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Abstract
We have built a 12DOF, passive-compliant legged,

tailed biped actuated by four brushless DC motors. We
anticipate that this machine will achieve varied modes of
quasistatic and dynamic balance, enabling a broad range
of locomotion tasks including sitting, standing, walking,
hopping, running, turning, leaping, and more. Achiev-
ing this diversity of behavior with a single under-actuated
body, requires a correspondingly diverse array of con-
trollers, motivating our interest in compositional tech-
niques that promote mixing and reuse of a relatively few
base constituents to achieve a combinatorially growing ar-
ray of available choices. Here we report on the develop-
ment of one important example of such a behavioral pro-
gramming method, the construction of a novel monopedal
sagittal plane hopping gait through parallel composition
of four decoupled 1DOF base controllers.

For this example behavior, the legs are locked in phase
and the body is fastened to a boom to restrict motion to
the sagittal plane. The platform’s locomotion is powered
by the hip motor that adjusts leg touchdown angle in flight
and balance in stance, along with a tail motor that adjusts
body shape in flight and drives energy into the passive
leg shank spring during stance. The motor control sig-
nals arise from the application in parallel of four simple,
completely decoupled 1DOF feedback laws that provably
stabilize in isolation four corresponding 1DOF abstract
reference plants. Each of these abstract 1DOF closed
loop dynamics represents some simple but crucial specific
component of the locomotion task at hand. We present a
partial proof of correctness for this parallel composition
of template reference systems along with data from the
physical platform suggesting these templates are anchored
∗‹Electrical and Systems Engineering, University of Pennsylvania,

Philadelphia, PA, USA. {avik,kod}@seas.upenn.edu.
†This work was supported in part by the ARL/GDRS RCTA

project, Coop. Agreement #W911NF-1020016 and in part by NSF
grant #1028237.

as evidenced by the correspondence of their characteristic
motions with a suitably transformed image of traces from
the physical platform.

1 Introduction
The control of power-autonomous, dynamic legged

robots that have a high number of degrees of freedom
(DOF) is made difficult by a number of factors including
(a) under-actuation necessitated by power-density con-
straints, (b) the existence of significant inertial coupling
and Coriolis forces that are hard or impossible to can-
cel, (c) variable ground affordance, (d) often hard-to-
measure and necessarily rapid hybrid transitions. In the
face of these challenges, some popular methods of con-
troller design, such as hybrid zero dynamics [2]—which
are “exact” in their domain of applicability but require
extremely accurate qualitative and quantitative models—
may be challenging to implement in unstructured envi-
ronments or on imperfectly characterized machines. Sim-
ilarly, methods depending on local linearizations of the
typically (highly) nonlinear dynamics found in dynam-
ically dexterous locomotion and manipulation systems
[3, 4] typically suffer from small basins of attraction [5]
and (to our knowledge) high sensitivity to parameters.1

Observation (a) suggests that modularity of operation
(i.e., wherein different combinations of actuators are used
to effect distinctly different dynamical goals at different
stages within the task cycle) will be a hallmark of practi-
cal locomotion platforms. Observations (b) and (c) imply
that simpler, less exact but potentially more robust repre-
sentations of the principal dynamical effects likely to pre-
vail across a wide range of substrates may offer a tractable
means of working with rather than fighting against, or

1In some robotics settings these disadvantages of the exact or local
linearized control paradigm can be effectively remedied by recourse to
parameter adaptation [6], but in our experience, such methods are too
“laggy” to work in this hybrid dynamics domain with its intrinsically
abrupt and rapidly switching characteristics.
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Figure 1: Control of a hopping behavior expressed as a hierarchical composition of closed-loop templates. Notionally, the grey
arrows represent directed templateÑanchor relations. Center: A model of the tailed monoped physical platform on which we
implement tail-energized planar hopping, labeled with configuration variables (black), actuators (red), and model parameters
(blue).

learning exactly the highly varied dynamical details. Ob-
servation (d) implies that higher authority sensorimotor
control activity ought to target continuous phases of the
locomotion cycle, leaving the transition event interven-
tions to more passive and mechanical sources of regula-
tion [7]. In sum, these observations motivate the search
for modular, reduced order representations of locomotion
task constituents that are specialized to couple selected ac-
tuation affordances to particular DOFs at particular phases
of the locomotion cycle. The value of such component
task representatives remains hostage to the availability of
methods for composing them in a stable manner.

This report introduces a novel locomotion platform, the
Penn Jerboa, Fig. 7, to put a slowly maturing formalism
for the composition of such modules to a practical test.
We adopt the template-anchor2 framework [10] to repre-
sent this machine’s 4DOF steady sagittal plane running as
the hierarchical composition of the low DOF constituents
depicted in Fig. 1. At the leaves of this hierarchy tree, we
introduce four different 1DOF templates that emerge from
the decades old bioinspired running literature [4, 11],

2 The template-anchor relation as exemplied in various physi-
cal [5, 8] and numerical [9] studies associates a pair of smooth vector
fields, fT, fA on a pair of smooth spaces, T Ă A via the condition
that T is an attracting invariant submanifold of the anchor field, fA,
whose restriction dynamics is conjugate to that of the template field,
fT
„ fA

|T (where „ denotes equivalence up to smooth change of co-
ordinates). In this paper, we are dealing with hybrid fields and flows
for which the extended definition and its verification is a bit more in-
tricate. Thus exceeding the scope and length constraints of the present
paper, we will treat the hybrid template-anchor relation as an intuitive
notion here.

joined by a new arrival from recent work on bioinspired
tails [12, 13]. We apply the four decoupled 1DOF con-
trol laws associated with these isolated “leaf” templates
directly to the (highly dynamically coupled) physical plat-
form and demonstrate empirically steady sagittal plane
running (on a circular boom) whose body motions reveal,
when viewed in the appropriate coordinates, Fig. 15, strik-
ing similarity to the corresponding isolated 1DOF con-
stituents. We show (up to a still unproven technical con-
jecture) that the appropriate two pairs of these four 1DOF
leaf templates are formally anchored by the two “interior”
2DOF templates depicted in Fig. 1, in the sense that the
1DOF systems define attracting invariant submanifolds of
the 2DOF systems that exhibit conjugate restriction dy-
namics. We conjecture, as well, that the two interior nodes
(the 2DOF templates) of the figure are in turn formally
anchored by a physically realistic dynamical model of the
closed loop Penn Jerboa in the sagittal plane. The data
of Fig. 15 support this hypothesis, but we have not yet
succeeded in completing the proof beyond the embedding
and invariance properties.

Notwithstanding the specifics of our compositional ap-
proach to its control, we believe that the new physical
platform is itself of independent interest by virtue of its
added appendage (the “tail”), opening up a multiplicity of
diverse uses for both of its two revolute actuators. Note
again, however, this diversity of uses cannot be achieved
without some recourse to behavioral modularity. In that
light, we are particularly attracted by these simple low-
DOF template controllers. In our experience, such con-



Figure 2: Snapshots from apex to apex of tail-energized planar hopping (§5) implemented on a new robot platform—the Penn
Jerboa (§6).

structions have the hope of succeeding in unstructured
outdoor settings, since they build on the relatively robust
template dynamics.

1.1 Relation to Prior Literature

This “compositional” method of controller synthesis
was pioneered empirically by Raibert [14] for planar and
3D hopping machines, and we develop our planar hopping
behavior by building up from those ideas. Our physical
platform (Fig. 1 center) forgoes Raibert’s prismatic shank
actuator, and instead places that actuator in an inertial ap-
pendage. This motivates us to explore how tails can be
“recycled” from their transitional agility duties [12, 13],
now repurposed to substitute for Raibert’s shank actuator
and play the role of steady-state running energizer in the
sagittal plane. Apart from their use in transitional maneu-
vers (inertial control in free-falling lizards [15] and robots
[12, 13] or in turning lizards [16] and robots [17]) it has re-
cently been discovered that kanagaroos do positive work
with their tails in a quasistatic pentapedal gait [18]. In
our implementation, the tail contributes the reorientation
function in flight, and the energetic “pump” function in
stance (albeit in a dynamic fashion). We are not aware
of prior robotic locomotion work wherein a tail is used to
help power the stance phase.

1.2 Contributions of the Paper

This paper contributes both to the theory and practice
of dynamical legged locomotion.

