CollabScore 0.040 0.079 0.100 0.057 0.059
SimiScore 0.115 0.281 0.377 0.171 0.194
TraceScore (ours) 0.135 0.317 0.404 0.194 0.222

Weld
CollabScore 0.018 0.063 0.075 0.035 0.036
SimiScore 0.124 0.231 0.315 0.162 0.186
TraceScore (ours) 0.105 0.251 0.335 0.161 0.177

Zookeeper
CollabScore 0.103 0.215 0.276 0.143 0.162
SimiScore 0.221 0.491 0.605 0.289 0.340
TraceScore (ours) 0.199 0.438 0.524 0.273 0.309

A.3. Evaluation Details for Bug Localization
Algorithms

Table A.2 shows details of the performance of different bug localization algorithms
terms of Top@k, MAP, and MRR, as described in Section 8.6. Each row represent a
projects, sub divided by bug localization algorithm. The columns are the different
achieved performance metrics. The top performance measure (higher is better) per
project is highlighted using bold font.

Table A.2.: Comparison of different bug localization algorithms in terms of Top@1,
Top@5, Top@10, MAP, and MRR on testing dataset (higher values are
better, highest value is bold).

Project Algorithm Top@1 Top@5 Top@10 MAP MRR

Archiva
ABLoTS (ours) 0.200 0.388 0.506 0.232 0.299
AmaLgam 0.059 0.235 0.353 0.142 0.160
BLUiR 0.059 0.235 0.353 0.139 0.157
LuceneScore (ours) 0.176 0.353 0.412 0.207 0.260

Derby
ABLoTS (ours) 0.418 0.635 0.706 0.463 0.515
AmaLgam 0.263 0.445 0.552 0.309 0.350
BLUiR 0.232 0.403 0.538 0.284 0.322
LuceneScore (ours) 0.398 0.613 0.692 0.436 0.494

Drools
ABLoTS (ours) 0.270 0.484 0.570 0.313 0.368
AmaLgam 0.165 0.299 0.396 0.192 0.230
BLUiR 0.144 0.277 0.367 0.174 0.210
LuceneScore (ours) 0.180 0.385 0.475 0.234 0.276

Errai
ABLoTS (ours) 0.306 0.549 0.647 0.387 0.419
AmaLgam 0.191 0.426 0.511 0.261 0.294
BLUiR 0.170 0.426 0.511 0.258 0.282

VI

A.3. Evaluation Details for Bug Localization Algorithms

LuceneScore (ours) 0.277 0.511 0.617 0.361 0.393

Flink
ABLoTS (ours) 0.512 0.728 0.772 0.532 0.602
AmaLgam 0.298 0.508 0.562 0.345 0.390
BLUiR 0.295 0.488 0.558 0.340 0.384
LuceneScore (ours) 0.500 0.705 0.764 0.517 0.586

Groovy
ABLoTS (ours) 0.381 0.673 0.732 0.466 0.505
AmaLgam 0.247 0.353 0.459 0.271 0.296
BLUiR 0.235 0.353 0.435 0.267 0.288
LuceneScore (ours) 0.329 0.612 0.718 0.411 0.459

Hadoop
ABLoTS (ours) 0.536 0.741 0.795 0.566 0.626
AmaLgam 0.188 0.342 0.412 0.237 0.259
BLUiR 0.158 0.319 0.395 0.213 0.234
LuceneScore (ours) 0.473 0.684 0.746 0.513 0.568

Hbase
ABLoTS (ours) 0.525 0.758 0.818 0.560 0.625
AmaLgam 0.204 0.395 0.489 0.264 0.293
BLUiR 0.199 0.370 0.442 0.247 0.274
LuceneScore (ours) 0.455 0.696 0.777 0.504 0.565

Hibernate
ABLoTS (ours) 0.300 0.514 0.571 0.362 0.393
AmaLgam 0.044 0.100 0.128 0.065 0.069
BLUiR 0.037 0.078 0.106 0.056 0.060
LuceneScore (ours) 0.221 0.393 0.492 0.283 0.308

Hive
ABLoTS (ours) 0.435 0.689 0.747 0.486 0.546
AmaLgam 0.257 0.495 0.579 0.320 0.363
BLUiR 0.219 0.450 0.520 0.286 0.324
LuceneScore (ours) 0.351 0.601 0.686 0.420 0.465

Infinispan
ABLoTS (ours) 0.327 0.499 0.573 0.364 0.407
AmaLgam 0.145 0.303 0.393 0.191 0.219
BLUiR 0.141 0.288 0.367 0.185 0.213
LuceneScore (ours) 0.316 0.444 0.519 0.337 0.383

Izpack
ABLoTS (ours) 0.397 0.696 0.748 0.464 0.527
AmaLgam 0.164 0.247 0.260 0.191 0.203
BLUiR 0.137 0.219 0.247 0.155 0.168
LuceneScore (ours) 0.342 0.644 0.712 0.433 0.476

JTM
ABLoTS (ours) 0.297 0.574 0.684 0.397 0.422
AmaLgam 0.226 0.500 0.581 0.326 0.342
BLUiR 0.226 0.500 0.581 0.313 0.338
LuceneScore (ours) 0.258 0.548 0.661 0.371 0.396

Jbehave
ABLoTS (ours) 0.580 0.780 0.820 0.627 0.680
AmaLgam 0.300 0.600 0.800 0.409 0.456
BLUiR 0.300 0.700 0.800 0.390 0.439
LuceneScore (ours) 0.500 0.800 0.900 0.586 0.637

Jbpm
ABLoTS (ours) 0.148 0.309 0.345 0.184 0.222
AmaLgam 0.106 0.273 0.394 0.150 0.185
BLUiR 0.106 0.273 0.379 0.150 0.186

VII

A. Appendix

LuceneScore (ours) 0.121 0.288 0.333 0.151 0.195

Kafka
ABLoTS (ours) 0.514 0.751 0.808 0.537 0.619
AmaLgam 0.235 0.504 0.588 0.303 0.351
BLUiR 0.218 0.437 0.563 0.296 0.334
LuceneScore (ours) 0.445 0.681 0.765 0.461 0.554

Keycloak
ABLoTS (ours) 0.285 0.592 0.676 0.366 0.415
AmaLgam 0.143 0.317 0.402 0.190 0.226
BLUiR 0.138 0.317 0.397 0.189 0.223
LuceneScore (ours) 0.206 0.460 0.550 0.287 0.330

Log4j2
ABLoTS (ours) 0.504 0.731 0.792 0.537 0.599
AmaLgam 0.255 0.439 0.480 0.310 0.333
BLUiR 0.245 0.429 0.480 0.296 0.320
LuceneScore (ours) 0.490 0.704 0.796 0.521 0.596

Maven
ABLoTS (ours) 0.232 0.355 0.471 0.279 0.303
AmaLgam 0.161 0.258 0.387 0.190 0.228
BLUiR 0.161 0.258 0.387 0.190 0.227
LuceneScore (ours) 0.226 0.355 0.452 0.266 0.294

Railo
ABLoTS (ours) 0.250 0.533 0.580 0.332 0.367
AmaLgam 0.200 0.483 0.517 0.279 0.323
BLUiR 0.183 0.483 0.517 0.272 0.310
LuceneScore (ours) 0.233 0.450 0.517 0.315 0.337

Resteasy
ABLoTS (ours) 0.314 0.526 0.588 0.363 0.403
AmaLgam 0.031 0.092 0.123 0.057 0.061
BLUiR 0.031 0.108 0.123 0.060 0.063
LuceneScore (ours) 0.292 0.523 0.585 0.338 0.381

Seam2
ABLoTS (ours) 0.312 0.479 0.544 0.372 0.389
AmaLgam 0.083 0.160 0.192 0.110 0.117
BLUiR 0.077 0.155 0.187 0.105 0.110
LuceneScore (ours) 0.282 0.442 0.500 0.343 0.355

