14,776 research outputs found

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    A Novel Approach for Simplification of Industrial Robot Dynamic Model Using Interval Method

    Get PDF
    This paper proposes a new approach to simplify the dynamic model of industrial robot by means of interval method. Due to strong nonlinearities, some components of robot dynamic model such as the inertia matrix and the vector of centrifugal, Coriolis and gravitational torques, are very complicated for real-time control of industrial robots. Thus, a simplification algorithm is presented in this study in order to reduce the computation time and memory occupation. More importantly, this simplification is suitable for arbitrary trajectories in whole robot workspace. Furthermore, the method devotes to finding negligible inertia parameters, which is useful for robot model identification. A simulation has been carried out on a test trajectory using a 6-DOF industrial robot model, and the results have shown good performance and effectiveness of this method.ANR COROUSS

    Collision avoidance and dynamic modeling for wheeled mobile robots and industrial manipulators

    Get PDF
    Collision Avoidance and Dynamic Modeling are key topics for researchers dealing with mobile and industrial robotics. A wide variety of algorithms, approaches and methodologies have been exploited, designed or adapted to tackle the problems of finding safe trajectories for mobile robots and industrial manipulators, and of calculating reliable dynamics models able to capture expected and possible also unexpected behaviors of robots. The knowledge of these two aspects and their potential is important to ensure the efficient and correct functioning of Industry 4.0 plants such as automated warehouses, autonomous surveillance systems and assembly lines. Collision avoidance is a crucial aspect to improve automation and safety, and to solve the problem of planning collision-free trajectories in systems composed of multiple autonomous agents such as unmanned mobile robots and manipulators with several degrees of freedom. A rigorous and accurate model explaining the dynamics of robots, is necessary to tackle tasks such as simulation, torque estimation, reduction of mechanical vibrations and design of control law

    Design and Development of 3-DOF Modular Micro Parallel Kinematic Manipulator

    Get PDF
    This paper presents the research and development of a 3-legged micro Parallel Kinematic Manipulator (PKM) for positioning in micro-machining and assembly operations. The structural characteristics associated with parallel manipulators are evaluated and the PKMs with translational and rotational movements are identified. Based on these identifications, a hybrid 3-UPU (Universal Joint-Prismatic Joint-Universal Joint) parallel manipulator is designed and fabricated. The principles of the operation and modeling of this micro PKM is largely similar to a normal size Stewart Platform (SP). A modular design methodology is introduced for the construction of this micro PKM. Calibration results of this hybrid 3-UPU PKM are discussed in this paper.Singapore-MIT Alliance (SMA

    The Penn Jerboa: A Platform for Exploring Parallel Composition of Templates

    Get PDF
    We have built a 12DOF, passive-compliant legged, tailed biped actuated by four brushless DC motors. We anticipate that this machine will achieve varied modes of quasistatic and dynamic balance, enabling a broad range of locomotion tasks including sitting, standing, walking, hopping, running, turning, leaping, and more. Achieving this diversity of behavior with a single under-actuated body, requires a correspondingly diverse array of controllers, motivating our interest in compositional techniques that promote mixing and reuse of a relatively few base constituents to achieve a combinatorially growing array of available choices. Here we report on the development of one important example of such a behavioral programming method, the construction of a novel monopedal sagittal plane hopping gait through parallel composition of four decoupled 1DOF base controllers. For this example behavior, the legs are locked in phase and the body is fastened to a boom to restrict motion to the sagittal plane. The platform's locomotion is powered by the hip motor that adjusts leg touchdown angle in flight and balance in stance, along with a tail motor that adjusts body shape in flight and drives energy into the passive leg shank spring during stance. The motor control signals arise from the application in parallel of four simple, completely decoupled 1DOF feedback laws that provably stabilize in isolation four corresponding 1DOF abstract reference plants. Each of these abstract 1DOF closed loop dynamics represents some simple but crucial specific component of the locomotion task at hand. We present a partial proof of correctness for this parallel composition of template reference systems along with data from the physical platform suggesting these templates are anchored as evidenced by the correspondence of their characteristic motions with a suitably transformed image of traces from the physical platform.Comment: Technical Report to Accompany: A. De and D. Koditschek, "Parallel composition of templates for tail-energized planar hopping," in 2015 IEEE International Conference on Robotics and Automation (ICRA), May 2015. v2: Used plain latex article, correct gap radius and specific force/torque number
    corecore