The principal theoretical contributions are: (i) a new
(slightly simplified) further abstraction (§3.3) of the long-
standing SLIP running model [4] as a formal cross-
product of previously proposed vertical [19] and fore-aft
[20] templates; (ii) a stability proof (modulo a restrictive
assumption 3) of the parallel composition3 of Raibert’s
[14] stepping controller (10) with our new energy pump
(3) in Proposition 6; and (iii) a proof of local stability in

3By this term we mean the application to the (coupled) plant
pspx, uq (§3.3) of a decoupled control law, u “ gvpx1q ˆ gfapx2q,
taken directly from (3), (10), respectively.

Table 1: List of Symbols

i P Z2 Hybrid mode, where 1 is stance, 2 is flight
D‹i Domain for template ‹ in mode i
f‹i : D‹i Ñ TD‹i Vector field in mode i
r‹i : BD‹i Ñ D‹i`1 Reset map from mode i to i` 1

F ‹i : D‹i Ñ BD‹i Mode i flow evaluated at the next transition
F ‹ “ F ‹2 ˝ F

‹
1 Return map at touchdown (TD) event

p‹i px, uq Plant to which we apply u “ gipxq to get f‹i
Id P Rdˆd Identity matrix of size d
J “

“

0 ´1
1 0

‰

Planar skew-symmetric matrix
ei P Rd ith standard basis vector
R : S1

Ñ SOp2q Map from angle to rotation matrix
Tx “ px, 9xq Tangent vector associated with x
Dxy Jacobian matrix Byi{Bxj
κ P R` SLIP radial velocity gain (§3.2.2)
hκ P RÑ R` Map from radial TD velocity to κ (§3.1.1)
γ : RÑ S1 Fore-aft model stance sweep angle (§3.2.2)
β : RÑ S1 Raibert touchdown angle function (10)
hw : R2

Ñ R2 Cartesian to Polar TD velocity (§3.3.2)

the inertial reorientation model (20) of the parallel com-
position (21) of Raibert’s [14] pitch stabilizer and the tail
reorientation controller [13] in Proposition 7.

The empirical contributions of the paper are: (i) design
and implementation of a working tailed biped platform,
the Penn Jerboa (Fig. 7); (ii) physical demonstration of
the (provably correct–Proposition 1) oscillatory spring-
energization scheme for vertical hopping; and (iii) exper-
imental evidence supporting the hypothesis that our final
parallel composition of the four isolated controllers does
indeed anchor the corresponding templates in the Jerboa
body (Fig. 15).

While the idea of parallel composition is appealing,
the difficulty of such a composition arises from the nat-
ural transfer of energy between different compartments
[21]4 in a mechanical system operating in a dynamical

4We use this term here to stand for subsystems (here, disjoint sub-



Table 2: Template Controllers

Tail energy pump gv1pxq “ kt cosp=xq (3)

Raibert stepping [14] gfa2 p 9xq “ β˚p 9xq ` kpp 9x´ 9x˚q (10)

Raibert pitch correction [14] gp1pa1, 9a1q “ ´kgka1 ´ kg 9a1 (21)

Shape reorientation [13] gsh2 pa2, 9a2q “ ´kgka2 ´ kg 9a2 (21)

regime. In our setting, some degree of coupling across
compartments is crucial to the underlying design concept
of driving the leg spring through torques generated “far
away” in the tail. Thus, a naive approach of looking
for exactly decoupled body dynamics is not fruitful5. In-
stead, we analyze stability properties of (hybrid) closed-
loop templates–which are not specifically associated to
any body–without paying attention to the input structure.
In agreement with intuition, we find (§5.4) that minimiza-
tion of cross-template transfer of energy–through either
the flows or the reset maps–results in a successful compo-
sition.

2 Preliminaries: Organization and No-
tation

Table 1 contains a list of important symbols in this pa-
per, including a set of symbols for describing hybrid dy-
namical systems. We adopt the modeling paradigm from
Definition 1 in [22], representing a hybrid dynamical sys-
tem by the tuple pD, f, rq as defined in Table 1. We only
consider two hybrid modes in this paper: ballistic flight,
and a stance phase arising from a sticking contact at the
“toe”.

Superscripts on each of these symbols denote the hy-
brid template that it is a part of, e.g. ‹v for controlled
vertical hopping (§3.1). The layout of the paper roughly
reflects the template-anchor hierarchy depicted in Fig. 1.
Namely, there are two intermediate 2DOF templates—the
SLIP, s, and the inertial reorientation, a—-that comprise
the tailed monoped, tm “ ts, au. They, in turn, are com-
prised of the vertical, v, and fore-aft, fa, 1DOF templates,
s “ tv, fau, and respectively, the shape, sh, and pitch,
p, 1DOF templates, a “ tsh, pu. We endow the 1DOF
templates at the lowest level with an exemplar plant, with

sets of the physical degrees of freedom) that exchange a resource (here,
energy).

5For instance, for hopping with the tailed monoped, the tail actu-
ator and hip actuator seemingly work on differently “binned” tail and
leg DOFs, but we energize the robot body with the tail through the leg
spring.

respect to which we will develop controllers for the four
template plants, in isolation.

Sections 3-4 present the 2DOF s, a templates that are
directly anchored in the robot body (§5), and within them
contain descriptions of the subtemplates (e.g. §3.1, 3.2)—
as simple exemplar 1DOF anchoring bodies and corre-
sponding control laws—that comprise in isolation the
constituent desired limiting behaviors that we seek to em-
body simultaneously in our physical system. Each of the
template controllers in this suite is necessarily simple by
dint of its origin as a feedback law for a highly abstract
1DOF task exemplar. We hypothesize that this combina-
tion of algorithmic simplicity and task specialization may
lend robustness in the empirical setting since control poli-
cies are not sensitive to, and certainly avoid cancellation
of, forces arising from dynamical coupling in the anchor-
ing body.

We emphasize that these coupling-naı̈ve feedback laws
(summarized in Table 2) are simply “played back” (mod-
ulo scaling) in the 6DOF body (§5) with all its compli-
cated true dynamical coupling. We show formally through
various propositions in this paper that nevertheless the sta-
bility of the templates and subtemplates persists through
composition for the distal segments of the tree (Fig. 1)—
SLIP as a composition of vertical hopping and fore-aft
speed control, and attitude stabilization as a composition
of inertial reorientation and Raibert’s pitch control. We
provide some preliminary suggestions about the composi-
tion of SLIP (s) with attitude (a) compartments (center of
Fig. 1), but a full analysis is left to future work. However,
we offer empirical data in §6 showing how this idea has
resulted in promising qualitative behavior on the Jerboa
robot (Fig. 15, video attachment).

3 The (2DOF) SLIP Template
3.1 Controlled Vertical Hopping (1DOF)

For a successful hopping behavior, energy must be
periodically injected into the robot body to compensate
for losses. We simplify the analysis here to a 1DOF
vertically-constrained point-mass which can alternate be-



Table 3: Physical Parameters (all scalars unless noted)

kt Tail gain (3)
kp Raibert speed controller gain (10)
k Inertial reorientation generalized damper gains (21)
kg Inertial reorientation graph error gain (21)
σ, ω Dissipation, frequency of spring-damper (§3.1)
ε Saturation parameter for tail controller (3))
εr Stability margin for vertical hopping (Proposition 6)
εa Arbitrarily small orientation error (Proposition 7)
mb, ib Mass, inertia of robot body (§5)
ρl, ρt Leg, tail link lengths (§3,5)
ks Hooke’s law leg spring constant (§3,5)

tween stance phase (during which the actuator has affor-
dance) and a ballistic (passive) flight phase. It has been
shown in the past empirically [14] and analytically [23]
that an impulse at the bottom of stance can produce a sta-
ble limit cycle, in the presence of a spring for energy stor-
age. In this paper, we consider a different strategy of an
actuator forcing the damped spring by applying forces in a
phase-locked manner. This choice of input representative
is made with an eye toward using a tail actuator exerting
inertial reaction forces on the spring (this model is for-
mally instantiated §5). Intuitively, this can be thought of
as negative damping [19] (effectively cancelling losses by
physical damping).

Throughout this paper, we make the following assump-
tion inspired by [14]:

Assumption 1 (Stance duration). The duration of stance,
Ts, is approximately constant.