Spark
ABLoTS (ours) 0.438 0.662 0.700 0.493 0.537
AmaLgam 0.293 0.621 0.724 0.408 0.448
BLUiR 0.293 0.586 0.724 0.401 0.441
LuceneScore (ours) 0.483 0.638 0.707 0.481 0.556

Switchyard
ABLoTS (ours) 0.096 0.227 0.308 0.147 0.158
AmaLgam 0.036 0.036 0.036 0.032 0.037
BLUiR 0.036 0.036 0.036 0.032 0.037
LuceneScore (ours) 0.072 0.205 0.265 0.131 0.133

Teiid
ABLoTS (ours) 0.312 0.582 0.691 0.372 0.429
AmaLgam 0.209 0.440 0.518 0.267 0.318
BLUiR 0.206 0.429 0.500 0.252 0.307
LuceneScore (ours) 0.230 0.496 0.599 0.307 0.356

Weld
ABLoTS (ours) 0.288 0.518 0.613 0.343 0.394
AmaLgam 0.160 0.384 0.464 0.221 0.252
BLUiR 0.144 0.376 0.464 0.207 0.237

VIII

A.3. Evaluation Details for Bug Localization Algorithms

LuceneScore (ours) 0.288 0.440 0.528 0.328 0.368

Zookeeper
ABLoTS (ours) 0.407 0.711 0.798 0.490 0.539
AmaLgam 0.283 0.630 0.728 0.412 0.433
BLUiR 0.326 0.554 0.707 0.410 0.436
LuceneScore (ours) 0.359 0.630 0.761 0.465 0.484

IX

List of Tables

List of Tables

2.1. Important Issue Properties . 18

3.1. Datasets and Projects used to Evaluate Approaches 33
3.2. Overview of IR-based Bug Localization Approaches 35

5.1. Tables in a Project’s Database . 52
5.2. Projects in SEOSS . 55

6.1. ABLoTS Feature Vectors . 71

7.1. Commit to Issue Linkage in SEOSS 75
7.2. Issue-to-Commit Linkage in SEOSS 75
7.3. Feature Matrix Encoding Issue-Commit Pairs 86

8.1. Key Figures for Projects in Curated Dataset 94
8.2. Confusion Matrix for a Binary Classifier 100
8.3. Studied Parameterization Variants of TraceScore 102

A.1. Comparison of Different Similar Issue Components IV
A.2. Comparison of Bug Localization Algorithms on Testing Data VI

XI

List of Figures

List of Figures

2.1. Trace Link Directionality . 14
2.2. Issue Overview of Project Derby . 16
2.3. Example Issue of Project Derby . 17
2.4. Issue Type Distribution in 33 Open-Source Projects 19
2.5. Issue Workflow Schema in Atlassian Jira 20
2.6. GitHub Screenshot of Project Derby 21
2.7. Example Commit in Project Derby 22
2.8. Tagged Commit Messages . 23
2.9. Example for a Traceability Graph in Project Derby 24
2.10. Structure of IR-based Bug Localization 25
2.11. Preprocessing Steps for Lexical Analysis 27

3.1. Bug Localization Framework . 37

4.1. Overview of the Holistic Approach 42
4.2. Artifact Model . 44

5.1. Mining Process . 50
5.2. Database Schema for a Project . 54

6.1. Example Traceability Graph in Project Pig 58
6.2. Structure of TraceScore Component 62
6.3. Tracability Graph Example . 64
6.4. Structure of LuceneScore . 69
6.5. Structure of ABLoTS . 71

7.1. Example of Failed Attempt to Create an Issue-to-Commit Trace Link 78
7.2. Artifact Relations During a Project’s Lifetime 79
7.3. Late Commits . 81
7.4. Source Code File Overlap . 82

8.1. Datasets Used for Evaluation . 93
8.2. Execution Schema of Experiment I 103
8.3. Comparision of Similar Issue Components (MAP, MRR) 104
8.4. Execution Schema of Experiment II 105
8.5. Comparison of Different TraceScore Parameterization (MAP, MRR) . 106

XIII

List of Figures

8.6. K-fold Cross-validation . 108
8.7. Execution Schema of Experiment III for ABLoTS 109
8.8. Execution Schema of Experiment III for Other Algorithms 109
8.9. Comparison of Different Bug Localization Algorithms (MAP) 110
8.10. Execution Schema of Experiment IV 113
8.11. Trace Link Set Augmentation Performance (40% removal) 114
8.12. Execution Schema of Experiment V for ABLoTS 116
8.13. Execution Schema of Experiment V for Other Algorithms 116
8.14. Comparison of Different Bug Localization Algorithms (MAP) on

Augmented Data (40%) . 117

9.1. Comparison of Bug Localization Algorithm Components (MAP) . . . 124
9.2. Weighted Trace Link Set Augmentation Performance (40% removal) . 125
9.3. Weighted Trace Link Set Augmentation Performance (20% removal) . 127
9.4. Trace Link Set Augmentation Performance (100% removal) 128
9.5. Comparison of Similar Issue components (MAP) on Augmented Data

(40% removal) . 130
9.6. Traceability Graph Pruning . 132
9.7. Traceability Graph Analysis . 133

A.1. TraceScore History Length Comparision (MAP) II
A.2. TraceScore History Length Comparision (MRR) III

XIV

List of Figures

List of Abbreviations

ABLoTS Automated Bug Localization using TraceScore
AmaLgam Automated Localization of Bugs using Various Information

(Wang and Lo 2014)
BLUiR Bug Localization Using information Retrieval (Saha et al. 2013)
IR Information retrieval
ITS Issue Tracking System
CollabScore Collaborative Filtering Score
JBT Jboss-Transaction-Manager, project in SEOSS dataset
OSS Open-source software
SEOSS Software Engineering in Open-Source Systems
SimiScore Similarity Score
TLSA Trace Link Set Augmentation
VCS Version Control System

XV

References

References

Abreu, Rui, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van Gemund. 2009.
“A practical evaluation of spectrum-based fault localization.” J. Syst. Softw. 82
(11).

Agile Manifesto Team. 2001. “Manifesto for Agile Software Development.” Accessed
September 4, 2021. https://agilemanifesto.org/.

Akbar, Shayan A., and Avinash C. Kak. 2019. “SCOR: source code retrieval with
semantics and order.” In Proceedings of the 16th International Conference on
Mining Software Repositories, MSR 2019, 26-27 May 2019, Montreal, Canada,
edited by Margaret-Anne D. Storey, Bram Adams, and Sonia Haiduc. IEEE.
https://doi.org/10.1109/MSR.2019.00012.

. 2020. “A Large-Scale Comparative Evaluation of IR-Based Tools for Bug
Localization.” In MSR. ACM.

Albon, Chris. 2018. Machine learning with python cookbook: Practical solutions from
preprocessing to deep learning. ”O’Reilly Media, Inc.”.

Wang, Shaowei. 2017. “AmaLgam source code.” Accessed April 13, 2021.

Antoniol, Giuliano, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and Ettore
Merlo. 2002. “Recovering Traceability Links between Code and Documentation.”
IEEE Trans. Software Eng. 28 (10).

Anvik, John, Lyndon Hiew, and Gail C Murphy. 2005. “Coping with an open bug
repository.” In Proceedings of the 2005 OOPSLA workshop on Eclipse technology
eXchange.

. 2006. “Who should fix this bug?” In 28th International Conference on
Software Engineering (ICSE 2006), Shanghai, China, May 20-28, 2006, edited
by Leon J. Osterweil, H. Dieter Rombach, and Mary Lou Soffa. ACM. https:
//doi.org/10.1145/1134285.1134336.

Apache Lucene Developers. 2021. “Apache Lucene.” Accessed April 14, 2021.

