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Exploiting Spatial Code Proximity and Order for
Improved Source Code Retrieval for Bug

Localization
Bunyamin Sisman, Avinash C. Kak

Abstract—Practically all Information Retrieval (IR) based approaches developed to date for automatic bug localization are based on
the bag-of-words assumption that ignores any positional and ordering relationships between the terms in a query. In this paper we
argue that bug reports are ill-served by this assumption since such reports frequently contain various types of structural information
whose terms must obey certain positional and ordering constraints. It therefore stands to reason that the quality of retrieval for bug
localization would improve if these constraints could be taken into account when searching for the most relevant files. In this paper,
we demonstrate that such is indeed the case. We show how the well-known Markov Random Field (MRF) based retrieval framework
can be used for taking into account the term-term proximity and ordering relationships in a query vis-a-vis the same relationships in
the files of a source-code library to greatly improve the quality of retrieval of the most relevant source files. We have carried out our
experimental evaluations on popular large software projects using over 4 thousand bug reports. The results we present demonstrate
unequivocally that the new proposed approach is far superior to the widely used bag-of-words based approaches.

Index Terms—Term Proximity, Term Dependence, Information Retrieval, Markov Random Fields, Bug Localization
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1 INTRODUCTION

Code search plays an important role in software devel-
opment and maintenance. The tools that are deployed
today for code search range all the way from simple
command-line functions like ‘grep’ to complex search
facilities tailored for the specific needs of the developers.
These different types of search facilities are used to locate
various parts of a software library for concept location,
change impact analysis, traceability link analysis, and so
on [1], [2], [3], [4], [5], [6]. Our particular interest lies in a
class of code search tools that are based on Information
Retrieval (IR) techniques and our end goal is bug local-
ization. For automatic bug localization, we treat the bug
reports as text queries and the corresponding software
constructs that should be modified to implement a fix for
the bugs as the relevant artifacts that should be retrieved
by the search tool [7], [8], [9].

Obviously, the success of an IR framework that lever-
ages bug reports for automatic bug localization depends
much on how the bug reports are represented vis-a-vis
the source code files and other documents in a library. In
the widely used bag-of-words representations for both the
queries and the source code documents, all positional
and ordering relationships between the terms are lost
[10], [7], [9]. To us, this is tantamount to a serious loss of
information considering that a bug report, in general, is a
composition of structured and unstructured textual data
that frequently includes (a) patches; (b) stack traces when
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the software fault throws an exception; (c) snippets of
code; (d) natural language sentences; and so on [11], [8].
Patches and stack traces, especially, contain vital inter-
term proximity and ordering relationships that ought to
be exploited for the purpose of retrieval. Say, if two terms
are proximal to each other in a stack trace, you’d want a
source code file containing similar code to have the same
two terms in a similar proximal relationship. The work
we report in this paper demonstrates that the quality of
retrieval improves greatly when a retrieval framework
allows for ordering and positional (through proximity)
relationships to be taken into account in the retrieval
process.

As to how to incorporate ordering and positional
relationships in a retrieval framework, we have several
possibilities at our disposal that have been examined in
the past mostly in the context of retrieval from natural
language corpora. At one end of the spectrum, we have
ad hoc approaches such as those that compute term co-
occurrence frequencies and proximity-based term-term
dependencies. And, at the other end of the spectrum, we
have more principled approaches, such as those based
on Markov Random Fields (MRF) [12] that are based on
modeling the term-term dependencies by graphs whose
arcs capture the inter-term relationships in the queries
vis-a-vis the same in the documents.

With regard to the investigation of such approaches in
retrieval from software libraries, in a recent contribution
[13], we presented an ad hoc approach that demon-
strated how the inter-term proximities can be used to
reformulate the queries in order to improve the quality
of retrievals. The query reformulation in that approach
takes place through a two-step process that is carried
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out without any additional input from the user. In the
first step, the top-ranked retrievals for the user-supplied
query are analyzed for the detection of terms that are
proximal to the query terms as supplied by the user.
The proximal terms thus discovered are used to enrich
the original query in the second step. We showed that
the retrieval for the query reformulated in this way is
significantly more precise than it is for the original query.

We now show that even more significant improvement
in retrieval precision can be obtained by using a more
principled alternative to ad hoc approaches. In particular,
we will show that when an MRF is used to model
the ordering and the positional dependencies between
the query terms vis-a-vis the documents, we end up
with a framework that not only yields a higher retrieval
precision with the simplest of the ordering and proximity
constraints, but that can also be generalized to the inves-
tigation of more general such constraints. In the MRF
based approach, certain subsets of the terms in a bug
report are used for scoring the software artifacts while
taking into account term-term proximity and order. This
approach exploits the fact that the software artifacts that
contain the query terms in the same order and/or in
similar proximities as in the query itself are more likely
to be relevant to a given query.

While, as demonstrated by our results, MRF is a
powerful approach to the modeling of query-document
relationships, to fully exploit its potential it must be
used in conjunction with what we refer to as Query
Conditioning (QC). The goal of QC is to recognize the
fact that a bug report constitutes a highly structured
query whose various parts consist, as we mentioned
previously, of a textual narrative, a stack trace, etc [11].
These different parts are disparate in the sense that the
inter-term relationships do not carry the same weight
in them. For example, the proximity of the terms used
in the stack trace portions of a bug report carries far
more weight than in the textual narrative. Therefore, the
ordering and proximity constraints are likely to be far
more discriminative in those portions of bug report that,
by their very nature, are far more structured. To further
underscore the importance of these structured portions
of the bug reports, past studies have shown that stack
traces are one of the most valuable source of information
to pinpoint the location of the bugs [14], [15].

We have named the overall code retrieval engine that
includes both QC and MRF modeling as Terrier+. The
reason for the ‘+’ suffix in the name is that ours is an
enhancement of the popular open-source research infor-
mation retrieval engine called Terrier1. The functionality
we have added to create Terrier+ is highly modular, in
the sense that any of enhancements can be turned on
and off merely by clicking buttons in the GUI in order to
measure the retrieval effectiveness of that enhancement.
This allows for a convenient assessment of the retrieval
power that can be attributed to each enhancement.

1. http://terrier.org

Note that whereas Terrier+ applies MRF modeling to
all queries, QC becomes an important factor only when
structured elements are present in the queries. In general,
detecting the structured elements in bug reports is a
difficult task as they may have different formats and
they are usually surrounded by other types of textual
data [11]. It is also not uncommon for these constructs
to undergo unexpected format changes, such as those
caused by accidental line breaks, when they are copied
into a bug report. In order to overcome these challenges,
Terrier+ employs several regular expressions to detect
and extract these structured elements from bug reports.

We experimentally validate the proposed bug localiza-
tion framework on three large software libraries: AspectJ,
Google Chrome, and Eclipse 3.1. We show that MRF
modeling of the queries and the query conditioning step
(whenever the queries lend themselves to such condi-
tioning) significantly improve the accuracy with with
which the bugs can be localized. In order to investigate
the effect of the length of queries on the precision with
which the bugs are localized, we carried out retrievals
with just the bug report titles and with the bug reports
taken in their entirety. Whereas MRF modeling resulted
in improved precision in bug localization even for short
queries consisting of just the bug report titles, the im-
provements were even more significant when the bug
reports in their entirely were subject to MRF modeling
and the QC step. Our experimental results also include
comparison with the other state of the art IR based
approaches to bug localization. We demonstrate that,
on the average, the MRF and QC based framework
outperforms all these other approaches.

This paper is organized as follows. In the next section,
we start by stating the research questions addressed
in the experimental validation of the proposed code
retrieval framework. Seeing these questions at the outset
will hopefully give the reader a better sense of the
scope of our work, especially in relation to the previous
related contributions by us and by others. We then
present the proposed MRF modeling along with Query
Conditioning. We evaluate our retrieval framework in
Section 4. The relevant work is presented in Section 5.
Section 6 provides the possible threats to the validity of
the proposed approach. Finally, we conclude in Section
7.