This essentially asserts that the damping losses or ac-
tuator forces are relatively small compared to the spring-
mass dynamics (in their effect on the liftoff condition).

We build upon the “linear spring” analysis in [23] for
our vertical hopping exemplar body and closed-loop tem-
plate. For a spring-mass-damper system with spring de-
flection χ, damping coefficient β̄ and natural frequency
ω

:χ` 2ωβ̄ 9χ` ω2χ “ τ. (1)

With the change of coordinates x1 :“ χ, x2 :“ 9χ{ω,

9x “ pv1px, τq :“ ´ωJx` eT2 p´2β̄ωx2 ` τ{ωq, (2)

and the hybrid reset events occur at x1 “ 0 (corre-
sponding physically to the touchdown and liftoff events
at χ “ 0).

x1

x
2

kt

9χ
˚

Figure 3: Left: The vector field and an execution of (4), show-
ing a stable limit cycle. Right: The vertical “energy” is easy to
tune with kt.

3.1.1 Oscillatory Spring Energization
We choose the physically motivated control strategy

τ :“ ktx2
}x}`ε « kt cos =x, (3)

where ε ą 0 is a small saturation constant. It is clear
in this form that the input is a fed-back version of the
“phase” only. We obtain the closed-loop stance dynam-
ics

9x “ f v1 pxq :“ ´ωJx`
´

´2β̄ω ` kt
ωp}x}`εq

¯

x2e2. (4)

Proposition 1 (Oscillatory energization stability). The
vertical hopping template (4) has a unique attracting pe-
riodic orbit.

Proof. First, note that x “ 0 is the only equilibrium
of (4). Secondly, note that

xT 9x “ x2
2

´

´2β̄ω ` kt
ωp}x}`εq

¯

, (5)

which is zero on the set }x}˚ “ kt
2β̄ω2 ´ ε. Additionally,

since xT 9x|}x}ă}x}˚ ą 0 and xT 9x|}x}ą}x}˚ ă 0, this limit
cycle is attracting.

Writing xpt, x0q to denote the flow generated by (1),
and letting Spx0q :“ mintt ą 0 | eT1 xpt, x0q “ 0u denote
the stance time (since x1, vanishes exactly at the liftoff),
we define the vertical stance map,

F v
1 p 9χq :“ eT2 xpSp 9χ, 0q, p 9χ, 0qq. (6)

As a corollary to Proposition 1, we know F v
1 has

an asymptotically stable fixed point, 9χ˚, and ´1 ă

DF v
1 | 9χ˚ ă 1.

Ballistic flight simply reverses the velocity,

F v
2 p 9χq :“ ´ 9χ. (7)



Note that by symmetry (f v1 , and consequently F v
1 are

odd), F v
1 ˝ F

v
1 “ F v

2 ˝ F
v
1 ˝ F

v
2 ˝ F

v
1 , i.e. the stability

properties of the hybrid system are the same as that of the
stance map as analyzed in Proposition 1. Define

κ “ hκp 9χq :“
´F v

1 p 9χq
9χ , (8)

the effective coefficient of restitution through stance, or
the so-called “velocity gain” during SLIP stance [20].
Note that there is a unique fixed point, κ˚ “ 1, in these co-
ordinates, which is necessary and sufficient for the smooth
invertibility of hκ, as can be seen by direct computation
of its derivative.

Conjugating the touchdown velocity return map via this
diffeomorphism, we can define a return map for κ, F v,

F vpκq :“ hκ ˝ F
v
2 ˝ F

v
1 ˝ h

´1
κ pκq “ hκpκh

´1
κ pκqq. (9)

Proposition 2 (Vertical stability). The velocity gain re-
turn map, F v, has an asymptotically stable fixed point,
κ˚ :“ 1, and DF v|κ“1 “ ´DF

v
1 | 9χ˚ .

Proof. This directly follows from the observation that κ
and touchdown velocity are related by a diffeo, Proposi-
tion 1, and the simple form of F v

2 in (7).

3.2 Controlled Fore-Aft Speed (1DOF)
Running and walking systems of a large variety from

the sagittal or frontal plane resemble inverted pendula dur-
ing stance [4], usually controlled by stepping strategies. It
has been shown that a fixed touchdown angle can admit a
reasonable basin of stability around an emergent attract-
ing steady-state velocity in SLIP [24]. The capture point
[25] and zero moment point [26] methods use a quasistatic
heuristic which is related to these ideas, but are not ex-
plicitly designed to servo to desired nonzero speeds. We
attempt here to place the empirical success of [14] in the
context of a model where its stability properties can be
analyzed.

3.2.1 The Raibert Stepping Controller
In his classical empirical study, Raibert [14] inspired

decades of subsequent experimentation and analysis by
offering the following observations6 about the pendular
stance phase in his running machine travelling at forward
speed, 9x, and stepping with a touchdown angle βp 9xq (as
in Fig. 4):

Assumption 2 (Raibert observations). (i) For each speed,
9x, there is a neutral7 touchdown angle, β˚p 9xq (ii) this

6These conditions are not a direct result of SLIP’s nonlinear dy-
namics, but are applicable to regime of interest.

7In this context, “neutral” means 9x` “ 9x, where 9x` refers to the
fore-aft speed at the subsequent touchdown event.

v F fapvq

Stance Flight

β

Figure 4: A simple model for the 1DOF fore-aft dynamics in
SLIP, closely related to BHop [20].

neutral angle is monotonic with speed, D 9xβ
˚ ą 0, and

(iii) deviations from touchdown angle cause negative ac-
celeration, i.e. Dβp 9x` ´ 9xq|β“β˚ ă 0.

Proposition 3 (Raibert stepping controller). Under as-
sumptions 2(i-iii), the Raibert stepping controller,

β : 9x ÞÑ β˚p 9xq ` kpp 9x´ 9x˚q (10)

stabilizes the forward speed to 9x˚.

Proof. Note that

D 9xp 9x` ´ 9xq “ Dβp 9x` ´ 9xq ¨D 9xβp 9xq

“ Dβp 9x` ´ 9xq ¨ pD 9xβ
˚ ` kpq

ùñ D 9x 9x`| 9x“ 9x˚ “ 1`Dβp 9x` ´ 9xq ¨ pD 9xβ
˚ ` kpq.

From the sign properties of various terms, we note that for
small kp, ´1 ă D 9x 9x` ă 1.

3.2.2 Modified BHop as a Fore-Aft Model
Building on existing SLIP literature [27], we make the

following assumptions about pendular stance:

Assumption 3 (Pendular stance). During stance, (i) the
effects of gravity are negligible8 compared to spring po-
tential / damping forces, (ii) radial deflections are negli-
gible, (iii) time of stance is constant, and (iv) the angle
swept by the leg admits a small-angle approximation.

Schwind [27] approximated that angular momentum
about the toe is constant during stance, but we simplify
further with the second assumption, and conclude that the
angular velocity is roughly constant during stance. We
adopt the third approximation from Raibert [14], and the
last approximation is made for the ensuing analytical sim-
plifications in §5.4, but we find empirically (§6) that it is
not critical in practice.

8We suspect that the less restrictive Geyer approximation [28] is
sufficient, but leave this generalization to future work.



These assumptions lead directly to the construction of
the following return map acting on touchdown velocity in
Cartesian coordinates (cf. Fig. 4). Then,

F spv, κq “
“

1
´1

‰

Rp´γ ` βq
“

1
´κ

‰

Rp´βqv

“ Rpγ ´ βq r 1
κ sRp´βqv, (11)

where κ (explicitly, the interaction from the radial compo-
nent of SLIP) is taken to be a fixed parameter at this stage,
γpv1q «

v1Ts
ρl

is the angle swept by the leg over the course
of stance and βpv1q is the leg touchdown angle (§3.2.1).
This model is only a slight modification9 of BHop [20].

This analytically tractable model (i) allows us to “sep-
arate” the radial dynamics (encapsulated in κ) from the
contributions of the fore-aft model itself, (ii) captures the
exchange of vertical and horizontal energy through step-
ping, and (iii) matches the empirically observed Raibert
conditions (Fig. 5) as well as empirical data (Fig. 15),
suggesting it is physically applicable and not just an ana-
lytical convenience.