Apache Software Foundation. 2020. “How Should I Apply Patches From A Contribu-
tor,” September 7, 2020. Accessed September 7, 2020. http://www.apache.org/
dev/committers.html#applying-patches.

XVI

https://agilemanifesto.org/
https://doi.org/10.1109/MSR.2019.00012
https://doi.org/10.1145/1134285.1134336
https://doi.org/10.1145/1134285.1134336
http://www.apache.org/dev/committers.html#applying-patches
http://www.apache.org/dev/committers.html#applying-patches

References

Asuncion, Hazeline U., Arthur U. Asuncion, and Richard N. Taylor. 2010. “Software
traceability with topic modeling.” In ICSE (1). ACM.

Atlassian Corporation. 2020a. “Process issues with smart commits.” Accessed Au-
gust 17, 2021. https://support.atlassian.com/jira-software-cloud/docs/process-
issues-with-smart-commits/.

Bachmann, Adrian, and Abraham Bernstein. 2009. “Software Process Data Quality
and Characteristics: A Historical View on Open and Closed Source Projects.” In
Proceedings of the Joint International and Annual ERCIM Workshops on Princi-
ples of Software Evolution (IWPSE) and Software Evolution (Evol) Workshops.
IWPSE-Evol ’09. Amsterdam, The Netherlands: ACM. isbn: 978-1-60558-678-6.
https://doi.org/10.1145/1595808.1595830.

Bettenburg, Nicolas, Rahul Premraj, Thomas Zimmermann, and Sunghun Kim. 2008.
“Extracting structural information from bug reports.” In Proceedings of the
2008 International Working Conference on Mining Software Repositories, MSR
2008 (Co-located with ICSE), Leipzig, Germany, May 10-11, 2008, Proceedings,
edited by Ahmed E. Hassan, Michele Lanza, and Michael W. Godfrey. ACM.
https://doi.org/10.1145/1370750.1370757.

Binkley, David, and Dawn Lawrie. 2010. “Information retrieval applications in
software maintenance and evolution.” Encyclopedia of software engineering.

Breiman, Leo. 2001. “Random forests.” Machine learning 45 (1).

Breu, Silvia, Rahul Premraj, Jonathan Sillito, and Thomas Zimmermann. 2010.
“Information needs in bug reports: improving cooperation between developers
and users.” In CSCW. ACM.

Briand, Lionel C., Davide Falessi, Shiva Nejati, Mehrdad Sabetzadeh, and Tao
Yue. 2014. “Traceability and SysML design slices to support safety inspections:
A controlled experiment.” ACM Trans. Softw. Eng. Methodol. 23 (1). https:
//doi.org/10.1145/2559978.

Buitinck, Lars, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller,
Olivier Grisel, Vlad Niculae, et al. 2013. “API design for machine learning
software: experiences from the scikit-learn project.” In ECML PKDD Workshop:
Languages for Data Mining and Machine Learning, 108–122.

Cambridge Judge Business School MBA, Undo IO. 2021. “The Business Value of
Optimizing CI Pipelins.” Accessed September 1, 2021. https://undo.io/the-cost-
of-software-failures/.

XVII

https://support.atlassian.com/jira-software-cloud/docs/process-issues-with-smart-commits/
https://support.atlassian.com/jira-software-cloud/docs/process-issues-with-smart-commits/
https://doi.org/10.1145/1595808.1595830
https://doi.org/10.1145/1370750.1370757
https://doi.org/10.1145/2559978
https://doi.org/10.1145/2559978
https://undo.io/the-cost-of-software-failures/
https://undo.io/the-cost-of-software-failures/

References

Canfora, Gerardo, and Luigi Cerulo. 2005. “Impact Analysis by Mining Software
and Change Request Repositories.” In 11th IEEE International Symposium on
Software Metrics (METRICS 2005), 19-22 September 2005, Como Italy. IEEE
Computer Society. https://doi.org/10.1109/METRICS.2005.28.

Center of Excellence for Software & Systems Traceability. 2020. “CoEST website.”
Accessed September 4, 2021. http://sarec.nd.edu/coest/index.html.

Cleland-Huang, Jane, Brian Berenbach, Stephen Clark, Raffaella Settimi, and Eli
Romanova. 2007. “Best Practices for Automated Traceability.” Computer 40 (6).

Cleland-Huang, Jane, Orlena Gotel, Jane Huffman Hayes, Patrick Mäder, and Andrea
Zisman. 2014. “Software traceability: trends and future directions.” In FOSE.
ACM.

Cliff, Norman. 1993. “Dominance statistics: Ordinal analyses to answer ordinal
questions.” Psychological bulletin 114 (3).

Committee, IEEE Standards Coordinating, et al. 1990. “IEEE standard glossary of
software engineering terminology (IEEE Std 610.12-1990). Los Alamitos.” CA:
IEEE Computer Society 169:132.

Croft, W Bruce, Donald Metzler, and Trevor Strohman. 2010. Search engines:
Information retrieval in practice. Vol. 520. Addison-Wesley Reading.

. 2009. Search Engines - Information Retrieval in Practice. Pearson Education.

Cubranic, Davor, and Gail C. Murphy. 2003. “Hipikat: Recommending Pertinent
Software Development Artifacts.” In Proceedings of the 25th International Con-
ference on Software Engineering, May 3-10, 2003, Portland, Oregon, USA,
edited by Lori A. Clarke, Laurie Dillon, and Walter F. Tichy. IEEE Computer
Society. https://doi.org/10.1109/ICSE.2003.1201219.

D’Haeseleer, Willem. 2019. “Jira Hot Linker.” Accessed August 17, 2021. https:
//github.com/helmus/Jira-Hot-Linker.

Dallmeier, Valentin, and Thomas Zimmermann. 2007a. “Extraction of bug localization
benchmarks from history.” In ASE. ACM.

. 2007b. “iBUGS Bug repositories extracted from project history.” Accessed
August 27, 2021. https://www.st.cs.uni-saarland.de/ibugs/.

De Lucia, Andrea, Fausto Fasano, and Rocco Oliveto. 2008. “Traceability management
for impact analysis.” In 2008 Frontiers of Software Maintenance. IEEE.

Deerwester, Scott, Susan Dumais, Thomas Landauer, George Furnas, and Laura
Beck. 1988. “Improving information-retrieval with latent semantic indexing.” In
Proceedings of the ASIS annual meeting, vol. 25.

XVIII

https://doi.org/10.1109/METRICS.2005.28
http://sarec.nd.edu/coest/index.html
https://doi.org/10.1109/ICSE.2003.1201219
https://github.com/helmus/Jira-Hot-Linker
https://github.com/helmus/Jira-Hot-Linker
https://www.st.cs.uni-saarland.de/ibugs/

References

Dekhtyar, Alex, Jane Huffman Hayes, Senthil Karthikeyan Sundaram, Elizabeth Ash-
lee Holbrook, and Olga Dekhtyar. 2007. “Technique Integration for Requirements
Assessment.” In RE. IEEE Computer Society.

Dit, Bogdan, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013. “Fea-
ture location in source code: a taxonomy and survey.” J. Softw. Evol. Process.
25 (1).

Dumais, Susan T. 1991. “Improving the retrieval of information from external sources.”
Behavior research methods, instruments, & computers 23 (2).

Eisenbarth, Thomas, Rainer Koschke, and Daniel Simon. 2003. “Locating Features
in Source Code.” IEEE Trans. Software Eng. 29 (3).

Feldt, Robert. 2014. “Do System Test Cases Grow Old?” In Seventh IEEE Interna-
tional Conference on Software Testing, Verification and Validation, ICST 2014,
March 31 2014-April 4, 2014, Cleveland, Ohio, USA. IEEE Computer Society.
https://doi.org/10.1109/ICST.2014.47.