2 RESEARCH QUESTIONS

Our empirical evaluation on large open-source software
projects shows that our proposed retrieval framework
leads to significant improvements in automatic bug
localization accuracy. As mentioned in the previous
section, our retrieval engine has been packaged as an
enhancement to the popular research IR retrieval engine
known as Terrier and we refer to our enhancement as
Terrier+.

We compare the performance of Terrier+ to the other
IR approaches developed for the retrieval of the buggy
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source files in response to bug reports. Included in these
other IR-based approaches is the Spatial Code Proximity
(SCP) based Query Reformulation (QR) algorithm in
which a given short query is enriched with additional in-
formative terms drawn from the highest ranked retrieval
results with respect to the original query for an improved
retrieval accuracy [13]. Another important class of IR
tools developed for automatic bug localization leverages
the past development efforts. Such IR tools have been
also shown to improve the bug localization accuracy
significantly [9], [7].

For the evaluation of Terrier+, we conducted extensive
validation tests with the following research questions at
hand:

RQ1: Does including code proximity and order improve the
retrieval accuracy for bug localization. If so, to what extend?

RQ2: Is QC effective on improving the query representation
vis-a-vis the source code?

RQ3: Does including stack traces in the bug reports im-
prove the accuracy of the bug localization?

RQ4: How does the MRF-based retrieval framework com-
pare with the Query Refomulation (QR) based retrieval frame-
works for bug localization?

RQ5: How does the MRF-based retrieval framework com-
pare to the other bug localization frameworks that leverage the
past development history?

3 THE PROPOSED APPROACH

Directly or indirectly, all traditional IR based approaches
to bug localization amount to comparing the first-order
distribution of terms in a query vis-a-vis the documents.
This applies as much to simple approaches based on
VSM and Unigrams [10], [7] as it does to approaches
based on LDA [2], [10], [16] that use hidden variables for
injecting additional degrees of freedom for comparing
the queries with the documents. All of these approaches
miss out on the information contained in the inter-term
relationships in the queries and in the documents.

While we do now know how to extend the bag-of-
words approaches of the sort mentioned above with
proximity-based reformulation of a query for improving
the quality of retrievals [13], what we need are theoreti-
cally well-grounded approaches that can be generalized
to the incorporation of arbitrary inter-term relationships
between the terms of a query vis-a-vis the documents.
The goal of this section is to address this need by using
the notion of Markov Random Fields (MRF).

In the subsections to follow, we first review how the
inter-term dependencies are modeled with MRF. We then
mention three different specializations of MRF modeling
that appear to be particularly appropriate for our needs.
Subsequently, in order to exploit MRF modeling to the
maximum, we present our Query Conditioning (QC)
method to extract from a query those portions that are
particularly suited to modeling by MRF. Note that, as we
will demonstrate later, MRF improves retrievals even in
the absence of QC. However, by giving greater weight to

the inter-term relationships in those portions of a query
that QC has identified to be as being highly structured,
we improve the quality of retrievals much further.

3.1 Markov Random Fields
Over the years, researchers in the machine learning
community have devoted much energy to the inves-
tigation of methods for the probabilistic modeling of
arbitrary dependencies amongst a collection of variables.
The methods that have been developed are all based on
graphs. The nodes of such graphs represent the variables
and the arcs the pairwise dependencies between the
variables. The graphs may either be directed, as in
Bayesian Belief Networks [17], or undirected, as in the
networks derived from Markov Random Fields [12], [17].
In both these methods, the set of variables that any given
variable directly depends on is determined by the node
connectivity patterns. In a Bayesian Belief Network, the
probability distribution at a node q is conditioned on
only those nodes that are at the tail ends of the arcs
incident on q, taking the causality into account. In a
Markov Network, on the other hand, the probability
distribution at a node q depends on the nodes that are
immediate neighbors of q without considering any direc-
tionality. In the context of retrieval from natural language
corpora, the work of Metzler and Croft [12] has shown
that Markov Networks are particularly appropriate for
the modeling of inter-term dependencies vis-a-vis the
documents.

In general, given a graph G whose arcs express pair-
wise dependencies between the variables, MRF model-
ing of the probabilistic dependencies amongst a collec-
tion A of variables is based on the assumption that the
joint distribution over all the variables in the collection
can be expressed as product of non-negative potential
functions over the cliques in the graph:

P (A) =
1

Z

K∏
k=1

φ(Ck) (1)

where {C1, C2, . . . , CK} represents the set of all cliques in
the graph G, and φ(Ck) a non-negative potential function
associated with the clique Ck. In the expression above,
Z is merely for the purpose of normalization since we
want the sum of P (A) over all possible values that can
be taken by the variables in A to add up to unity.

Our end goal with MRF is to rank the files in the
code base according to the probability of a file f in
the software library to be relevant to a given query
Q. We denote this probability by P (f |Q) [7]. Using the
definition of the conditional probability, we can write

P (f |Q) =
P (Q, f)

P (Q)
. (2)

As we are only interested in ranking the files and the
denominator in Eq. 2 does not depend on files, it can be
ignored. Hence P (f |Q)

rank
= P (Q, f). In order to separate
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(a) Full Independence

f
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(b) Sequential Dependence
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q3q1
q2

(c) Full Dependence

Fig. 1. To illustrate the notion of Markov network for capturing the inter-term dependencies in a query vis-a-vis a
document, the case depicted is based on a query consisting of just three terms. We show three different MRF based
models.

out the roles played by the variables that stand for the
query terms (since we are interested in the inter-term
dependencies in the queries) vis-a-vis the contents of a
source file f , as suggested by Metzler and Croft [12],
we will use the following variation of the general form
expressed in Eq. 1 to compute this joint probability:

P (Q, f) =
1

Z

K∏
k=1

φ(Ck)
rank
=

K∑
k=1

log(φ(Ck)) (3)

where Q stands for a query which is assumed to consist
of the terms q1, q2, ..., q|Q| and f a file in the software
library. The nodes of the graph G in this case consist of
the query terms, with one node for each term. G also
contains a node that is reserved for the file f whose rel-
evancy to the query is in question. As before, we assume
that this graph contains the cliques {C1, C2, . . . , CK}.
As shown in the formula, for computational ease it is
traditional to express the potential ψ(Ck) through its
logarithmic form, that is through ψ(Ck) = log(φ(Ck)).

The fact that a fundamental property of any Markov
network is that probability distribution at any node q is
a function of only the nodes that are directly connected
to q may now be expressed as

P (qi|f, qj 6=i ∈ Q) = P (qi|f, qj ∈ neig(qi)) (4)

where neig(qi) denotes the terms whose nodes are di-
rectly connected to the node for qi. As observed in [12],
this fact allows arbitrary inter-term relationships to be
encoded through appropriate arc connections amongst
the nodes that represent the query terms in the graph
G. At one end of the spectrum, we can assume that
the query terms are all independent of one another by
the absence of any arcs between them. This assumption,
known as the usual bag-of-words assumption in infor-
mation retrieval, is referred to as the Full Independence
(FI). And at the other end of the spectrum, we may
assume a fully connected graph in which the probability
distribution at each node representing a query term
depends on all the other query terms (besides being
dependent on the file f ). This is referred to as the Full
Dependence (FD). Fig. 1a and 1c depict the graph G for
FI and FD assumptions for the case when a query Q
consists of exactly three terms.