For now we restrict our attention to κ “ 1, and gen-
eralize to include the radial dynamics in §3. With this
restriction,

F fapvq :“ F spv, 1q “ Rpγ ´ 2βqv, (12)

While we choose to parameterize the return map as a
function of v P R2, it is really a 1D map:

Proposition 4 (Fore-aft stability). MBHop with the Raib-
ert controller presents a stable touchdown return map.

Proof. We can check that F fa satisfies each of the Raib-
ert conditions (Fig. 5), thereby concluding automatically
from Proposition 3 that the Raibert controller will ensure
local stability.

Alternatively, the utility of our simple analytical model
(11)-(12) is that we can directly compute the stability
properties under the Raibert controller (10),

DF fapvq :“ R` JRv ¨ pDγ ´ 2DβqeT1 , (13)

where R is evaluated at γ ´ 2β. By inspection, the (de-
sired) fixed point of (12) is β “ γ{2 (this is the neutral
touchdown angle). Evaluated at the fixed point,

DF fapv˚q “ I ´ 2kpJv
˚eT1 “

”

1`2kpv
˚
2 0

´2kpv
˚
1 1

ı

, (14)

9Specifically, the similarities are apparent between (11) and (19) of
[20]. The slightly discrepancy should be attributed to our insistence on
using the physical touchdown and sweep angles β and γ in the model,
whereas the abstract parameter θ in [20] results in a more succinct
form.
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Figure 5: A contour plot of the fore-aft acceleration 9x` ´ 9x
produced by the MBHop model for a range of fore-aft speed
9x and touchdown angle β. This plot depicts that (in a range
around the neutral angle), this model captures all the conditions
of assumption 2.

which is lower-triangular. The eigenvalues are t1, 1 `
2kpv

˚
2 u, which capture the local stability of the single

fore-aft DOF (1 ` 2kpv2 ă 1) as well as the degeneracy
of the map.

To see why the last statement is true, note that we can
find a rank 1 map

ι : R2 Ñ R : v ÞÑ }v},

which is invariant to F fa, i.e. ι ” ι˝F fa. Taking a gradient
of both sides and using the chain rule,

Dι|v “ Dι|F fapvq ¨DF
fa|v.

Evaluating at the fixed point v˚,

Dι|v˚ “ Dι|v˚ ¨DF
fa|v˚ ,

i.e. Dι|v˚ is a left eigenvector of DF fa|v˚ with unity
eigenvalue.

Consequently, under iterations of this map, we get an
invariant submanifold spanned by the orthogonal comple-
ment of the unity eigenvector, resulting in a “dimension
reduction” (to a codimension 1 submanifold). In our case,
F fa is really a 1D map, even though its (co)domain in R2.

3.3 SLIP as a Parallel Composition
In order to anchor our 1DOF templates in the classical

SLIP model (2DOF point mass with 2DOF springy leg),
we simply “play back” our devised control schemes (Sec-
tions 3.1 and 3.2). In the following subsections, we check
that the closed-loop executions in the higher-DOF body
still resemble a cross-product of our template behaviors.



For instance, prior literature has observed a decomposi-
tion of SLIP dynamics into radial and tangential compo-
nents, but to our knowledge there is no complete account
of the stability of the parallelly composed (closed-loop)
templates in these components.

3.3.1 Hybrid Dynamical Model of SLIP

We will construct our template plant model from [27]:
a bead of mass 1 at (Cartesian) coordinates pxs, zsq P R2,
with a springy (Hooke’s law spring constant ks) massless
leg of length10 θs2 P R` (where R` is restricted to strictly
positive reals, and is open) and rest length ρl, at an angle
of θs1 P S

1 from vertical. Let qs :“ pθs1, θ
s
2, x

s, zsq. Using
assumption 3(iv) as a convenience (though that assump-
tion is not required for this formulation), the touchdown
and lift-off conditions can be specified in terms of the ze-
ros of as :“ zs ´ ρl.

Define Qs
i :“ S1ˆR`ˆRˆ Ii, where R “ I1\ I2 :“

p´8, ρls \ pρl,8q. Then, Ds
i :“ TQs

i , and

f s1pq
s, 9qsq :“

¨

˝ 9qs,

»

–

´
2 9θs1

9θs2
θs2

θs2
9θs1
2
`kspρl´θ

s
2q

‹

fi

fl

˛

‚, (15)

f s2pq
s, 9qsq :“

´

9qs,
”

‹
0
´g

ı¯

, (16)

where the unspecified components are (i) the mass-center
dynamics which are constrained by

“

xs
zs
‰

“ θs2

”

´ sin θs1
cos θs1

ı

in (15), and (ii) the degenerate massless leg dynamics in
(16).

The Guard Set is BDs Since Qs is itself a cross product
of Euclidean spaces and Lie groups, we can identify the
tangent bundle with a cross product, TQs

i « Qs
i ˆ R4.

Then, the boundary of the product space only contains
parts from Ii, which corresponds exactly to the zeros of
as (§3.3.1).

Reset Maps Let us define the functions

Cart : S1 ˆ R` Ñ R2 :
”

θ1
θ2

ı

ÞÑ θ2

”

´ sin θ1
cos θ1

ı

(17)

Pol : R2 Ñ S1 ˆ R` : u ÞÑ
”

=u
}u}

ı

. (18)

10We use θ for leg “joints” to be consistent with [29].

The reset maps are defined as

rs1 : Ds Ñ Ds :

»

–

θ
9θ
rxz s
”

9x
9z

ı

fi

fl ÞÑ

« θ
9θ

Cartpθq

DCart|θ¨ 9θ

ff

,

rs2 : Ds Ñ Ds :

»

–

θ
9θ
rxz s
”

9x
9z

ı

fi

fl ÞÑ

»

—

—

—

–

Polprxz sq

DPol¨
”

9x
9z

ı

”

´z tanβp 9xq
z

ı

”

9x
9z

ı

fi

ffi

ffi

ffi

fl

.

3.3.2 Anchoring the 1DOF Templates
Consequent upon the above model—where each hy-

brid mode is dynamically 2DOF—SLIP is a 4D dynam-
ical system (one parameterization being px, z, vq, where
v P R2 is the touchdown velocity, and px, zq P R2 is
the Cartesian location of the point mass at touchdown).
The efficacy of our 2D return map analysis is established
by arguments similar to those of [30]: the Poincare sec-
tion zTD “ ρl cosβpvq eliminates one dimension, and the
equivariance of the dynamics with x eliminates another.

We first observe that our MBHop model of §3.2.2 still
represents the pendular stance correctly under assumption
3. However, κ is not a fixed parameter, but evolves ac-
cording to dynamics similar to F v in Proposition 2. From
(10) and (11), the embedded pκ “ 1, v “ v˚q submani-
fold is invariant. We show in Proposition 6 that it is also
attracting.

Let us define hw : R2 Ñ R2 as

w “ hwpvq :“ Rp´βpvqqv. (19)

Lemma 5. Let V :“ tv P R2 : v2 ă ´
2ρl
Ts
u. Then hw|V is

a local diffeomorphism.11

Proof. Note that

Dhw “ R´ JRvDβeT1 ,

where R is understood to be evaluated at ´βpvq. By in-
spection, Dhw could only have a test vector RTJRv in its
kernel, i.e.

Dhw ¨ pR
TJRvq “ p1´DβeT1 RTJRvqJRv ‰ 0,

since we know v ‰ 0, Dβ “
´

Ts
2ρl
` kp

¯

and so

1´DβeT1 RTJRv “ 1` v2

´

Ts
2ρl
` kp

¯

ă 0,

by the conditions assumed on kp. Thus Dhw is nonsingu-
lar, and hw is a local diffeo.

11Physically, the restriction to V means that the hopper must have
sufficient vertical component of touchdown velocity, essentially elim-
inating “grazing” ground impacts.



The vectorw gives a tangential/radial decomposition of
v (i.e. polar with respect to the leg angle).

Additionally, using (8), we can “recover” the κ-
dynamics in the coupled system: κ “ hκpw2q. We prefer
the redundant pv, κq parameterization because of analyti-
cal tractability.

Proposition 6 (Stability of SLIP as a composition). For
(i) stable vertical hopping with ´1 ` εr ă ´DF v

1 |˚ ă

1´ εr, (ii) sufficiently12 small kp in the Raibert contoller,
parallel composition of the radial and fore-aft templates
results in a locally stable 2D return map, F s.