Fischer, Michael, Martin Pinzger, and Harald C. Gall. 2003. “Analyzing and Relating
Bug Report Data for Feature Tracking.” In 10th Working Conference on Reverse
Engineering, WCRE 2003, Victoria, Canada, November 13-16, 2003, edited by
Arie van Deursen, Eleni Stroulia, and Margaret-Anne D. Storey. IEEE Computer
Society. https://doi.org/10.1109/WCRE.2003.1287240.

Flyvbjerg, Bent. 2006. “Five misunderstandings about case-study research.” Qualita-
tive inquiry 12 (2).

Gay, Gregory, Sonia Haiduc, Andrian Marcus, and Tim Menzies. 2009. “On the use
of relevance feedback in IR-based concept location.” In ICSM. IEEE Computer
Society.

Gethers, Malcom, Rocco Oliveto, Denys Poshyvanyk, and Andrea De Lucia. 2011.
“On integrating orthogonal information retrieval methods to improve traceability
recovery.” In ICSM. IEEE Computer Society.

Git Community. 2020. “Git.” Accessed August 14, 2021. https://git-scm.com.

Github, Inc. 2021. “Github.” Accessed August 16, 2021. https://github.com.

GitHub, Inc. 2018. “The State of the Octoverse 2018.” Accessed September 4, 2021.
https://octoverse.github.com/.

. 2019. “GitHub.com + Jira Software integration.” Accessed August 17, 2021.
https://github.com/integrations/jira.

XIX

https://doi.org/10.1109/ICST.2014.47
https://doi.org/10.1109/WCRE.2003.1287240
https://git-scm.com
https://github.com
https://octoverse.github.com/
https://github.com/integrations/jira

References

Goman, Maxim, Michael Rath, and Patrick Mäder. 2017. “Lessons Learned from
Analyzing Requirements Traceability using a Graph Database.” In Workshop
des Arbeitskreises Traceability/Evolution der Technischen Universität Ilmenau:
Aktuelle Methoden zur Gewinnung und Aktualisierung von Traceability-Modellen,
27–30. Gesellschaft für Informatik e.V.

Gonzalez, Danielle, Michael Rath, and Mehdi Mirakhorli. 2020. “Did You Remember
To Test Your Tokens?” In MSR ’20: 17th International Conference on Mining
Software Repositories, Seoul, Republic of Korea, 29-30 June, 2020. ACM. https:
//doi.org/10.1145/3379597.3387471. https://doi.org/10.1145/3379597.3387471.

Gotel, O. C. Z., and Anthony Finkelstein. 1994. “An analysis of the requirements
traceability problem.” In ICRE. IEEE Computer Society.

Gotel, Orlena, Jane Cleland-Huang, Jane Huffman Hayes, Andrea Zisman, Alexander
Egyed, Paul Grünbacher, Alex Dekhtyar, Giuliano Antoniol, Jonathan I. Maletic,
and Patrick Mäder. 2012. “Traceability Fundamentals.” In Software and Systems
Traceability. Springer.

Grissom, Robert J, and John J Kim. 2012. Effect sizes for research: Univariate and
multivariate applications. Routledge.

Guo, Jin, Jinghui Cheng, and Jane Cleland-Huang. 2017. “Semantically enhanced
software traceability using deep learning techniques.” In ICSE. IEEE.

Guo, Lan, Yan Ma, Bojan Cukic, and Harshinder Singh. 2004. “Robust Prediction of
Fault-Proneness by Random Forests.” In Proceedings of the 15th International
Symposium on Software Reliability Engineering, 417–428. ISSRE ’04. Washington,
DC, USA: IEEE Computer Society. isbn: 0-7695-2215-7. https://doi.org/10.
1109/ISSRE.2004.35.

Hadoop Community. 2020. “How to Commit.” Accessed September 4, 2021. https:
//cwiki.apache.org/confluence/display/HADOOP2/HowToCommit.

Hassan, Ahmed E. 2008. “The road ahead for mining software repositories.” In 2008
Frontiers of Software Maintenance. IEEE.

Hayes, Jane Huffman, Alex Dekhtyar, and Senthil Karthikeyan Sundaram. 2006.
“Advancing Candidate Link Generation for Requirements Tracing: The Study of
Methods.” IEEE Trans. Software Eng. 32 (1).

Heindl, Matthias, and Stefan Biffl. 2005. “A case study on value-based requirements
tracing.” In ESEC/SIGSOFT FSE. ACM.

XX

https://doi.org/10.1145/3379597.3387471
https://doi.org/10.1145/3379597.3387471
https://doi.org/10.1145/3379597.3387471
https://doi.org/10.1109/ISSRE.2004.35
https://doi.org/10.1109/ISSRE.2004.35
https://cwiki.apache.org/confluence/display/HADOOP2/HowToCommit
https://cwiki.apache.org/confluence/display/HADOOP2/HowToCommit

References

Herzig, Kim, Sascha Just, and Andreas Zeller. 2013. “It’s not a bug, it’s a feature:
how misclassification impacts bug prediction.” In 35th International Conference
on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013.
IEEE Computer Society. https://doi.org/10.1109/ICSE.2013.6606585.

Herzig, Kim, and Andreas Zeller. 2014. “Mining Bug Data - A Practitioner’s Guide.”
In Recommendation Systems in Software Engineering, edited by Martin P.
Robillard, Walid Maalej, Robert J. Walker, and Thomas Zimmermann. Springer.
https://doi.org/10.1007/978-3-642-45135-5_6.

Highsmith, Jim, and Alistair Cockburn. 2001. “Agile software development: The
business of innovation.” Computer 34 (9).

Hinsen, Konrad, Konstantin Läufer, and George K. Thiruvathukal. 2009. “Essential
Tools: Version Control Systems.” Comput. Sci. Eng. 11 (6).

Holtmann, Jörg, Jan-Philipp Steghöfer, Michael Rath, and David Schmelter. 2020.
“Cutting through the Jungle: Disambiguating Model-based Traceability Termi-
nology.” In RE, XXX–YYY. IEEE.

Hovemeyer, David, and William Pugh. 2004. “Finding bugs is easy.” Acm sigplan
notices 39 (12).

IEEE Spectrum. 2017. “The 2017 top programming languages.” Accessed September 4,
2020. https://spectrum.ieee.org/computing/software/the-2017-top-programmin
g-languages.

International Electronical Commission. 2003. IEC 61511-1 ed 1.0, Safety Instrumented
Systems for the Process Industry Sector.

International Organization for Standardization. 2011. ISO 26262:1:2011 Road Vehicles
- Functional Safety.

JavaParser Developers. 2021. “JavaParser.” Accessed April 14, 2021.

Atlassian Corporation. 2020b. “Jira website.” Accessed August 14, 2021. https :
//www.atlassian.com/software/jira.

. 2021a. “Issue properties.” Accessed August 16, 2021. https : / / support .
atlassian.com/jira-cloud-administration/docs/what-are-issue-statuses-priorities-
and-resolutions/.

. 2021b. “What are issue types.” Accessed August 16, 2021. https://support.
atlassian.com/jira-cloud-administration/docs/what-are-issue-types/.

Jones, James A., and Mary Jean Harrold. 2005. “Empirical evaluation of the tarantula
automatic fault-localization technique.” In ASE. ACM.

XXI

https://doi.org/10.1109/ICSE.2013.6606585
https://doi.org/10.1007/978-3-642-45135-5_6
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://support.atlassian.com/jira-cloud-administration/docs/what-are-issue-statuses-priorities-and-resolutions/
https://support.atlassian.com/jira-cloud-administration/docs/what-are-issue-statuses-priorities-and-resolutions/
https://support.atlassian.com/jira-cloud-administration/docs/what-are-issue-statuses-priorities-and-resolutions/
https://support.atlassian.com/jira-cloud-administration/docs/what-are-issue-types/
https://support.atlassian.com/jira-cloud-administration/docs/what-are-issue-types/

References

Kagdi, Huzefa H., Michael L. Collard, and Jonathan I. Maletic. 2007. “A survey
and taxonomy of approaches for mining software repositories in the context of
software evolution.” J. Softw. Maintenance Res. Pract. 19 (2).