What makes MRF modeling particularly elegant is that
it gives us a framework to conceptualize any number
of other “intermediate” forms of dependencies that are
between the two extremes of the FI and the FD assump-
tions. This we can do by simply choosing graphs G
of different connectivity patterns. Whereas FI is based
on the absence of any inter-term arcs in G and FD
on there being an arc between each query term and
every other term, we may now think of more specialized
dependencies such as the one depicted in Fig. 1b. This
dependency model, referred to as the Sequential Depen-
dency (SD) model in [12], incorporates both order and
proximity between a sequence (q1, q2, . . . , q|Q|) of query
terms.

At this point, the reader may wonder as to how one
would know in advance as to which connectivity pattern
to use for the graph G. The connectivity pattern is
obviously induced by the software library itself. Suppose
a phrase level analysis of the files in the library indicates
that the phrase “interrupt sig handler” occurs in the
files and can be used to discriminate between them, you
would want the nodes for the terms “interrupt,” “sig,”
and “handler” to be connected in the manner shown
in Fig. 1b. This is because the SD model shown in
that figure would only allow for pairwise (but ordered)
occurrences of the words “interrupt,” “sig,” and “han-
dler” to be matched in the files. The frequencies with
which these ordered terms appear in the files may also
carry discriminatory power. The relative importance of
the words occurring individually or in ordered pairs
would be determined by their relative frequencies in
the files. In contrast to the case depicted in Fig. 1b,
should it happen that the queries and the relevant files
contain the three terms “interrupt,” “sig,” and “handler”
in all possible orders, you would want to use the FD
assumption depicted in Fig. 1c. In this case, the number
of times these terms occur together within a window
of a certain size would carry discriminatory power for
choosing the files relevant to a query. Finally, should it
happen, that the three terms occur in the relevant files
without there being a phrasal sense to their appearance
in the files, you would want to use the bag-of-words, FI,
assumption.

We are particularly interested in the graph connec-
tivity induced by the notion of Spatial Code Proximity
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Fig. 2. An illustration of indexing the positions of the terms
in an Eclipse Class: SystemBrowerDescriptor.java. The ‘x’
symbol indicates the stop-words that are dropped from
the index.

(SCP) [13]. SCP consist of first associating a positional
index with each term in a query and in the documents
as shown in Fig. 2. Our goal is to translate the values of
the positional indexes into graph models based on the FI,
SD, and FD assumptions. In the next three subsections,
we will present formulas that show how these models
can be derived from SCP based indexes.

3.1.1 Full Independence (FI)
As already stated, the FI assumption reduces an MRF
model to the usual bag-of-words model that has now
been extensively investigated for automatic bug localiza-
tion [10], [7], [9]. As should be clear from the graph rep-
resentation of this model depicted in Fig. 1a for the case
of a query with exactly three terms, FI modeling involves
only 2-node cliques. Therefore, under MRF modeling,
the probability of a query given a file is simply computed
by summing over the 2-node cliques: PFI(f |Q)

rank
=∑|Q|

i=1 ψFI(qi, f). The choice of the potential function,
obviously critical in computing this probability, should
be in accord with the fact that MRF under FI assumption
amount to the bag-of-words modeling. Therefore, a good
choice is to make the potential ψFI(qi, f) proportional to
the frequency of the query term qi in the file f . Since the
zero probability associating with a query term qi that
does not appear in a file f can create problems when
estimating the relevance of f to a query, it is common
to add what is referred to as a smoothing increment to
the term frequencies. A powerful smoothing approach,
known as Dirichlet smoothing, uses the frequency of
a term in the entire corpus [7]. Shown below is a for-
mula for the potential ψFI(qi, f) that includes Dirichlet
smoothing:

ψFI(qi, f) = λFI log
( tf(qi, f) + µP (qi|C)

|f |+ µ

)
(5)

where P (qi|C) denotes the probability of the term in the
whole collection, tf(qi, f) is the term frequency of qi in
a file f , |f | denotes the length of the file and µ is the
Dirichlet smoothing parameter. The model constant λFI

has no impact on the rankings with this model. However,
we keep it in the formulation as we will use it later in
SD and FD modeling.

The probability expression shown above for the rel-
evance of a term to a file is exactly the same as it

appears in the widely used bag-of-words model known
as the Smoothed Unigram Model (SUM) whose usefulness
in automatic bug localization has been demonstrated in
[10], [7], [9]. We will use the retrieval results obtained
with FI as the baseline in order to determine the extent of
improvements one can obtain with the other two models,
SD and FD.

3.1.2 Sequential Dependence (SD)

The SD model takes the order and the proximity of the
terms into account in such a way that the probability
law for a query term qi given a file f obeys P (qi|f, qj ∈
{q1, . . . , qi−1, qi+1, . . . , q|Q|}) = P (qi|f, qi−1, qi+1).

To see how a software library can be processed to
induce the SD model, note from the example shown in
Fig. 1b that we now have 3-node cliques in addition to
the 2-node cliques of the FI model. Therefore, we must
now count the frequencies with which pairs of terms
occur together, with one following the other (without
necessarily being adjacent) in a specific order, in addi-
tion to counting the frequencies for the terms occurring
singly as in the FI model [18]. Again incorporating
Dirichlet smoothing for the same reasons as in the FI
model, we employ the following potential function for
the 3-node cliques corresponding to a file f and two
consecutive query terms qi−1 and qi:

ψSD(qi−1, qi, f) = λSD

log
( tfW (qi−1qi, f) + µP (qi−1qi|C)

|f |+ µ

) (6)

where tfW (qi−1qi, f) is the number of times the terms
qi−1 and qi appear in the same order as in the query
within a window length of W ≥ 2 in the file. For
W > 2, the terms do not have to be adjacent in the file
and the windows may also contain other query terms.
The smoothing increment P (qi−1qi|C) is the probability
associated with the pair (qi−1qi) in the entire software
library. To the potential function shown above, we must
now add the potential function for 2-node cliques the
reader has already seen for the FI model:

PSD(f |Q)
rank
=

|Q|∑
i=2

ψSD(qi−1, qi, f) +

|Q|∑
i=1

ψFI(qi, f). (7)

As the reader would expect, the ranking of the files
with the potential function shown in Eq. 7 is only
sensitive to the relative weights expressed by the model
parameters λFI and λSD, the overall scaling of these
weights being inconsequential on account of the unit
summation constraints on probabilities. We therefore set
λFI+λSD = 1. We can think of λSD as an interpolation or
a mixture parameter that controls the relative importance
of the 3-node cliques vis-a-vis the 2-node cliques.
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3.1.3 Full Dependence (FD)

As demonstrated previously by Fig. 1c, the FD assump-
tion implies a fully connected graph G whose nodes
correspond to the individual query terms, with one node
being reserved for the file f under consideration. The
graph being fully connected allows for a file f to be
considered relevant to a query regardless of the order
in which the query terms occur in the file. (Compare
this to the SD case where, for a file f to be considered
relevant to a query, it must contain the query terms in
the same order as in the query.) Therefore, the FD as-
sumption provides a more flexible matching mechanism
for retrievals.

The price to be paid for the generality achieved by FD
is the combinatorics of matching all possible ordering
of the query terms with the contents of a file. To keep
this combinatorial explosion under control, following
[18], we again limit ourselves to just 2-node and 3-
node cliques. While this may sound the same as for the
SD assumption, note that the 3-node cliques are now
allowed for a pair of query terms for both ordering of
the terms. Therefore, for any two terms qi and qj of the
query, the potential function takes the following form for
the 3-node cliques:

ψFD(qi, qj , f) = λFDlog
( tfW (qiqj , f) + µP (qiqj |C)

|f |+ µ

)
(8)

where λFD again works as a mixture parameter similar
to λSD, i.e. λFI +λFD = 1; µ is the smoothing parameter
and tfW (qiqj , f) is the frequency for the pair qiqj in f .
Summing over the cliques, we obtain the ranking score
of a file by

PFD(f |Q)
rank
=

|Q|∑
i=1

|Q|∑
j=1,j 6=i

ψFD(qi, qj , f)+

|Q|∑
i=1

ψFI(qi, f).