Proof. We choose to perform our stability analysis at a
section just after touchdown (in w “ hwpvq coordinates).
From (11), the return map in w-coordinates is

ĂF spwq :“ hw ˝ F
s ˝ h´1

w pwq|κ“hκpw2q

“ Rpηpwqq
”

1
hκpw2q

ı

w,

where η :“ pγ ´ β ´ β ˝ F sq ˝ h´1
w . Now,

DĂF s “ Dw
ĂF s `Dκ

ĂF s ¨Dhκe
T
2 ,

where the first summand can be thought of as loosely the
isolated fore-aft subsystem behavior, and the second sum-
mand is the perturbation from the radial subsystem. We
will evaluate this quantity at the fixed pointw˚ “ hwpv

˚q.
Observe that using (10), Dη|˚ “ ´2kpe

T
1 Dh

´1
w . Pro-

ceeding just like in Proposition 2,

Dhκ|˚ “ ´
1

w˚2

´

1`DF v
1 |w˚2

¯

,

Dκ
ĂF s “ Rpηqe2e

T
2 w ùñ Dκ

ĂF s|˚ “ w˚2e2.

Lastly, the “isolated” term computes similar to (14),

Dw
ĂF s “ R r 1

κ s ` JR r 1
κ swDη,

ùñ Dw
ĂF s|˚ “ I ` Jw˚Dη|˚.

Putting all of these together,

DĂF s|˚ “

”

1
´DF v

1 |˚

ı

` pqT ,

where p :“ ´2kpJw
˚, qT :“ eT1 Dh

´1
w . Using the matrix

determinant lemma,

trDĂF s “ 1´DF v
1 |˚ ` p

T q

detDĂF s “ ´DF v
1 |˚

´

1´ qT
”

1
´DF v

1 |
´1
˚

ı

p
¯

.

12Formally, this means that kp can be chosen as a function of εr.

Now notice that sinceDhw is well-conditioned, we can
claim an upper bound on

|pT q| ď 2kp}Jw
˚}}Dh´1

w } ď kpΞ.

Also, the quadratic form qT
”

1
´DF v

1 |
´1
˚

ı

p must have

ˇ

ˇ

ˇ
qT

”

1
´DF v

1 |
´1
˚

ı

p
ˇ

ˇ

ˇ
ď |pT q|,

since
”

1
´DF v

1 |
´1
˚

ı

has norm less than 1.
It can be checked that both eigenvalues are of absolute

value bounded by unity iff all of (i) det ă 1, (ii) det ą
tr´1, and (iii) det ą ´tr´1 are true. These inequalities
follow from condition (ii) of Proposition 6 and choosing
small enough kp such that 2kpΞ ă εr.

4 Hybrid Inertial Reorientation
(2DOF)

Our decision to energize the hopping behavior with a
tail leaves introduces a new actuated DOF whose tight
dynamical coupling to both the mass center and the body
orientation dynamics requires its careful control through-
out the locomotion cycle. Recent literature [13] has seen
the development of a 1DOF “inertial reorientation” tem-
plate for correcting the “shape” coordinate in a two-link
body experiencing free-fall (constrained by conservation
of angular momentum). Raibert [14] introduced a pitch
stabilization mechanism relying on reaction torques from
hip actuation during stance. In this paper, we adopt the
approach of composing these templates for 2DOF stabi-
lization of appropriately defined “pitch” and “shape” co-
ordinates of a two-link body/tail model.

Since in the physical system the tail actuator, τ2, is un-
available for attitude control in stance (because it is being
“monopolized” as the destabilizing energy source for the
SLIP subsystem), and the Raibert pitch correction mech-
anism (using the hip actuator, τ1) is unavailable in flight
(due to absence of ground reaction force), we present a
hybrid inertial reorientation (HIR) template (Fig. 6) as the
simplest exemplar body on which this 2DOF template is
anchored.

We omit the Lagrangian derivation for this familiar sub-
system [13], but exploit the fact that when pinned at the
CoM, the dynamics are second-order LTI with no Coriolis
terms. We perform a change of coordinates (inverting the
constant inertia tensor) to obtain the (decoupled) dynam-
ics

”

:a1
:a2

ı

“

#

r
τ1
δ s “: pa1pTa, τ1q (stance),

“

0
τ2

‰

“: pa2pTa, τ2q (flight),
(20)



a1

a2

 δ

τ1 (Stance)

τ2 (Flight)a2

Pitch

Shape

ψa “ 0ψa “ π

Figure 6: A hybrid 2DOF inertial reorientation template with two segments pinned at the CoM and no gravity. Left: the net
angular momentum of the system is constant. Right: the system can correct the net angular momentum using reaction torques
on the main body segment, but the tail DOF is subject to an unmodeled disturbance  , or δ in (20).

where pa1, a2q are the “pitch” and “shape” coordinates,
respectively, and δ is an unmodeled disturbance term (ex-
plicitly added here with an eye toward the use of tail for
spring energization in the physical system). In (20) we
have now represented HIR as two independent subsys-
tems on which two identical 1DOF templates will be an-
chored in parallel (albeit in alternating stages of the hybrid
execution).

Taking advantage of the direct affordance (by which
we mean that both of the two decoupled 1DOF systems
are completely actuated in, one and then other, of the al-
ternating modes of their hybrid dynamics), we employ a
graph-error controller [31] as a type of reduction. Since
our reference first-order dynamics are just 9ai “ ´kai, the
independent closed-loop 1DOF subtemplate vector fields,
fp : Ta1 ÞÑ 9Ta1 and f sh : Ta2 ÞÑ 9Ta2, are defined as

:ai “ ´kgp 9ai ` kaiq “ ´kgkai ´ kg 9ai, (21)

where the gain kg is understood to be high enough to make
the transients of the anchoring dynamics irrelevant.

4.1 Hybrid Dynamical Model of HIR

Since the isolated model does not have any intrin-
sic physical mechanism for transitioning between modes,
we add an exogenous clock signal, ψa P S1 such that
ψa P r0, πs represents stance, and the complement repre-
sents flight. In this paper we sidestep the issue of phase-
synchronization for the various compartments, but sim-
ply use ψa to ensure our gains our tuned properly for the
timescales of the coupled system (Proposition 9).

Define Da “ TS2ˆtp0, πs\pπ, 2πsu. Now the closed-
loop template dynamics, fa : TS2ˆS1 Ñ T pTS2ˆS1q

can be specified as

fa1 p
“

Ta
ψa

‰

q “

«

0 I 0
”

´kgk 0 ´k 0
0 0 0 0

ı

0 0

0 0 ωa

ff

“

Ta
ψa

‰

`

”

03ˆ1

δ
0

ı

,

fa2 p
“

Ta
ψa

‰

q “

«

0 I 0
”

0 0 0 0
0 ´kgk 0 ´k

ı

0 0

0 0 ωa

ff

“

Ta
ψa

‰

, (22)

the guards sets are BDa “ TS2 ˆ ttπu \ t2πuu and the
reset maps rai “ id simply modify the dynamics (20) at
ψa “ π (stance to flight) and ψa “ 0 (flight to stance).

4.2 HIR Stability Analysis
Let us denote δ̄ris :“

ş

δdt, the interval being over the
stance phase of stride i. Also, define δ̄max “ maxt δ̄rts.

Proposition 7 (HIR Stability). Setting

k ą 2ωa
π log

`

1` δ̄max{εa
˘

results in the desired limiting behavior for F a: }a} Ñ
Bεap0q, a neighborhood of 0 of size εa.

Proof. Simply integrating the first-order dynamics (22),
we get the touchdown return map F a : S2 Ñ S2,

F apaq “ ζ ¨
`

a` δ̄ r 0
1 s
˘

, (23)

where ζ :“ e´kπ{ωap1 ´ kπ{ωaq. Iterating this return
map, at stride n P Z`,

arns “ ζtar0s ` pζnδ̄r0s ` ¨ ¨ ¨ ` ζδ̄rn´ 1sqe2, (24)

and using the triangle inequality,

}arns} ď |ζ|n ¨ }ar0s} ` δ̄max

ˇ

ˇ

ˇ

ζ
1´ζ

ˇ

ˇ

ˇ
. (25)

Note that ζ ă 1
1`δ̄max{εa

is a sufficient condition to en-
sure that }arts} ď εa asymptotically stable. Some algebra
reveals that

k ą 2ωa
π log

´

1` δ̄max
εa

¯

(26)

is, in turn, a condition sufficient to insure that previous
inequality involving ζ.
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Tailed monoped

Figure 7: The Jerboa is a 2 Kg robot with hip-actuated legs
and a 2DOF tail, pictured on the left as it appeared in the exper-
iments of Section 6. On the right is our model for the planarized
4DOF system for comparison.