Kamei, Yasutaka, Emad Shihab, Bram Adams, Ahmed E. Hassan, Audris Mockus,
Anand Sinha, and Naoyasu Ubayashi. 2013. “A Large-Scale Empirical Study
of Just-in-Time Quality Assurance.” IEEE Trans. Software Eng. 39 (6). https:
//doi.org/10.1109/TSE.2012.70.

Kaur, Arvinder, and Vidhi Vig. 2016. “Challenges in data extraction from Open
Source software repositories.” In 2016 6th International Conference-Cloud System
and Big Data Engineering (Confluence). IEEE.

Keenan, Ed, Adam Czauderna, Greg Leach, Jane Cleland-Huang, Yonghee Shin, Evan
Moritz, Malcom Gethers, et al. 2012. “TraceLab: An experimental workbench
for equipping researchers to innovate, synthesize, and comparatively evaluate
traceability solutions.” In ICSE. IEEE Computer Society.

Kim, Dongsun, Yida Tao, Sunghun Kim, and Andreas Zeller. 2013. “Where Should
We Fix This Bug? A Two-Phase Recommendation Model.” IEEE Trans. Software
Eng. 39 (11).

Kim, Sunghun, E. James Whitehead Jr., and Yi Zhang. 2008. “Classifying Software
Changes: Clean or Buggy?” IEEE Trans. Software Eng. 34 (2).

Kim, Sunghun, Thomas Zimmermann, E. James Whitehead Jr., and Andreas Zeller.
2007. “Predicting Faults from Cached History.” In ICSE. IEEE Computer Society.

Knethen, Antje von, Barbara Paech, Friedemann Kiedaisch, and Frank Houdek. 2002.
“Systematic Requirements Recycling through Abstraction and Traceability.” In
RE. IEEE Computer Society.

Koch, Stefan. 2004. “Agile principles and open source software development: A
theoretical and empirical discussion.” In International Conference on Extreme
Programming and Agile Processes in Software Engineering. Springer.

Kochhar, Pavneet Singh, Yuan Tian, and David Lo. 2014. “Potential biases in bug
localization: do they matter?” In ACM/IEEE International Conference on
Automated Software Engineering, ASE ’14, Vasteras, Sweden - September 15 -
19, 2014. ACM. https://doi.org/10.1145/2642937.2642997.

Kuang, Hongyu, Patrick Mäder, Hao Hu, Achraf Ghabi, LiGuo Huang, Jian Lü, and
Alexander Egyed. 2015. “Can method data dependencies support the assessment
of traceability between requirements and source code?” J. Softw. Evol. Process.
27 (11).

XXII

https://doi.org/10.1109/TSE.2012.70
https://doi.org/10.1109/TSE.2012.70
https://doi.org/10.1145/2642937.2642997

References

Kuang, Hongyu, Patrick Mäder, Hao Hu, Achraf Ghabi, LiGuo Huang, Jian Lv,
and Alexander Egyed. 2012. “Do data dependencies in source code complement
call dependencies for understanding requirements traceability?” In ICSM. IEEE
Computer Society.

Kuang, Hongyu, Jia Nie, Hao Hu, Patrick Rempel, Jian Lu, Alexander Egyed, and
Patrick Mäder. 2017. “Analyzing closeness of code dependencies for improving
IR-based Traceability Recovery.” In SANER. IEEE Computer Society.

Lam, An Ngoc, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. 2015.
“Combining Deep Learning with Information Retrieval to Localize Buggy Files for
Bug Reports (N).” In 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015,
edited by Myra B. Cohen, Lars Grunske, and Michael Whalen. IEEE Computer
Society. https://doi.org/10.1109/ASE.2015.73.

Le, Tien-Duy B., Mario Linares Vasquez, David Lo, and Denys Poshyvanyk. 2015.
“RCLinker: automated linking of issue reports and commits leveraging rich
contextual information.” In Proceedings of the 2015 IEEE 23rd International
Conference on Program Comprehension, ICPC 2015, Florence/Firenze, Italy,
May 16-24, 2015, edited by Andrea De Lucia, Christian Bird, and Rocco Oliveto.
IEEE Computer Society. https://doi.org/10.1109/ICPC.2015.13.

Lewis, C, and R Ou. 2011. “Bug prediction at google.” Accessed September 4, 2021.
http://google-engtools.blogspot.sg/2011/12/bug-prediction-at-google.html.

Liebchen, Gernot Armin, and Martin J. Shepperd. 2016. “Data Sets and Data Quality
in Software Engineering: Eight Years On.” In PROMISE. ACM.

Liu, Chao, Long Fei, Xifeng Yan, Jiawei Han, and Samuel P. Midkiff. 2006. “Statistical
Debugging: A Hypothesis Testing-Based Approach.” IEEE Trans. Software Eng.
32 (10).

Lohar, Sugandha, Sorawit Amornborvornwong, Andrea Zisman, and Jane Cleland-
Huang. 2013. “Improving trace accuracy through data-driven configuration and
composition of tracing features.” In ESEC/SIGSOFT FSE. ACM.

Lucia, Andrea De, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. 2004. “En-
hancing an Artefact Management System with Traceability Recovery Features.”
In ICSM. IEEE Computer Society.

Lucia, Ferdian Thung, David Lo, and Lingxiao Jiang. 2012. “Are faults localizable?”
In 9th IEEE Working Conference of Mining Software Repositories, MSR 2012,
June 2-3, 2012, Zurich, Switzerland, edited by Michele Lanza, Massimiliano Di
Penta, and Tao Xie. IEEE Computer Society. https://doi.org/10.1109/MSR.
2012.6224302.

XXIII

https://doi.org/10.1109/ASE.2015.73
https://doi.org/10.1109/ICPC.2015.13
http://google-engtools.blogspot.sg/2011/12/bug-prediction-at-google.html
https://doi.org/10.1109/MSR.2012.6224302
https://doi.org/10.1109/MSR.2012.6224302

References

Lukins, Stacy K., Nicholas A. Kraft, and Letha H. Etzkorn. 2008. “Source Code
Retrieval for Bug Localization Using Latent Dirichlet Allocation.” In WCRE
2008, Proceedings of the 15th Working Conference on Reverse Engineering,
Antwerp, Belgium, October 15-18, 2008, edited by Ahmed E. Hassan, Andy
Zaidman, and Massimiliano Di Penta. IEEE Computer Society. https://doi.org/
10.1109/WCRE.2008.33.

Mäder, Patrick, and Jane Cleland-Huang. 2015. “From Raw Project Data to Business
Intelligence.” IEEE Software 32 (4).

Mäder, Patrick, and Alexander Egyed. 2011. “Do software engineers benefit from
source code navigation with traceability? - An experiment in software change
management.” In 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011), Lawrence, KS, USA, November 6-10, 2011,
edited by Perry Alexander, Corina S. Pasareanu, and John G. Hosking. IEEE
Computer Society. https://doi.org/10.1109/ASE.2011.6100095.

Mahmoud, Anas, and Nan Niu. 2010. “Using Semantics-Enabled Information Re-
trieval in Requirements Tracing: An Ongoing Experimental Investigation.” In
COMPSAC. IEEE Computer Society.

. 2011. “TraCter: A tool for candidate traceability link clustering.” In RE.
IEEE Computer Society.

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze. 2008. Intro-
duction to information retrieval. New York: Cambridge University Press. isbn:
978-0-521-86571-5.

Manning, Christopher D., and Hinrich Schütze. 2001. Foundations of statistical
natural language processing. MIT Press.