(9)

3.1.4 A Motivating Example

We will now use a simple example to compare the
retrieval effectiveness of the three models, FI, SD, and
FD. For reasons of space limitations, we will limit our
example to the simplest of the bug reports, one that only
contains a one-line text narrative which corresponds to
the title of the bug report.

The bug 989952 filed for Eclipse v3.1 has a title that
reads: “Monitor Memory Dialog needs to accept empty ex-
pression”. The target source files that were eventually
modified to fix this bug are:

1) org.eclipse.debug.ui/.../ui/views/memory/
MonitorMemoryBlockDialog.java

2) org.eclipse.debug.ui/.../ui/views/memory/
AddMemoryBlockAction.java

3) org.eclipse.debug.ui/.../ui/DebugUIMessages.java.

2. https://bugs.eclipse.org/bugs/show bug.cgi?id=98995

TABLE 1
Retrieval accuracies for the Bug 98995 with three

different MRF models.

Method 2-node cliques 3-node cliques Ranks AP
FD 7 42 1-3-2 1.0000
SD 7 6 2-3-4 0.6389
FI 7 0 6-5-10 0.2778

After removing the stop-words from the title, the final
query consists of seven unique terms. Table 1 presents
the retrieval accuracies obtained for this query, along
with the number of cliques utilized for each dependency
assumption. In the table, the column “Rank” gives the
ranks of the three relevant files in the ranked lists
retrieved. AP is the resulting Average Precision.

Investigating the ranked lists returned for the three
models, we see that FI ranks several irrelevant files above
the relevant ones. One such file is ASTFlattener.java.
Although this file does not contain any of the terms
“monitor”, “memory” and “dialog”; it is retrieved at
the top rank by this model because, as a file related
to parsing the Abstract Syntax Trees (AST), it contains
the terms “accept”, “empty” and “expression” with very
high frequencies. Clearly, the model misses the context
of the query.

In comparison to FI, SD is able to retrieve the rel-
evant files at higher ranks, as shown in Table 1. The
improvement obtained with SD is a consequence of the
discriminations achieved by requiring that the query
terms, when they appear together in a source file, do
so in a specific order. The creation of the 3-node cliques
with the query terms is illustrated in Fig. 3. A 3-node
clique is formed by the two words depicted together
with an under-bracket and the node corresponding to a
file. Since the relevant files contain these term blocks in
close proximity with high frequencies; with this model,
they receive higher ranking scores in comparison to the
irrelevant files.

Despite the improvements, SD still ranks one irrel-
evant file, ASTRewriteFlattener.java, above all the rel-
evant ones. This file also does not contain any of the
terms “monitor”, “memory” and “dialog”. However, it
contains in close proximity the term pairs from the
2 of the 3-node cliques: “accept empty” and “empty
expression”. The file manages to receive a high ranking
score with these term pairs in addition to the AST related
terms.

FD captures the context of the query better than the
other two models by considering all the term pairs
in the query regardless of their position and order. It
assumes that any pair of query terms can depend on one
another, hence the number of cliques it uses is higher.
This modeling approach ranks the three relevant files at
the top ranks above any irrelevant files and reaches a
perfect average precision of 1.0.



7

monitor memory dialog need accept . . .. . .

Clique #1

Clique #2

Clique #3

Clique #4

Fig. 3. Clique creation for the Bug 98995. The figure
shows the first 4 query term blocks for the 3-node cliques
utilized by the SD modeling.

3.2 Query Conditioning
When a bug report contains highly structured compo-
nents, such as a stack trace and/or a source code patch
[11], such information can be crucial to locating the
files relevant to the bug [15]. Being highly structured,
these components must first be identified as such and
subsequently processed to yield the terms that can then
be used to form a query for IR based retrieval. The pro-
cessing steps needed for that purpose will be different
for the two different types of components we consider:
stack traces and source code patches. We refer to the
collection of these steps as Query Conditioning (QC). QC
is carried out with a set of regular expressions that, while
custom designed for the different types of structured
components encountered, are sufficiently flexible to ac-
commodate small variations in the structures.3

As already stated, our retrieval framework has been
packaged as an enhancement to the popular research IR
retrieval engine Terrier and we refer to our enhancement
as Terrier+. With regard to the flow of processing related
to QC in Terrier+, it uses regular expressions to first
identify the patches and the stack traces from a given
bug report if any of these elements are available in the
report. Then, it processes them separately to sift out
the most relevant source code identifiers to be used in
the retrievals. The final query is composed from the
terms extracted from the stack traces and the patches
if one or both of these components are available. If these
structured components are not available, Terrier+ makes
do with the entire bug report such as it is and feeds it
into the MRF framework.

3.2.1 Stack Traces
When Terrier+ detects the stack traces in a bug report,
it automatically extracts the most likely locations of the
bug by identifying the methods in the trace. As the call
sequence in a stack trace starts from the most recent
method call,4 we extract only the topmost T methods

3. Our QC only takes into account the stack traces and source code
patches when they can be identified in a bug report. Note that a bug
report may also contain additional source code snippets that are not
meant to be patches [11]. QC treats any additional such code on par
with the main textual part of the report.

4. We do realize that for some languages the methods in a stack trace
are in the opposite order. That is, the most recent method call appears
as the last entry in the trace. The logic of identifying the methods
most relevant to a bug would obviously need to be reversed for such
languages.

Bug Report

Indexer
Index

Parser Markov 

Random Fields 

(MRF)

Query

ParserSource 

Code

Results

Query Conditioning 

(QC)

Fig. 5. An illustration of the data flow in the proposed
retrieval framework.

while discarding the rest of the trace since the methods
down in the trace have a very little chance of containing
any relevant terms and they are likely to introduce noise
into the retrieval process. Fig. 4 illustrates the stack trace
that was included in the report for Bug 77190 filed for
Eclipse5. The bug caused the EmptyStackException to be
thrown by the code in PushFieldVariable.java and was
subsequently fixed in a revised version of this code. The
figure highlights the extracted portion of the stack trace
that is used in forming the final query. Note that we
only extract the methods that are present in the code
base to which the bug report applies. That is, we skip
the methods from the libraries belonging to the Java
platform itself, as illustrated in the figure. During the
experiments, we empirically set T = 3, as this setting
resulted in the best retrieval accuracies on the average.
As we show in our experimental evaluation, this filtering
approach increases the precision of the retrievals signif-
icantly.

3.2.2 Patches
Source code patches are included in a bug report when
a developer wishes to also contribute a possible (and
perhaps partial) fix to the bug. When contributed by an
experienced developer, these components of a bug report
can be directly used for pinpointing the files relevant to
a bug.

A patch for a given bug is usually created with the
Unified Format to indicate the differences between the
original and the modified versions of a file in a single
construct. With this format, the textual content of the
patch contains the lines that would be removed or added
in addition to the contextual lines that would remain
unchanged in the file after the patch is applied. For term
extraction from the patches, Terrier+ does not use the
lines that would be added after the suggested patches
are applied to the files as those lines are not yet present
in the code base.

Obviously, the files mentioned by a developer in a
patch may not correspond to the actual location of the

5. https://bugs.eclipse.org/bugs/show bug.cgi?id=77190
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java.util.EmptyStackException
    at java.lang.Throwable.<init>(Throwable.java)
    at java.util.Stack.peek(Stack.java)
    at java.util.Stack.pop(Stack.java)
    at org.eclipse.jdt.internal.debug.eval.ast.engine.Interpreter.pop(Interpreter.java:89)
    at org.eclipse.jdt.internal.debug.eval.ast.instructions.Instruction.popValue(Instruction.java:111)
    at org.eclipse.jdt.internal.debug.eval.ast.instructions.PushFieldVariable.execute(PushFieldVariable.java:54)
    at org.eclipse.jdt.internal.debug.eval.ast.engine.Interpreter.execute(Interpreter.java:50) 

⁞ 
    at org.eclipse.core.internal.jobs.Worker.run(Worker.java:66)

Fig. 4. The stack trace that was included in the report for Bug 77190 filed for Eclipse. With QC, the trace is first
detected in the report with regular expression based processing. Subsequently, the highlighted lines are extracted as
the most likely locations of the bug and fed into the MRF framework.