5 Physical System: Tailed, Compliant-
legged Biped

Our target physical platform is a tailed bipedal robot
that we have built, which (when planarized) we model
as shown in the center of Fig. 1. We were able to for-
mally show template-anchor relations going from 1DOF
to 2DOF templates (Propositions 6 and 7), because of the
availability of simple models (§3.2.2), or trivial dynamics
(§4). However, as we proceed up the desired hierarchy
(Fig. 1), there are no easily accessible tools that let us di-
rectly analyze the effects of coupling in the return map.
In this section, we only show (Proposition 9) that under
a highly restrictive assumption 5 (that essentially makes
the tail sweep negligible), the closed-loop tailed monoped
return map F tm has an invariant submanifold where it is
equal to F sˆF a, but we also leave as conjecture that this
invariant submanifold is attracting.

The first two subsections of this section discuss (in an
informal manner) the design process of the robot plat-
form we have designed, built, and implemented the tail-
energized hopping behavior on.

5.1 Jerboa: Design and Construction
The Jerboa was designed with the goal of being a dy-

namic, agile robot with an inertial appendage. We defer
an in-depth discussion of morphological constraints and
tradeoffs to future work, but present the following basic
design decisions here:

i) With an eye on power density constraints13, the robot
is underactuated. There are 12 spatial DOFs (6 for
the body, 2 for each revolute leg, 2 for the tail) and
4 actuators. When planarized with a boom and vir-
tual constrains on the appendages (as we have done in
this paper), there are 6 planar DOFs: 3 for the body,
2 for the single leg and 1 for the pitching tail. Raibert
showed that an underactuated robot can be dynami-
cally stable [14], and in order to have the best per-
formance, we limited the number of actuators on the
robot to the minimum number that we believe is re-
quired to achieve a wide variety14 of behaviors.

ii) The body has low inertia (due to the mass of the
motors being concentrated near the CoM, and the
appendages being light), and the actuators are con-
figured such that they can impart correspondingly
large accelerations to the body (with an eye to-
wards “agility”). Future work is planned to reconcile
our inclination with emerging definitions of specific
agility [32], but intuitively it seems as if “integrated
magnitude of body acceleration” is a reasonable met-
ric to aim for.

iii) The hips are actuated, but the leg extension is com-
pletely passive. This particular form of underactu-
ated leg has been demonstrated to have great versa-
tility in RHex [33], for steady-state running as well
as transitional maneuvers [34].

iv) The robot contains an inertial appendage which is
endowed with the same amount of power as the
hips. Recent research in biomechanics [12] and
robotics [13] has demonstrated the utility of tails as
inertial “self-righting” devices, and on the Jerboa we
promote it to a primary source of locomotory energy
and control.

In the remainder of this section, we outline the elec-
tromechanical aspects of the construction of the robot. A

13Adding actuated DOFs parasitically increases mass, but it is not a
direct consequence that a proportionate amount of usable power will
be added to the robot body by the extra DOFs.

14We have some preliminary empirical evidence that the Jerboa can
quasistatically and dynamically balance, in order to sit, stand, walk,
hop, run, turn, leap, etc. Careful investigation of each of these behav-
iors is planned for future work.



Figure 8: The jerboa tail is a 2DOF spherical joint controlled
using coaxial motors through a mechanical linkage. Though
there are driven sprockets visible in this image, the version of
the robot presented in this paper did not have this additional
reduction stage.

summary of important mechanical measurements is pro-
vided in table 4.

5.1.1 2DOF tail

The tail appendage is configured as a 2DOF spherical
joint with a point mass at the distal tip. The joint itself
is constructed using a linkage (Fig. 8) such that identical
motor displacements result in a pitching motion, and dif-
ferential motor displacements result in a yawing motion.
The forward kinematics map from motor angles µ1, µ2 P

T 2 to the tail pitch and yaw angles, φ2, φyaw P T
2 has a

simple form when restricted to zero yaw (i.e. µ1 “ µ2),

φ2pµ1, µ2q|φyaw“0 “ µ1 “ µ2. (27)

For the behavior under study in this paper, a virtual con-
straint ensures that φyaw “ 0. We leave a full kinematic
analysis of the 2DOF mechanism to future work.

5.1.2 Prismatic-compliant revolute-actuated legs

Even though we adopt the underactuated hip-driven
legs from RHex, the legs are chosen to have “toes” with
point contacts instead of the rolling contact typical of
RHex legs for the following reasons:

i) Our template plant for fore-aft speed control (§3.2.2)
is an inverted pendulum with a point contact, and
in particular, the toe-placement strategy for fore-
aft speed control (10) is only (currently) well-
understood for this leg structure.

ii) The Raibert pitch controller [14], which we use as
part of our attitude control (21), depends on a “rigid”
connection between the hip and the toe. With a
series-elastic element that may have torsional com-
pliance (such as a C-leg), the ground reaction force
would load up the leg spring, introducing the spring
dynamics as a “lag” in our pitch control strategy.

The left of Fig. 9 shows three leg designs that were con-
sidered for the Jerboa: i) a prismatic mechanism with a
nonlinear elastic element, ii) a compression spring in a
four-bar mechanism, and iii) an extension spring in a four-
bar mechanism. While the kinematic properties of the first
design are the closest to our model (the spring force at
the toe is purely radial, and the motor force at the toe is
purely tangential), this design proved difficult to construct
because of the linear bearing required. The kinematics of
the “approximate” leg designs are pictorially depicted in
Fig. 9.

The experiments for this paper were all performed
with the compression-spring legs. The compliant element
is an off-the-shelf shock absorber for RC vehicles with
lightweight construction, but considerable damping. We
believe that the damping in legs was an important limiting
factor in the energy of the hopping behavior demonstrated
in §6.

5.1.3 Actuators

The power generated by electromechanical actuators
tends to be at unusably high speeds for legged applica-
tions, however at the same time, higher gear reductions
are undesirable due to a multitude of reasons [35]. To this
end, we tune our actuator selection to maximize thermal
specific torque, KTS—the torque generated by the motor
per unit mass per unit temperature rise. This modification
to the torque density criterion of [35] allows us to incor-
porate the thermal implications of sustained motor activa-
tion15. Fig. 10 contains a table comparing these metrics
for the chosen actuator, a T-motor U8, and the one se-
lected for X-RHex [36], a Maxon EC-45.

Additionally, we developed custom motor con-
trollers built around Infineon BTN8980 integrated half-
bridges and an STM32F373 microcontroller that are
(a) lightweight (20 g), (b) commutate using field-oriented
control (FOC) at 25 KHz (adapted from [37]), (c) deliver
up to 55 A peak current and up to 40 V peak voltage, and
(d) have built-in 12-bit rotor position sensing. As a trade-
off for the high power-density of the driving electronics,
they are limited by the heat dissipation ability of the half-
bridges. Based on some crude testing, we have found that
we can source approximately 10 A of steady-state cur-
rent (thermally limited), corresponding to around 1 N-m
of torque. Fig. 11 compares the physical dimensions and
thermal performance of the motor controllers to the mo-
tors we have chosen. We note the following consequences
of our selection of motor and driving electronics:

15We are assuming a thermal dissipation model for the motor, but
not accounting for temperature effects on magnetic flux density.