Marcus, Andrian, and Jonathan I. Maletic. 2003. “Recovering Documentation-to-
Source-Code Traceability Links using Latent Semantic Indexing.” In ICSE. IEEE
Computer Society.

McMillan, Collin, Mark Grechanik, Denys Poshyvanyk, Chen Fu, and Qing Xie.
2012. “Exemplar: A Source Code Search Engine for Finding Highly Relevant
Applications.” IEEE Trans. Software Eng. 38 (5).

Merten, Thorsten, Daniel Krämer, Bastian Mager, Paul Schell, Simone Bürsner, and
Barbara Paech. 2016. “Do Information Retrieval Algorithms for Automated
Traceability Perform Effectively on Issue Tracking System Data?” In REFSQ,
vol. 9619. Lecture Notes in Computer Science. Springer.

Mockus, Audris, Roy T Fielding, and James Herbsleb. 2000. “A case study of open
source software development: the Apache server.” In Proceedings of the 22nd
international conference on Software engineering.

XXIV

https://doi.org/10.1109/WCRE.2008.33
https://doi.org/10.1109/WCRE.2008.33
https://doi.org/10.1109/ASE.2011.6100095

References

Moreno, Laura, John Joseph Treadway, Andrian Marcus, and Wuwei Shen. 2014.
“On the Use of Stack Traces to Improve Text Retrieval-Based Bug Localization.”
In ICSME. IEEE Computer Society.

Murgia, Alessandro, Parastou Tourani, Bram Adams, and Marco Ortu. 2014. “Do
developers feel emotions? an exploratory analysis of emotions in software arti-
facts.” In 11th Working Conference on Mining Software Repositories, MSR 2014,
Proceedings, May 31 - June 1, 2014, Hyderabad, India, edited by Premkumar T.
Devanbu, Sung Kim, and Martin Pinzger. ACM. https://doi.org/10.1145/
2597073.2597086.

Nguyen, Anh Tuan, Tung Thanh Nguyen, Jafar M. Al-Kofahi, Hung Viet Nguyen,
and Tien N. Nguyen. 2011. “A topic-based approach for narrowing the search
space of buggy files from a bug report.” In ASE. IEEE Computer Society.

Niu, Nan, Tanmay Bhowmik, Hui Liu, and Zhendong Niu. 2014. “Traceability-enabled
refactoring for managing just-in-time requirements.” In RE. IEEE Computer
Society.

Olson, David L, and Dursun Delen. 2008. Advanced data mining techniques. Springer
Science & Business Media.

Panichella, Annibale, Collin McMillan, Evan Moritz, Davide Palmieri, Rocco Oliveto,
Denys Poshyvanyk, and Andrea De Lucia. 2013. “When and How Using Struc-
tural Information to Improve IR-Based Traceability Recovery.” In CSMR. IEEE
Computer Society.

Porter, Martin. 2006. Porter Stemmer website. http : / / tartarus . org / ~martin /
PorterStemmer/.

Poshyvanyk, Denys, Andrian Marcus, Vaclav Rajlich, Yann-Gaël Gueheneuc, and
Giuliano Antoniol. 2006. “Combining Probabilistic Ranking and Latent Semantic
Indexing for Feature Identification.” In ICPC. IEEE Computer Society.

Project Management Institute. 2015. “Pulse of the Profession 2015.” Accessed Septem-
ber 4, 2021. https://www.pmi.org/-/media/pmi/documents/public/pdf/
learning/thought-leadership/pulse/pulse-of-the-profession-2015.pdf.

Project Management Zone. 2018. “Project Management Systems - Popularity Rank-
ing.” Accessed August 26, 2021. https://project-management.zone/ranking/issue.

Rao, Shivani, and Avinash C. Kak. 2011. “Retrieval from software libraries for bug
localization: a comparative study of generic and composite text models.” In
MSR. ACM.

XXV

https://doi.org/10.1145/2597073.2597086
https://doi.org/10.1145/2597073.2597086
http://tartarus.org/~martin/PorterStemmer/
http://tartarus.org/~martin/PorterStemmer/
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse-of-the-profession-2015.pdf
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse-of-the-profession-2015.pdf
https://project-management.zone/ranking/issue

References

Rath, Michael, David Akehurst, Christoph Borowski, and Patrick Mäder. 2017. “Are
Graph Query Languages Applicable for Requirements Traceability Analysis?” In
REFSQ Workshops, vol. 1796. CEUR Workshop Proceedings. CEUR-WS.org.

Rath, Michael, Maksim Goman, and Patrick Mäder. 2017. “State of the Art of
Traceability in Open-Source Projects.” In Workshop des Arbeitskreises Trace-
ability/Evolution der Technischen Universität Ilmenau: Aktuelle Methoden zur
Gewinnung und Aktualisierung von Traceability-Modellen, 8–11. Gesellschaft für
Informatik e.V.

Rath, Michael, David Lo, and Patrick Mäder. 2018. “Analyzing requirements and
traceability information to improve bug localization.” In MSR, 442–453. ACM.

Rath, Michael, and Patrick Mäder. 2018. “Influence of Structured Information in Bug
Report Descriptions on IR-Based Bug Localization.” In SEAA, 26–32. IEEE
Computer Society.

. 2019a. “Structured information in bug report descriptions - influence on
IR-based bug localization and developers.” Software Quality Journal 27 (3):
1315–1337.

. 2019b. “The SEOSS 33 dataset - Requirements, bug reports, code history,
and trace links for entire projects.” Data in brief 25:104005.

. 2020. “Request for Comments: Conversation Patterns in Issue Tracking
Systems of Open-Source Projects.” In SAC. ACM.

Rath, Michael, Patrick Rempel, and Patrick Mäder. 2017. “The IlmSeven Dataset.”
In RE, 516–519. IEEE Computer Society.

Rath, Michael, Jacob Rendall, Jin L. C. Guo, Jane Cleland-Huang, and Patrick
Mäder. 2018. “Traceability in the wild: automatically augmenting incomplete
trace links.” In ICSE, 834–845. ACM.

Rath, Michael, Mihaela Todorova Tomova, and Patrick Mäder. 2019. “Selecting
Open Source Projects for Traceability Case Studies.” In REFSQ, 11412:229–242.
Lecture Notes in Computer Science. Springer.

. 2020. “SpojitR: Intelligently Link Development Artifacts.” In SANER. IEEE.

Regnell, Björn, Richard Berntsson-Svensson, and Krzysztof Wnuk. 2008. “Can We
Beat the Complexity of Very Large-Scale Requirements Engineering?” In Re-
quirements Engineering: Foundation for Software Quality, 14th International
Working Conference, REFSQ 2008, Montpellier, France, June 16-17, 2008, Pro-
ceedings, edited by Barbara Paech and Colette Rolland, vol. 5025. Lecture Notes
in Computer Science. Springer. https://doi.org/10.1007/978-3-540-69062-7_11.

XXVI

https://doi.org/10.1007/978-3-540-69062-7_11

References

Rempel, Patrick, and Patrick Mäder. 2017. “Preventing Defects: The Impact of
Requirements Traceability Completeness on Software Quality.” IEEE Trans.
Software Eng. 43 (8). https://doi.org/10.1109/TSE.2016.2622264.

Rempel, Patrick, Patrick Mäder, and Tobias Kuschke. 2013. “Towards feature-aware
retrieval of refinement traces.” In TEFSE@ICSE. IEEE Computer Society.

Ripon Saha. 2016. “BLUiR-Package.” Accessed April 14, 2021.

Robertson, Stephen E., Steve Walker, and Micheline Beaulieu. 2000. “Experimenta-
tion as a way of life: Okapi at TREC.” Information processing & management
36 (1).