TABLE 2
Evaluated Projects

Project, Description Language |B| |RF | |QTitle|
AspectJ, An Extension
to Java Programming
Language

Java 291 3.09 5.78

Eclipse v3.1, Integrated
Development Environ-
ment

Java 4,035 2.76 5.80

Chrome v4.0, WEB
Browser

C/C++ 358 3.82 6.21

bug. And, there may be additional files in the code base
that may require modifications in the final fix for the
bug. While the importance of information in such source
code patches cannot be overstated, it is important to
bear in mind that their inclusion in the bug reports is
more the exception than the rule. Out of the 4,035 bug
reports we analyzed for Eclipse v3.1, only 8 contained a
patch. Along the same lines, out of the 291 bug reports
we analyzed for the AspectJ project, only 4 contained a
patch. Nonetheless, considering the importance of the
information contained in the patches when they are
included in a bug report, Terrier+ takes advantage of
that information whenever it can.

Fig 5 illustrates the data flow in the retrieval frame-
work with QC and MRF.

4 EXPERIMENTAL EVALUATION
We evaluate the effect of incorporating term depen-
dencies on the retrievals for bug localization on three
large software projects, namely Eclipse IDE6, AspectJ7

and Google Chrome8. We evaluate Query Conditioning
(QC) on only Eclipse and AspectJ as the bug reports
for Chrome do not contain stack traces or patches. We
use a set of bug reports, denoted B, that were filed for
these projects and, for ground truth, the files modified
to fix the corresponding bugs as the relevant file set to
be retrieved by the retrieval engine. The relevant file set
for a bug report is denoted by RF .

Since the bug tracking databases such as Bugzilla9

do not usually store the modification histories of the

6. www.eclipse.org
7. http://eclipse.org/aspectj/
8. www.google.com/chrome
9. https://bugs.eclipse.org/bugs/

changes made to the files in response to the bug reports,
researchers commonly use the commit messages in the
repository logs in order to link the modifications to the
bug reports in a bug tracking database [9], [13], [19],
[20]. The BUGLinks10 [13] and the iBugs [20] are the
resulting datasets of such approaches that reconstruct
the links between the bug reports and the files relevant
to the bugs in the repositories for the projects we have
used. The BUGLinks dataset contains information re-
lated to the Eclipse and the Chrome projects, whereas the
iBugs dataset contains information related to the AspectJ
project. Tables 2 and 3 present various statistics drawn
from these datasets regarding the three projects used in
our evaluation study. In Table 2, |B| denotes the number
of bug reports used in querying the code base of each
project, |RF | the average number of relevant files per
bug, and |QTitle| the average lengths of the bug report
titles that are used in the retrievals.11 Table 3 presents the
statistics of the bug reports used in the evaluation of the
MRF framework along with QC. In the table, #Patches
and #Stack Traces show the number of bug reports
containing patches and stack traces, respectively, and
|QTitle+Desc| is the average lengths of the bug reports,
including both the title and the description parts without
any filtering, in terms of the number of tokens used in
querying the code base.

In the rest of this section, we will start out with how
the source files and the bug reports are tokenized for
the extraction of the terms that are used to represent
each file. Subsequently, we first describe the metrics we
use in our evaluation study. That is followed by the
experimental results demonstrating the power of the
MRF based approach to the modeling the source code
libraries.

4.1 Preprocessing of the Source Code Files and the
Bug Reports
For the indexing of a particular version of the target
code base, we first split the compound terms using

10. https://engineering.purdue.edu/RVL/Database/BUGLinks/
11. As we describe in Section 4.3, our experimental studies involve

two types of experiments: those that are based on just the titles of the
bug reports, and those that include the titles and the bug descriptions.
Obviously, whereas MRF modeling can be applied to both types of
queries, query conditioning (QC) can only be investigated for the latter
type.
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TABLE 3
Various statistics related to the bug reports used in the

experiments for the evaluation of MRF and QC.

Project #Patches #Stack Traces |QTitle+Desc|
AspectJ 4 81 56.77
Eclipse v3.1 8 519 44.11

punctuation characters and camel casing. Then we drop
the programming language specific terms and a set of
standard English stop words. The remaining terms are
then stemmed into their common roots using the Porters
stemming algorithm [21]. The position of each term
extracted from the files is recorded after these prepro-
cessing steps, as illustrated in Fig. 2. These steps consti-
tute the front-end to the enhancements that distinguish
Terrier+ from Terrier. As mentioned previously, Terrier+
is an extension to the open-source research search engine
Terrier [22]. As for the bug reports, they are also subject
to the same preprocessing steps.

Subsequent to preprocessing, Terrier+ represents a
file my a multidimensional array that can be accessed
via its ID. This data structure contains term IDs, the
corresponding term frequencies and the positions of the
terms in the file. For each term in a given query, the files
that contain the term are accessed via an Inverted Index in
which a term is represented by a two dimensional array
that stores the file IDs and the frequency of the term in
those files.

4.2 Evaluation Metrics
We evaluate the retrieval accuracy of Terrier+ using
precision and recall based metrics [21]. We have tabu-
lated the bug localization performance using precision
at rank r (P@r), recall at rank r (R@r) and Mean
Average Precision (MAP) metrics. While P@r measures
the accuracy on the retrieved set of files, recall evaluates
the completeness of the retrievals. The average precision
(AP) for a query Q ∈ B, on the other hand, is given by

AP (Q) =

∑RT
r=1 P@r × I(r)

relQ
(10)

where I(r) is a binary function whose value is 1 when
the file at rank r is a relevant file, and 0 otherwise.
The parameter RT in the summation bound for the total
number of highest-ranked files that are examined for the
calculation of AP for a given query Q. The denominator
relQ is the total number of relevant files in the collection
for Q. AP estimates the area under the precision-recall
curve and therefore it is suitable for comparing the
ranking algorithms [21]. MAP is computed by taking
the mean of the average precisions for all the queries.
In addition to these metrics; we also present the number
of hits (H@r) for the bug reports [23], which gives the
number of bugs for which at least one relevant source
file is retrieved in the ranked lists above a certain cut-off
point r.

We used MAP for comparing the different retrieval
methods as it is the most comprehensive metric that
takes into account both the precision and the recall at
multiple ranks. In computation of this metric for the
results we report in this paper, we set RT = 100 in the
summation in Eq. (9). In order to evaluate whether the
improvements obtained with the proposed approaches
are significant or not, we used pairwise student’s t-test
on the average precisions for the queries.

4.3 Bug Localization Experiments

For an in-depth analysis of the retrievals, we divide each
bug report into two parts, namely Title and Description.
We first conduct two sets of experiments using these two
parts for each bug report without Query Conditioning
(QC): (1) Retrievals with MRF modeling using only the
titles of the bug reports. The queries used for these
retrieval are denoted “title-only”. And (2) Retrieval with
MRF modeling using the complete bug reports, that is,
including both the titles and the descriptions for the
bug reports. The queries used for these retrievals are
denoted “title+desc”. Then, we incorporate QC in the
second category of retrievals and analyze the usefulness
of including stack traces and patches in queries by
comparing the overall retrieval accuracy for the set of
bug reports that contain these elements to the remaining
set of the bug reports in our query sets.