Table 4: Parameter values

Mass (with battery) 2.419 Kg Dimensions (without tail) 0.21 m (L) ˆ 0.23 m (W) ˆ 0.1 m (H)
Tail length 0.3 m Tail mass 150 g
Leg length 0.105 m Leg motor stall torque 3.5 N-m
Peak power density 376 W/Kg Peak (vertical) force density 46 N/Kg

Compression Extension

Figure 9: Left: Three leg designs considered for the Jerboa; the prismatic spring is “ideal” (in our model of §3, the spring force
is dominantly axial, and the actuator force is predominantly tangential) but difficult to manufacture, and the four-bar designs
only approximate the desired kinematics. Right: Configuration-dependent Jacobians of the compression and extension spring
designs, where the displayed arrows map infinitesimal hip torques and spring extension forces to forces represented by red and
blue (resp.) arrows at the toe. Out of these designs, the pictured version of the robot in Fig. 7 uses compression springs.

i) The high torque density of the chosen motors allows
us to completely forgo any static gear-reduction on
the Jerboa (although the 2DOF tail makes use of
a linkage to transmit power to a spherical joint)—
affording benefits of “transparency” and eliminating
any transmission losses [35, 38].

ii) Power dissipation (to heat) in the motors is not a lim-
iting factor in the robot’s performance with the cur-
rent driving electronics.

iii) By eliminating the need for gearboxes and judicious
chassis design, we have been able to reduce the
“robot framing cost” to only 40% of the mass of the
robot. To put this in context, only 8% of the mass of
X-RHex is motors [36].

Lastly, we highlight some of the design aspects of the
Jerboa that are particularly relevant to the subject of this
report (tail-energized hopping via parallel playback of de-
coupled controllers):

Assumption 4 (Design for decoupled control). The de-
sign of the Jerboa specifically ensures (i) leg/tail axes

of rotation are coincident at the “hip,” (ii) the tail mass
is small, i.e. mt ! mb, and (iii) center of mass (ap-
proximately configuration-independent by the previous
assumption) coincides with the hip.

We point out here that these design decisions are less
strict than the ones required for our present analysis (as-
sumption 5). We believe that the stringency of assump-
tion 5 is not necessary, and provide some empirical evi-
dence to this effect in Section 6.

5.2 Modeling for Planar Hopping
Raibert’s planar hopper [14] empirically demonstrated

stable hopping using a rigid body with a springy leg, and
in this paper we pursue the same idea, but instantiate verti-
cal hopping by coupling the 1-DOF leg-spring excitation
controller (physically acting through the tail). In flight,
the tail actuator grants us a new affordance that we only
use here to regulate the added “shape” DOF. Our phys-
ical model is shown in Fig. 7. The system has a sin-
gle massless leg with joints θ “ pθ1, θ2q P S1 ˆ R`,
a rigid body px, z, φ1q P SEp2q, and a point-mass tail
with revolute DOF φ2, such that the full configuration is



Maxon EC-45 T-motor U8

Mass (Kg) 0.11 0.24
Gap radius (mm) 21.5 45
KT (N-m/A) 0.033 0.095
KTS (N-m/Kg˝C) 0.104 0.5 10 20 30 40 50

Current (A)

1
2
3
4
5
Torque (N-m)

Figure 10: Left: The selected actuator for the Jerboa is the T-motor U8, showing a thin profile and large gap radius—desireable
properties for legged applications [35]. Middle: Motor properties relevant to selection for legged applications for the Jerboa
motor, and the X-RHex [36] motor. Right: A torque-current plot for the U8 when coupled with our custom motor controllers of
Fig. 11, showing flux saturation at higher currents and a dashed line for the nominal torque (predicted by KT ).

Figure 11: Left: The physical dimensions of our motor controller when compared to the motors they are driving. Right: Infrared
image of of our actuation setup at stall, showing the controller reaching higher temperatures than the motor coils.

q :“ pθ1, θ2, x, z, φ1, φ2q P Q. We make the following
design-time assumptions:

Assumption 5. (i) Leg/tail axes of rotation are coincident
at the “hip,” (ii) tail mass is small, i.e. mt ! mb, (iii) cen-
ter of mass (configuration-independent by the previous as-
sumption) coincides with the hip, and (iv) body, tail have
high inertia, i.e. ib, it Ñ8.16

5.3 Equations of Motion
Using the self-manipulation [29] formulation of hybrid

dynamics, the inertia tensor is

M “
“

0
Mb

‰

, where Mb :“
”

M1 MT
o

Mo M2

ı

. (28)

Note that M1 “ pmb ` mtqI and M2 “
“

ib`it it
it it

‰

are
constant, and Mo contains the critical cross-compartment
interaction, by way of which we can use our tail actuator
(formally acting on an attitude DOF, φ2) for energizing
the shank DOF, θ2.

Let the forward kinematics of the leg be g : θ ÞÑ R2.
The constraint in the stance contact mode is

a1pqq “ r
x
z s ´ Rpφ1qgpθq, (29)

16Even though the dynamic task here is quite different from free-
fall, in the language of [13] this is saying that the tail should be light
but effective.

such that A1pqq “ rRDg I JRg 0 s. In flight mode,
a2pqq ” 0. As in [29], the dynamics can be expressed
as

”

M AT
i

Ai 0

ı

“

:q
λ

‰

“
“

Υ´N
0

‰

´

”

C
9Ai

ı

9q. (30)

Define the linear coordinate change h : Y “ S ˆ A Ñ

Q, and H :“ Dh such that

h´1 : q ÞÑ

„

pθ1`φ1,θ2,x,zqT

M2

”

φ1
φ2

ı



, (31)

and observe that h´1pqq “ ps, aq is reminiscent of SLIP
(§3) and attitude (§4) coordinates. Define

πs :“ r I4 0 sh´1, πa :“ r 0 I2 sh´1 (32)

The equations of motion are generated in the new coor-
dinates,

:y “ H´1M:pΥ´Nq ´H´1pM:C`A:T 9AqH 9y.
(33)

In stance,

”

:s1
:s2

ı

“

«

τh
mbθ

2
2
´

2 9θ2
9θs

θ2

kspρl´θ2q

mb
`θ2 9θ2s

ff

` τt
ρtmb

”

sin ξ{θ2
´ cos ξ

ı

, (34)

:a “
“

´τh
τt

‰

, (35)

http://www.rctigermotor.com


where ξ :“ θ1 ´ φ2 (the tail-leg angle), and the right
summand in (34) is quite clearly the disturbance caused
due to the added attitude degrees of freedom.

With the same choice of H, we can similarly recover
weakly decoupled flight dynamics:

“

:x
:z

‰

“
“

0
´g

‰

` τt
ρtmb

”

sinpφ1`φ2q
´ cospφ1`φ2q

ı

, (36)

:a “
“

0
τt

‰

. (37)

5.4 “Physical” Decoupling and Anchoring
With the highly restrictive assumption 5 (allowing for

infinite tail inertia), the tail motion is essentially negligi-
ble. Under these conditions, we show the emergence of
the beginnings of a classical anchoring relation [10], via
a natural (weak) decoupling of the 6DOF dynamics into
“point-mass” and attitude compartments. A more general
analysis that is more physically relevant is forthcoming in
future work.

Proposition 8 (Flow-invariant submanifold). Under as-
sumption 5, in each hybrid mode, (i) the submanifold
U “ tTq P TQ : Tφ1 “ Tφ2 “ 0u is invariant un-
der the action of the flow generated by f tmi , and (ii) in
each hybrid mode, the closed-loop flow restricted to U,

9Tq “ f tmi pTq|Uq is a cross-product of the template vec-
tor fields,

f tmi “ f si ˝ πs ˆ f
a
i ˝ πa, (38)

where πs and πa represent projections to the SLIP and
attitude components of q respectively.

Proof. Applying assumption 5.ii to the equations of mo-
tion, the plant dynamics ptmpTq, pτh, τtqq are

:θ|stance “

«

τh
mbθ

2
2
´

2 9θ2
9θs

θ2

kspρl´θ2q

mb
`θ2 9θ2s

ff

` τt
ρtmb

”

sin ξ{θ2
´ cos ξ

ı

,

:a|stance “
“

´τh
τt

‰

,
“

:x
:z

‰

|flight “
“

0
´g

‰

` τt
ρtmb

”

sinpφ1`φ2q
´ cospφ1`φ2q

ı

,

:a|flight “
“

0
τt

‰

, (39)

We can check that we have available affordances
through our two actuators to assign (scaled versions
of) our template controllers in Table 2, (i) τh|stance “

´gp1pa1, 9a1q to control a1, and τh|flight “ gfa2 p 9xq to con-
trol 9x, and (ii) τt|flight “ gsh2 pa2, 9a2q to control a2, and
τt|stance “ ´ρtθ2mb ¨ g

v
1p 9zq to control hopping height17.