Romo, Bilyaminu Auwal, Andrea Capiluppi, and Tracy Hall. 2014. “Filling the Gaps
of Development Logs and Bug Issue Data.” In Proceedings of The International
Symposium on Open Collaboration, OpenSym 2014, Berlin, Germany, August
27 - 29, 2014. ACM. https://doi.org/10.1145/2641580.2641592.

Ruan, Hang, Bihuan Chen, Xin Peng, and Wenyun Zhao. 2019. “DeepLink: Recovering
issue-commit links based on deep learning.” J. Syst. Softw. 158. https://doi.org/
10.1016/j.jss.2019.110406.

Runeson, Per, and Martin Höst. 2009. “Guidelines for conducting and reporting
case study research in software engineering.” Empir. Softw. Eng. 14 (2). https:
//doi.org/10.1007/s10664-008-9102-8.

Saha, Ripon K., Matthew Lease, Sarfraz Khurshid, and Dewayne E. Perry. 2013.
“Improving bug localization using structured information retrieval.” In 28th
IEEE/ACM Int. Conference on Automated Software Engineering, ASE 2013.
https://doi.org/10.1109/ASE.2013.6693093. https://doi.org/10.1109/ASE.2013.
6693093.

Schermann, Gerald, Martin Brandtner, Sebastiano Panichella, Philipp Leitner, and
Harald C. Gall. 2015. “Discovering loners and phantoms in commit and issue
data.” In ICPC. IEEE Computer Society.

Schröter, Adrian, Nicolas Bettenburg, and Rahul Premraj. 2010. “Do stack traces
help developers fix bugs?” In MSR. IEEE Computer Society.

Si, XiaoSheng, ChangHua Hu, and ZhiJie Zhou. 2010. “Fault prediction model based
on evidential reasoning approach.” Science China Information Sciences 53 (10):
2032–2046.

Singh, VB, and Krishna Kumar Chaturvedi. 2011. “Bug tracking and reliability
assessment system (btras).” International Journal of Software Engineering and
Its Applications 5 (4).

XXVII

https://doi.org/10.1109/TSE.2016.2622264
https://doi.org/10.1145/2641580.2641592
https://doi.org/10.1016/j.jss.2019.110406
https://doi.org/10.1016/j.jss.2019.110406
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1109/ASE.2013.6693093
https://doi.org/10.1109/ASE.2013.6693093
https://doi.org/10.1109/ASE.2013.6693093

References

Skerrett, Ian. 2011. The Eclipse Foundation (2011). The Eclipse Community Sur-
vey 2011. Technical report. Tech. rep. Ottawa, Ontario, Canada: The Eclipse
Foundation (cit. on pp. 3, 19).

Sklearn Documentation. 2021. “Cross-validation.” Accessed July 24, 2021. https:
//scikit-learn.org/stable/modules/cross_validation.html.

Sliwerski, Jacek, Thomas Zimmermann, and Andreas Zeller. 2005. “When do changes
induce fixes?” In MSR. ACM.

Stackoverflow. 2018. “Developer Survey Results 2018.” Accessed August 26, 2021.
https://insights.stackoverflow.com/survey/2018#overview.

Strohman, Trevor, Donald Metzler, Howard Turtle, and W Bruce Croft. 2005. “Indri:
A language model-based search engine for complex queries.” In Proceedings of
the international conference on intelligent analysis, vol. 2. 6. Citeseer.

Subversion Community. 2021. “Coding and Commit Conventions.” Accessed Septem-
ber 4, 2021. https://subversion.apache.org/docs/community-guide/conventions.
html#log-messages.

Sullivan, Matthew. 2014. “Linkify Jira Issues.” Accessed August 17, 2021. https:
//bit.ly/2K9I6IS.

Sultanov, Hakim, Jane Huffman Hayes, and Wei-Keat Kong. 2011. “Application of
swarm techniques to requirements tracing.” Requir. Eng. 16 (3).

Sun, Yan, Qing Wang, and Ye Yang. 2017. “FRLink: Improving the recovery of
missing issue-commit links by revisiting file relevance.” Inf. Softw. Technol.,
https://doi.org/10.1016/j.infsof.2016.11.010.

The Lemur Project. 2020. “Indri Toolkit.” Accessed April 14, 2021.

TIOBE Software BV. 2021. “TIOBE Index.” Accessed August 26, 2021. https :
//www.tiobe.com/tiobe-index/.

Tomova, Mihaela Todorova, Michael Rath, and Patrick Mäder. 2017. “Preprocessing
Texts in Issue Tracking Systems to improve IR Techniques for Trace Creation.” In
Workshop des Arbeitskreises Traceability/Evolution der Technischen Universität
Ilmenau: Aktuelle Methoden zur Gewinnung und Aktualisierung von Traceability-
Modellen, 17–20. Gesellschaft für Informatik e.V.

. 2018. “Use of trace link types in issue tracking systems.” In ICSE (Companion
Volume), 181–182. ACM.

Voorhees, Ellen M. 1999. “The TREC-8 Question Answering Track Report.” In
TREC, vol. 500-246. NIST Special Publication. National Institute of Standards /
Technology (NIST).

XXVIII

https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html
https://insights.stackoverflow.com/survey/2018#overview
https://subversion.apache.org/docs/community-guide/conventions.html#log-messages
https://subversion.apache.org/docs/community-guide/conventions.html#log-messages
https://bit.ly/2K9I6IS
https://bit.ly/2K9I6IS
https://doi.org/10.1016/j.infsof.2016.11.010
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

References

Wang, Qianqian, Chris Parnin, and Alessandro Orso. 2015. “Evaluating the usefulness
of IR-based fault localization techniques.” In ISSTA. ACM.

Wang, Shaowei, and David Lo. 2014. “Version history, similar report, and structure:
putting them together for improved bug localization.” In 22nd International
Conference on Program Comprehension, ICPC 2014. https://doi.org/10.1145/
2597008.2597148.

. 2016. “AmaLgam+: Composing Rich Information Sources for Accurate
Bug Localization.” Journal of Software: Evolution and Process 28 (10). https:
//doi.org/10.1002/smr.1801.

Wen, Ming, Rongxin Wu, and Shing-Chi Cheung. 2016. “Locus: locating bugs from
software changes.” In ASE. ACM.

Wilcoxon, Frank. 1992. “Individual comparisons by ranking methods.” In Break-
throughs in statistics. Springer.

Wong, Chu-Pan, Yingfei Xiong, Hongyu Zhang, Dan Hao, Lu Zhang, and Hong Mei.
2014. “Boosting Bug-Report-Oriented Fault Localization with Segmentation
and Stack-Trace Analysis.” In IEEE International Conference on Software
Maintenance and Evolution. https://doi.org/10.1109/ICSME.2014.40.

Wong, W. Eric, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. “A
Survey on Software Fault Localization.” IEEE Trans. Software Eng. 42.

Xie, Tao, Lu Zhang, Xusheng Xiao, Ying-Fei Xiong, and Dan Hao. 2014. “Cooperative
software testing and analysis: Advances and challenges.” Journal of Computer
Science and Technology 29 (4): 713–723.

Ye, Xin, Razvan C. Bunescu, and Chang Liu. 2014. “Learning to rank relevant files
for bug reports using domain knowledge.” In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
(FSE-22), Hong Kong, China, November 16 - 22, 2014, edited by Shing-Chi
Cheung, Alessandro Orso, and Margaret-Anne D. Storey. ACM. https://doi.
org/10.1145/2635868.2635874.

Ye, Xin, Hui Shen, Xiao Ma, Razvan C. Bunescu, and Chang Liu. 2016. “From
word embeddings to document similarities for improved information retrieval
in software engineering.” In Proceedings of the 38th International Conference
on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016,
edited by Laura K. Dillon, Willem Visser, and Laurie Williams. ACM. https:
//doi.org/10.1145/2884781.2884862.