4.3.1 Parameter Sensitivity Analysis

The model parameters that affect the quality of the
retrievals in our retrieval framework are: (1) The window
length parameter (W ). (2) The mixture parameters of
the respective dependency models (λSD, λFD). And (3)
The Dirichlet smoothing parameter (µ). While W sets
the upper bound for the number of intervening terms
between the terms of the 3-node cliques, λSD and λFD

simply adjust the amount of interpolation of the scores
obtained with the 2-node cliques with those obtained
with the 3-node cliques as explained in Section 3. As the
ranking is invariant to a constant scaling in the mixture
parameters, we enforce the constraints λFI + λSD = 1
and λFI + λFD = 1 for the SD and the FD modeling,
respectively. In all experiments, we empirically set the
Dirichlet smoothing parameter as µ = 4000. Note that the
retrieval accuracy is not very sensitive to the variations
on this parameter [7].

Fig. 6 and 7 plot the retrieval accuracies for bug
localization in terms of MAP as the window length and
the mixture parameters are varied for the “title-only”
and the “title+desc” queries. As shown in Fig. 6a and
7a, a value of 0.2 consistently works well for the mixture
parameters in general. Note that when λSD = λFD = 0.0,
SD and FD use only the 2-node cliques hence they
reduce to FI, the Smoothed Unigram Model (SUM). As
for the window length, Fig. 6b and 7b illustrate the effect
of varying this parameter for λSD = λFD = 0.2. On
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Fig. 6. The effects of varying model parameters on MAP for Eclipse. The figure on the left shows the MAP values
as the mixture parameters (λSD for SD assumption and λFD for FD assumption) are varied while the window length
parameter is fixed asW = 2. The figure on the right shows the MAP values asW is varied while the mixture parameters
are fixed at 0.2.
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Fig. 7. The effects of varying model parameters on MAP for AspectJ. Same as Fig. 6

average, W = 8 results in the best retrieval accuracies
for the analyzed projects for both types of queries.

As shown in Fig. 6a and 7a, when the window length
is set as W = 2, SD performs better than FD in all
experiments across the projects. This is because the terms
are required to be adjacent to be matched in the code
base when we use this setting and therefore the order of
the terms becomes more important. Interestingly, as the
window length increases, FD catches up with SD. Over-
all, SD is less sensitive to the window length parameter,
achieving high retrieval accuracies consistently.

4.3.2 Retrieval Results
In this section, we compare the retrieval performances of
the dependence models (SD and FD) to the Full Indepen-
dence (FI) model. We fix the interpolation parameters as
λSD = λFD = 0.2 and the window lengths as W = 8
in all the experiments presented in the remainder of this
paper.

Table 4 presents the bug localization accuracies on
the evaluated projects for the “title-only” queries and
MRF modeling. With these experiments we explore the
retrieval accuracy of Terrier+ for short queries compris-
ing only a few terms. The last row of the table shows

the “baseline” accuracy; this is obtained with the FI
assumption, which, as mentioned previously, is the same
thing as the Smoothed Unigram Model (SUM) [10], [7],
[9]. The highest score in each column is shown in bold.
All the improvements reported in this table obtained
with the dependency models over FI are statistically
significant at α = 0.05 level. Note that incorporating
the term dependencies into the retrievals improves the
accuracy of bug localization substantially in terms of the
6 metrics presented in the table.

Table 5 presents the bug localization accuracies for
the “title+desc” queries without QC. That is, the entire
textual content of the bug reports, without any query
conditioning, is used in querying the code base. The
reported improvements obtained with FD and SD over
FI are also statistically significant at α = 0.05 in this table.
Note that the retrieval accuracies improve significantly
when the description parts of the bug reports are also
included in retrievals (even though we did not include
QC). While SD and FD perform comparably well in these
experiment on the Eclipse project, FD outperforms SD on
AspectJ on average in terms of MAP.

We are now in a position to answer the first of the five
research questions (RQ) formulated in Section 2 of this
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TABLE 4
Retrieval accuracy with the “title-only” queries. (We treat FI as baseline since it is synonymous with SUM.)

Method Eclipse AspectJ

MAP P@1 P@5 R@5 R@10 H@10 MAP P@1 P@5 R@5 R@10 H@10
FD 0.2564 (+24.83%) 0.2198 0.1110 0.3199 0.4070 2,100 0.1410 (+12.89%) 0.1409 0.0832 0.1794 0.2420 124
SD 0.2466 (+20.06%) 0.2116 0.1069 0.3083 0.3934 2,042 0.1348 (+7.93%) 0.1340 0.0790 0.1675 0.2382 125
FI 0.2054 0.1710 0.0883 0.2556 0.3417 1,805 0.1249 0.1375 0.0708 0.1498 0.2079 111

TABLE 5
Retrieval accuracy for the “title+desc” queries. (We treat FI as baseline since it is synonymous with SUM.)

Method Eclipse AspectJ

MAP P@1 P@5 R@5 R@10 H@10 MAP P@1 P@5 R@5 R@10 H@10
FD 0.2778 (+16.87%) 0.2496 0.1201 0.3427 0.4317 2,249 0.1945 (+14.08%) 0.2131 0.0997 0.2322 0.2996 142
SD 0.2840 (+19.48%) 0.2543 0.1232 0.3530 0.4391 2,268 0.1794 (+5.22%) 0.1856 0.0990 0.2203 0.3096 148
FI 0.2377 0.2020 0.1060 0.3046 0.3859 2,044 0.1705 0.1856 0.0880 0.2003 0.2693 126

TABLE 6
Retrieval accuracy for the “title+desc” queries with Query Conditioning (QC). (We treat FI as baseline since it is

synonymous with SUM.)

Method Eclipse AspectJ

MAP P@1 P@5 R@5 R@10 H@10 MAP P@1 P@5 R@5 R@10 H@10
FD 0.3019 (+17.93%) 0.2696 0.1274 0.3709 0.4640 2,386 0.2307 (+8.31%) 0.2715 0.1155 0.2703 0.3400 161
SD 0.3014 (+17.74%) 0.2704 0.1290 0.3749 0.4599 2,354 0.2263 (+6.24%) 0.2646 0.1148 0.2658 0.3554 167
FI 0.2560 0.2186 0.1114 0.3263 0.4102 2,147 0.2130 0.2440 0.1052 0.2438 0.3215 147

paper. For convenience, here is the question again:
RQ1: Does including code proximity and order improve the

retrieval accuracy for bug localization. If so, to what extend?
Based on the results presented in Tables 4, 5 and 6, we

conclude that incorporating the spatial code proximity
and order into the retrievals improves the accuracy of
automatic bug localization significantly. On average, for
both short and long queries which may contain stack
traces and/or patches, SD and FD modeling consistently
enhance the retrieval performance of Terrier+ over FI
across the projects. The improvements are up to 24.83%
for the Eclipse project and up to 14.08% for the AspectJ
project in terms of MAP.

4.3.3 The effect of QC on Retrievals

The retrieval accuracies obtained with QC on the “ti-
tle+desc” queries are presented in Table 6 where each
bug report is first probed for stack traces and patches in
order to extract the most useful source code identifiers
to be used in bug localization as explained in Section
3.2. The results shown in Table 6 help us answer the fol-
lowing research question that was presented in Section
2:

RQ2: Is QC effective on improving the query representation
vis-a-vis the source code?

Comparing the results presented in Tables 5 and 6,
we conclude that QC indeed leads to superior query
formulation for source code retrieval. For all three forms
of the dependency assumption, we obtained significant
improvements with QC in terms of the 6 evaluation
metrics mentioned in the tables.

The main benefits of QC are seen for the bug reports
that contain stack traces since patches are included only
in a few bug reports. Fig. 8 presents the retrieval accura-
cies of Terrier+ obtained specifically with the bug reports
that contain stack traces. The figure shows that accuracy
of the retrievals doubles on average with QC for both
projects in term of MAP, reaching values above the 0.3
threshold.

Fig. 8 also demonstrates the effect of the MRF mod-
eling with stack traces. Comparing the results obtained
with the dependency models, we observe that FD and
SD outperform FI consistently when QC is used in
retrievals with the stack traces. The main reason for these
results is that the order and the proximity of the terms
in stack traces are extremely important in locating the
relevant source files. As we also mentioned in Section
3, the likelihood of a file to be relevant to a query
increases when it contains longer phrases from the stack
trace with the same order and proximity relationships.
Interestingly, when the queries are not processed with
QC, the average retrieval accuracy with FD on the
Eclipse project is slightly lower than FI. This is clearly
due to the noise in the lengthy stack traces that contain
many method signatures most of which are irrelevant
to the bug. The QC framework effectively removes the
irrelevant method signatures from the trace for a better
query representation.

4.3.4 The Role of Stack Traces in Automatic Bug Local-
ization
Studies haven shown that the developers who are in
charge of fixing bugs look for stack traces, test cases
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Fig. 8. The Effect of Query Conditioning (QC) on bug localization with bug reports containing stack traces.
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Fig. 9. The effect of including structural elements in bug reports on automatic bug localization accuracy. Patches lead
to the highest retrieval scores while the bug reports with no stack traces or patches perform the worst in terms of MAP.

and the steps contained therein, in order to reproduce
the bugs, these being the most useful structural elements
for comprehending the underlying cause of the bugs and
fixing them [14], [15]. Among these structural elements,
stack traces are very important for the work we report in
this paper. They are not only frequently included in bug
reports but also a good source of discriminative source
code identifiers for automatic bug localization. Fig. 9
presents the retrieval accuracies obtained with the bug
reports containing different types of structural elements.
In the figure, “remaining” denotes the bug reports that
do not contain any stack traces or patches.

That sets us up to answer the research question RQ3
that was previously articulated in Section 2:

RQ3: Does including stack traces in the bug reports im-
prove the accuracy of automatic bug localization?

As demonstrated in Fig. 9, bug reports with patches
lead to the highest accuracies as expected. After the
patches, stack traces hold the second position in terms of
their usefulness in locating the relevant source code. The
retrieval results for the remaining bug reports that do not
contain any stack traces or patches are the worst. Based
on these results, we conclude that including stack traces
in the bug reports does improve the bug localization
accuracy. Note that the retrieval accuracies we obtained
with the stack traces are consistently above the 0.3
threshold for the analyzed projects in terms of MAP.

4.4 Comparison to Automatic Query Reformulation
(QR)

In [13], we proposed an automatic Query Reformulation
(QR) framework to improve the query representation for
bug localization. For experimental evaluation, we used
the title of a bug report as an initial query which is
reformulated via Pseudo Relevance Feedback based on
the retrieval results obtained with the initial query. The
experimental evaluation of the approach showed that
the proposed Spatial Code Proximity (SCP) based QR
model outperforms the state-of-the-art QR models. That
admittedly very brief introduction to SCP leads us to the
next question that was posed originally in Section 2:

RQ4: How does the MRF-based retrieval framework com-
pare with the QR-based retrieval framework for bug localiza-
tion?

Comparing the retrieval accuracies presented in Table
7 and Table 8 to the retrieval accuracies of the QR models
reported in [13], we observe that MRF framework out-
performs the SCP-based QR (denoted as SCP-QR in the
tables) on the average. For the Chrome project, while the
differences between the average precisions obtained with
the respective models are not statistically significant at
α = 0.05, the differences in terms of the presented recall
metrics are. Additionally, H@10 values obtained with
the MRF framework are considerably higher than the
values obtained with the SCP-QR. For the Eclipse project,
both SD and FD performs better than SCP-QR in terms
of the reported metrics. The differences are statistically
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TABLE 7
QR vs. MRF on Eclipse with the “title-only” queries.

Method MAP P@1 P@5 R@5 R@10 H@10
FD 0.2564 0.2198 0.1110 0.3199 0.4070 2,100
SD 0.2466 0.2116 0.1069 0.3083 0.3934 2,042
SCP-QR 0.2296 0.1906 0.1014 0.2853 0.3746 1,915

TABLE 8
QR vs. MRF on Chrome with the “title-only” queries.

Method MAP P@1 P@5 R@5 R@10 H@10
FD 0.1951 0.1844 0.1061 0.2394 0.3159 178
SD 0.1814 0.1760 0.1039 0.2288 0.3137 177
SCP-QR 0.1820 0.1788 0.0933 0.2021 0.2775 151

significant at α = 0.05.

4.5 Comparison with Bug Localization Techniques
That Use Prior Development History

Another important class of IR approaches to bug local-
ization is based on the prior development history [7],
[9]. In [9], Zhou et al. proposed BugLocator, a retrieval
tool that uses the textual similarities between a given
bug report and the prior bug reports to enhance the
bug localization accuracy. The main motivation behind
BugLocator is that the same files tend to get fixed for
similar bug reports during the life-cycle of a software
project. Another study that leverages the past develop-
ment efforts was reported by us in [7]. In that work,
we mined the software repositories for the defect and
modification likelihoods of the source files in order to
estimate a prior probability distribution which could
then be used for a more accurate source code retrieval
for bug localization. This brief review of this class of
approaches to bug localization takes us to the last of the
research questions stated in Section 2:

RQ5: How does the MRF-based retrieval framework com-
pare with the other bug localization frameworks that leverage
the past development history?

The accuracy of BugLocator is also evaluated on
Eclipse v3.1 and iBugs datasets. The evaluations on the
Eclipse project are performed using 3,075 bug reports
filed for the version 3.1 while our experiments with
Terrier+ were performed using 4,035 bug reports filed
for the same version. In order to compare the perfor-
mance of Terrier+ to that of BugLocator, we repeated
the experiments using only the bug reports with which
the BugLocator was evaluated.

Using the MAP metric, Fig. 10 shows the accuracy of
the proposed framework along with that of BugLocator.
In the figure, we also included the accuracies obtained
with the revised Vector Space Model (rVSM) [9] that,
according to the authors of BugLocator, yields retrieval
results superior to those obtained with the classic Vec-
tor Space Model (VSM). As can be seen in the figure,
FD+QC and SD+QC outperform BugLocator with MAP
values above 0.32 threshold for the Eclipse project. In
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Fig. 10. Comparison of the retrieval models for Bug
Localization

comparison, BugLocator performs better than SUM and
SUM+QC with a MAP value of 0.30, while SUM+QC
outperforms rSVM. The performance comparisons with
the different models are similar for the AspectJ project.

The other bug localization technique that reports im-
proved retrieval performance with past development
history leverages the version histories [7]. In this study,
we showed that TFIDF model incorporating defect his-
tories of the software artifacts (TFIDF+DHbPd) reaches
a MAP value of 0.2258 on the AspectJ project.

Based on these results, we conclude that Terrier+
performs better than these other bug localization techniques
without having to leverage the past development history for a
software library.

5 RELEVANT WORK

Traditional methods for bug localization rely on the dy-
namic or the static properties of software [24], [25], [26],
[27], [28], [29]. Whereas dynamic approaches require that
a set of test cases be executed to locate the parts of
the program causing the bug, static approaches aim to
leverage the static properties of the software such as its
function call graphs, dependency relationships between
the code segments, etc. The main problem with the
static approaches is that they tend to return too many
false positives [30]. Although dynamic approaches tend
to be more accurate than static methods, designing an
exhaustive set of test cases that could effectively be
used to reveal defective behaviors is very difficult and
expensive. The bug localization approach we presented
in this paper does not require the execution of a program,
not to speak of the fact that it is also lightweight and
inexpensive.