Yin, Robert K. 2009. Case study research: design and methods. 4th. Applied social
research methods. Sage Publications. isbn: 978-1-4129-6099-1.

XXIX

https://doi.org/10.1145/2597008.2597148
https://doi.org/10.1145/2597008.2597148
https://doi.org/10.1002/smr.1801
https://doi.org/10.1002/smr.1801
https://doi.org/10.1109/ICSME.2014.40
https://doi.org/10.1145/2635868.2635874
https://doi.org/10.1145/2635868.2635874
https://doi.org/10.1145/2884781.2884862
https://doi.org/10.1145/2884781.2884862

References

Zeller, Andreas. 2009. Why programs fail: a guide to systematic debugging. Elsevier.

Zhang, Jie, Xiaoyin Wang, Dan Hao, Bing Xie, Lu Zhang, and Hong Mei. 2015. “A
survey on bug-report analysis.” Sci. China Inf. Sci. 58 (2). https://doi.org/10.
1007/s11432-014-5241-2.

Zhao, Fei, Yaming Tang, Yibiao Yang, Hongmin Lu, Yuming Zhou, and Baowen Xu.
2015. “Is Learning-to-Rank Cost-Effective in Recommending Relevant Files for
Bug Localization?” In 2015 IEEE International Conference on Software Quality,
Reliability and Security, QRS 2015, Vancouver, BC, Canada, August 3-5, 2015.
IEEE. https://doi.org/10.1109/QRS.2015.49.

Zhou, Jian, Hongyu Zhang, and David Lo. 2012. “Where should the bugs be fixed?
More accurate information retrieval-based bug localization based on bug reports.”
In ICSE. IEEE Computer Society.

Zimmermann, Thomas, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian
Schröter, and Cathrin Weiss. 2010. “What Makes a Good Bug Report?” IEEE
Trans. Software Eng. 36 (5).

XXX

https://doi.org/10.1007/s11432-014-5241-2
https://doi.org/10.1007/s11432-014-5241-2
https://doi.org/10.1109/QRS.2015.49

Erklärung

Ich versichere, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus
anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter
Angabe der Quelle gekennzeichnet.

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden
Arbeit nicht beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von
Vermittlungs- bzw. Beratungsdiensten (Promotionsberater oder anderer Personen)
in Anspruch genommen. Niemand hat von mir unmittelbar oder mittelbar geldw-
erte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der
vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher
Form einer Prüfungsbehörde vorgelegt.

Ich bin darauf hingewiesen worden, dass die Unrichtigkeit der vorstehenden Erklärung
als Täuschungsversuch bewertet wird und gemäß § 7 Abs. 10 der Promotionsordnung
den Abbruch des Promotionsverfahrens zur Folge hat.

Erfurt, 25 November 2021

Michael Rath

	Abstract
	Zusammenfassung
	Contents
	List of Publications
	Publications Included in this Thesis
	Related Publications

	Contribution Statement
	Introduction
	Background
	Defining Essential Terms
	Developing Software in an Agile Way
	Software Traceability
	Common Tools Utilized in the Agile Development Process
	Managing Requirements and Bug Reports in Issue Tracking Systems
	Managing Source Code Files in Version Control Systems
	Creating Trace Links between Artifacts in Jira and Git

	Localizing Bugs using Information Retrieval Techniques
	Indexing the Source Code File Corpus
	Constructing a Query from a Bug Report
	Retrieve and Rank Source Code Files

	State of the Art
	Bug Localization
	Datasets and Collections of Projects used to Evaluate Approaches
	Comparison of IR-based Bug Localization Algorithms
	Internal Structure of Bug Localization Algorithms

	Localizing Features and Recovering Trace Links
	Criticizing the State of the Art

	A Holistic Approach to Improve IR-based Bug Localization
	Outlining the Idea
	Creating a Dataset to Evaluate Bug Localization Algorithms
	Designing a Bug Localization Algorithm utilizing Traceability
	Augmenting the Issue-to-Commit Trace Link Set

	Constructing an Artifact Model
	Describing Contained Artifacts
	Describing Artifact Relations

	Summary

	Mining Software Repositories to Create Holistic Datasets
	Selecting Projects for Mining
	Collecting Project Artifacts from Multiple Repositories
	Analyzing a Project's Issue Tracking System
	Analyzing a Project's Version Control System

	Organizing Project Artifacts in Unified Storage
	Key Figures of the Created Dataset
	Defining the Mined Dataset
	Summary

	The ABLoTS Bug Localization Approach
	Motivating Example to Leverage ITS Project Data for Bug Localization
	Multi-Component IR-Based Bug Localization Algorithms
	Dissecting Existing Algorithms
	Analyzing Algorithms used in Similar Bug Report Components

	Designing a Similar Issue Component - TraceScore
	Selecting Project Artifacts
	Textual Processing
	Constructing a Traceability Graph
	Analyzing the Traceability Graph

	Refining the Source Code Structure Component - LuceneScore
	Utilizing TraceScore in a Bug Localization Algorithm - ABLoTS
	Internal Structure of ABLoTS
	The Composer Component of ABLoTS

	Summary

	Automatically Augmenting Incomplete Issue-to-Commit Trace Links
	Analyzing Existing Issue-to-Commit Trace Links
	Motivating Example to Automatically Tag Commit Messages
	Developing a Commit Message Tagging Model
	Analyzing the Development Process
	Analyzing the Projects' Stakeholder Activities

	Creating a Trace Link Classifier
	Deriving Process Related Features
	Deriving Textual Similarity Features
	Creating Feature Vectors

	Summary

	Evaluation
	Research Questions
	Introducing the Evaluation Datasets
	Creating a Gold Standard Dataset \mathsf{GS}
	Creating Datasets with Reduced Trace Link Sets \mathsf{RED}_{i}
	Augmenting Trace Link Sets to Create Datasets \mathsf{AUG}_{i}

	Evaluation Metrics
	Top@k
	Mean Average Precision (MAP)
	Mean Reciprocal Rank
	Cliff's delta
	Precision, Recall, and F-score

	Experiment I: Effectiveness of Similar Issue Component TraceScore (RQ-1)
	Experiment II: Impact of TraceScore Parameterization (RQ-2)
	Experiment III: Effectiveness of IR-Based Bug Localization Algorithm using TraceScore
	Training and Running ABLoTS on a Project
	Results

	Experiment IV: Effectiveness of Trace Link Set Augmentation (RQ-4)
	Training and Running the Trace Link Set Augmentation Classifier
	Results

	Experiment V: Effectiveness of IR-Based Bug Localization Algorithms on Projects with Augmented Trace Link Sets (RQ-5)

	Discussion
	RQ-1 - Effectiveness of Similar Issue Component TraceScore
	RQ-2 - Impact of TraceScore Parameterization
	RQ-3 - Effectiveness of an IR-based Bug Localization Algorithm using TraceScore
	RQ-4 - Effectiveness of Trace Link Set Augmentation
	Evaluating Additional Trace Link Removal Settings

	RQ-5 - Effectiveness of IR-based Bug Localization Algorithms on Projects with Augmented Trace Link Sets
	RQ-6 - Limitations of Studied Approaches
	ABLoTS Requires a Project History
	Augmenting Issue-to-Commit Trace Link Set in Large Projects
	Issue-to-Commit Trace Link Set Augmentation Requires Existing Links

	Threats to Validity
	Project Selection and Dataset Creation
	Experiments I-V
	Specifically for Experiments I and II
	Specifically for Experiment III
	Specifically for Experiment IV

	Conclusion and Future Work
	Summary
	Future Work

	Appendix
	Evaluating Different Temporal Settings for TraceScore
	Evaluation Details for Similar Issue Components
	Evaluation Details for Bug Localization Algorithms

	List of Tables
	List of Figures
	List of Abbreviations
	References