Concept location, feature/concern location and bug
localization are closely related problems in software
engineering. Early work on using text retrieval methods
for concept location includes the work by Marcus et al.
[1]. They used Latent Semantic Indexing (LSI) to retrieve
the software artifacts in response to short queries. The
retrievals are performed in the lower dimensional LSI
space which assigns greater importance to the terms that
frequently co-occur in the source files. This framework
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can also be used to expand a given initial query that
consists of a single query term initially. In [31], Poshy-
vanyk et al. extended this approach to include formal
concept analysis. They showed that the irrelevant search
results returned by the LSI model can be reduced with
formal concept analysis. Hybrid methods that combine
dynamic analysis with Information Retrieval (IR) have
also been proposed in this area [3], [32].

In [33], Hill et al. leveraged source code identifiers
to automatically extract the phrases relevant to a given
initial query. These phrases were then used to either find
the relevant program elements or to manually reformu-
late the query for superior feature/concern localization.
In [34], Hill et al. investigated the effect of the position
of a query term on the accuracy of the search results.
The main idea behind this study is that the location of a
query term in the method signatures and in the method
bodies determines its importance in the search process.

In [35], Gay et al. used Explicit Relevance Feedback for
Query Reformulation (QR) for the purpose of concept
location. This framework requires developers to engage
in an iterative query/answer session with the search
engine. At each iteration, the developer is expected to
judge the relevance of the returned results vis-á-vis the
current query. Based on these judgments, the query
is reformulated with the Rocchio’s formula [36] and
resubmitted to obtain the next round of retrieval results.
This process is repeated until the target file is located or
the developer gives up.

In [37], Haiduc et al. introduced Refocus, an auto-
matic QR tool for text retrieval in software engineering.
Refocus automatically reformulates a given query by
choosing the best QR technique which is determined by
training a decision tree on a separate query set and their
retrieval results. After training, based on the statistics of
the given query, the decision tree recommends an auto-
matic query reformulation technique that is expected to
perform the best among the others.

Recently, several studies have investigated the In-
formation Retrieval (IR) algorithms for the retrieval of
software artifacts for bug localization. In a comparative
study, Rao and Kak evaluated a number of generic and
composite IR models to localize the files that should be
fixed to resolve bugs [10]. The main result that came
out of this study was that simpler models, such as
the VSM or the Smoothed Unigram Model, performed
better than the more sophisticated models such as LDA
(Latent Dirichlet Allocation). Another similar compar-
ative study is by Lukins et al. [2]. Their results show
LDA performing at least as well as LSA. In a related
contribution, Nguyen et al. [16] also proposed an LDA-
based approach to narrow down the search space for
improving bug localization accuracy. In [8], Ashok et al.
have shown how the relationship graphs can be used to
retrieve source files and prior bugs in response to what
they refer to as “fat queries” that consist of structured
and unstructured data.

6 THREATS TO VALIDITY

The threats to the validity of our approach mainly em-
anate from the scope of the datasets we used in our
evaluations and the procedures used to create them.
Although our experimental evaluation involves large
open source projects commonly used in the evaluation
of bug localization approaches, the performance of the
proposed framework may vary for other open source
or propriety projects. An important step used in the
preparation of these datasets is the reconstruction of the
links between the bug tracking databases and the cor-
responding development effort in the software reposito-
ries. This reconstruction step is performed using regular
expressions to link the bug reports to the repository
commits based on the commit messages. Despite the
fact that a large number of bug reports are accurately
linked to the repository commits, this linking process
may occasionally fail when the commit messages in
the versioning tools are much too cryptic for regular-
expression based matching to succeed [38].

7 CONCLUSIONS

We presented a theoretically sound IR framework for
automatic bug localization that takes into account the
spatial code proximity and term ordering relationships
in a code base for improved retrieval accuracy. The
proposed retrieval framework benefits from a fuzzy
matching mechanism between the term blocks of the
queries and the source code. At the heart of the our
approach is the concept of Markov Random Fields that
captures both the positional and the order attributes of
the terms in source files. Our experimental validation
involving large open-source software projects and over
4,000 bugs has established that the retrieval performance
improves significantly when both the proximity and
ordering relationships between the terms are taken into
account.

Our experimental evaluation also demonstrates that in
conjunction with the MRF model, the proposed Query
Conditioning (QC) approach effectively exploits the dif-
ferent types of structural information that is frequently
included in bug reports. We showed that the structural
elements in bug reports — particularly stack traces —
contain vital information that is not well represented via-
a-vis the source code with the widely used bag-of-word
assumption.

Overall, on the basis of retrieval accuracies, it is clear
that one can obtain significantly higher bug localization
accuracies when MRF modeling and query conditioning
is included in a retrieval framework compared to all
other state-of-the-art approaches, even including those
that take prior development history into account.
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T. Zimmermann, “What makes a good bug report?” in Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations
of software engineering. ACM, 2008, pp. 308–318.

[15] A. Schroter, N. Bettenburg, and R. Premraj, “Do stack traces help
developers fix bugs?” in Mining Software Repositories (MSR), 2010
7th IEEE Working Conference on. IEEE, 2010, pp. 118–121.

[16] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and
T. Nguyen, “A topic-based approach for narrowing the search
space of buggy files from a bug report,” in Proceedings of 26th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE’11), nov. 2011, pp. 263 –272.

[17] D. Kollar and N. Friedman, Probabilistic graphical models: principles
and techniques. The MIT Press, 2009.

[18] J. Peng, C. Macdonald, B. He, V. Plachouras, and I. Ounis, “Incor-
porating term dependency in the dfr framework,” in Proceedings
of the 30th annual international ACM SIGIR conference on Research
and development in information retrieval. ACM, 2007, pp. 843–844.

[19] R. Wu, H. Zhang, S. Kim, and S. Cheung, “Relink: recovering links
between bugs and changes,” in SIGSOFT FSE, 2011, pp. 15–25.

[20] V. Dallmeier and T. Zimmermann, “Extraction of bug localization
benchmarks from history,” in Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineer-
ing. ACM, 2007, pp. 433–436.

[21] C. Manning, P. Raghavan, and H. Schutze, Introduction to infor-
mation retrieval. Cambridge University Press Cambridge, 2008,
vol. 1.

[22] C. Macdonald, B. He, V. Plachouras, and I. Ounis, “University
of glasgow at trec 2005: Experiments in terabyte and enterprise
tracks with terrier,” in Proceedings of TREC 2005, 2005.

[23] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and T. N.
Nguyen, “A topic-based approach for narrowing the search space
of buggy files from a bug report,” in 26th International Conference
on Automated Software Engineering (ASE’11). IEEE, 2011, pp. 263–
272.

[24] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test
information to assist fault localization,” in Proceedings of the
24th International Conference on Software Engineering, ser. ICSE
’02. New York, NY, USA: ACM, 2002, pp. 467–477. [Online].
Available: http://doi.acm.org/10.1145/581339.581397

[25] V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight bug localiza-
tion with ample,” in Proceedings of the 6th international symposium
on Automated analysis-driven debugging. ACM, 2005, pp. 99–104.

[26] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,
“Scalable statistical bug isolation,” ACM SIGPLAN Notices, vol. 40,
no. 6, pp. 15–26, 2005.

[27] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff, “Statistical debug-
ging: A hypothesis testing-based approach,” Software Engineering,
IEEE Transactions on, vol. 32, no. 10, pp. 831–848, 2006.

[28] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM SIG-
PLAN Notices, vol. 39, no. 12, pp. 92–106, 2004.

[29] M. P. Robillard, “Topology analysis of software dependen-
cies,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 17, no. 4, p. 18, 2008.

[30] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature
location in source code: a taxonomy and survey,” Journal of
Software: Evolution and Process, vol. 25, no. 1, pp. 53–95, 2013.

[31] D. Poshyvanyk, M. Gethers, and A. Marcus, “Concept location
using formal concept analysis and information retrieval,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 21, no. 4, p. 23, 2012.
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