Under assumptions 3.iv and 5.iv, we show that the high-
lighted terms in (39) vanish inside U:

17We observe that by assumption 3.ii, θ2 « ρl is roughly constant,
so the scaling need not be configuration dependent.

i) M2 Ñ 8, so in the dynamics equations :a “ 0. Re-
stricted to U, a ” 0. This proves part (i) of the claim.

ii) From :a ” 0 and (21), τh|stance “ τt|flight “ 0.

iii) Since φ2 “ 0, ξ “ ´φ1 « 0 (from assumption 3.iv).

By comparing the thus-restricted plant dynamics (39)
to (15), (16) and (20), we obtain part (ii) of the result.

Additionally, the invariant submanifold in the flow
leads to an invariant submanifold in the hybrid execution:

Proposition 9 (Return map-invariant submanifold). The
set U is invariant under the return map F tmpTq|Uq, and
restricted to U, F tm “ F s ˝ πs ˆ F

a ˝ πa.

Proof. We first define the return map F tm by instantiat-
ing a “cross-product” hybrid system pDtm, f tm, rtmq as
(a) Dtm :“ Ds ˆ rDa, (b) rtm :“ rs ˆ rra, and (c) f tm as
defined in Proposition 8, where rDa

i :“ TS2ˆS1 for each
i (ensuring B rDa “ H) and rrai : rDa

i Ñ
rDa
i`1 is defined

rrai :
“

Ta
ψa

‰

ÞÑ
“

Ta
iπ mod 2π

‰

. (40)

With these modifications, the ψa dynamics (22) are ig-
nored, and the clock of the HIR subsystem is being driven
by the SLIP subsystem18. This ensures that the conditions
of Proposition 7 still hold, i.e. πa ˝ F tm “ F a ˝ πa.

Additionally, the decoupled nature of f tm|U (Proposi-
tion 8) allows us to conclude that πs ˝ F tm “ F s ˝ πs, so
that

F tm “ πs ˝ F
tm ˆ πa ˝ F

tm “ F s ˝ πs ˆ F
a ˝ πa,

which concludes the proof.

We leave to future work a proof that U is attract-
ing, which is a requirement for demonstration of anchor-
ing [10].

6 Experimental Results
In this section we present empirical data obtained from

the Jerboa (§5.1). In the first three subsections, we present
data from a few “nodes” of our composition tree (Fig. 1).
Finally, a crucial examination of our idea of composition
of templates, when implemented on the Jerboa, is pre-
sented in §6.4.
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Figure 12: Two datasets corresponding to different tail masses: The blue traces use the mt “ 150 g (as in Table 4), but the red
traces use mt “ 100 g. Note that the tail displacement is larger for the lighter tail mass, although vertical behavior is largely
unaffected.

6.1 Effect of Varying Tail Mass on Vertical Hop-
ping

The first empirical result we present corresponds to the
top left leaf of Fig. 1—empirical vertical hopping. In or-
der to facilitate the analysis in this paper, in assumption 5
we stipulated an ideally effective [13] tail, with negligible
mass and infinite inertia. We connected the robot (Fig. 7)
to a boom and constrained the body pitch as well as the
fore-aft DOF. By varying the tail mass (with a fixed tail
length given in Table 4), we obtained two vertical hop-
ping datasets plotted in Fig. 12.

We observe the following:

i) Increasing tail mass results in smaller tail displace-
ments. Taken to the limit, this sheds some light on
assumption 5: a large tail mass would indeed render
the tail motion negligible.

ii) The hopping height remains relatively unchanged in
spite of this physical variation. From (34), the force
acting on the leg-spring depends only on the (feed-
forward) tail torque, τt (as in Table 2).

Consequently, we see that the tail mass is a tunable de-
sign parameter that allows us to trade off the conditions
of assumption 5 (negligible mass versus large inertia—
both affecting coupling interactions) without affecting the
vertical behavior.

6.2 Empirical Validation of Attitude-
Decoupling Change of Coordinates

An important foundation of our attitude control strat-
egy is the decoupling of the two attitude DOFs (§4), such

18This coupling interaction importantly invalidates the ωa-
dependent bound on k (26). Our solution is to scale the input such
that k is high enough for the shortest feasible transition time in verti-
cal hopping.

that a1 is controlled in stance, and a2 is controlled in
flight (20). However, the body pitch and tail angle are
clearly coupled in flight19. To resolve this, as shown
in (31), we use M´1

2 as a decoupling change of coordi-
nates.

In terms of implementation this strategy requires the
estimation of a single scalar parameter that defines M2 up
to scale (see the text just after (28)). To test our the change
of coordinates empirically, we suspended the robot about
the CoM and applied a feedforward sinusoidal τt signal.
The resulting traces for the physical attitude coordinates
are shown in Fig. 13.

Recall from (37) that in flight, :a1 “ 0. In practice,
we observe from the right of Fig. 13 that there are small
a1-variations are at a much slower time scale than a2-
variations. The reason that :a1 is not zero is that we were
unable to suspend the robot at precisely the CoM, and so
gravity exerts a net moment on the body—appearing as
a slow a1-oscillation. Other than this minor deviation of
our physical platform from assumption 5, it appears as
if the attitude-decoupling change of coordinates is indeed
effective.

6.3 Trading off Forward Speed and Hopping
Height for “Leaping”

The “stepping” fore-aft control using the touchdown
angle as a control input (10) essentially allows us to trade
off vertical and fore-aft energy—appearing as a pure ro-
tation in (12). Even though for steady-state behavior we
choose the touchdown angle to stabilize forward speed,
it also allows for transient behaviors such as a one-shot
“leaping” motion (term coined by Raibert [14]). In partic-
ular, choosing a larger (in magnitude from vertical) touch-
down angle than that dictated by (10) results in added ver-

19Since the tail actuator is attached between the body and the tail,
tail torques are felt by the body.
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Figure 13: Testing our decoupling change of coordinates from the physical body pitch, tail angle coordinates pφ1, φ2q to our
chosen attitude coordinates pa1, a2q by suspending the robot about its CoM (see §6.2).

tical height and reduced fore-aft speed.
The results of an empirical test of this one-shot leap-

ing strategy are showing in Fig. 14: we can indeed get
a large increase in apex height using this strategy. This
kind of “asymmetry” [14] or deviation from steady-state
may have important applications in behaviors that require
rapid changes in the body energy, and we plan to explore
more such behaviors in future work.

6.4 Empirical Validation of Composition
By physically constraining some of the DOFs, we test

our hierarchical composition (Fig. 1) at as many “nodes”
of the composition tree as possible. Note that it is infea-
sible to isolate the fore-aft or the closed-loop pitch cor-
rection templates in a physical setting. The results are
summarized in Fig. 15. Five strides are averaged within
each category, and aligned with ground truth knowledge
of the touchdown event. We observe that

i) there is a vertical limit cycle that retains its rough
profile and magnitude through three anchoring bod-
ies,

ii) the hip angle roughly satisfies :θ1 “ 0 in stance and
the stance duration is roughly constant (corroborating
assumptions 3.ii-iii, and our MBHop model (11),

iii) the shape coordinate is destabilized in stance and sta-
bilized in flight, and the pitch-deflections are small
in magnitude over the stride, and in agreement with
(22).

Qualitatively, the “tailed point-mass hopper” configura-
tion attained stable forward hopping at controlled speeds
upwards of 20 strides, only limited by space. The fully
unlocked system has so far hopped for about 10 strides at
multiple instances before failing due to accumulated error
causing large deviations from the limit cycle. We believe
the prime reason for this is that the CoM is significantly
aft of the hip (violating assumption 5.i). We attempted to
compensate for this effect with a counterbalance visible in

Fig. 7, but an unacceptably large weight would have been
required to completely correct the problem.

In the video attachment, we include clips of the robot
hopping along a boom, with varying degrees of physical
constraint corresponding to the “bodies” of Fig. 15 (an-
notated in the video). The controller implemented on the
hardware is agnostic of the physical constraint, and takes
the decoupled form of a cross-product of the rows of Ta-
ble 2.

7 Discussion and Conclusion

Raibert’s hopper [14] made significant empirical ad-
vances in the field of robotics, but to our knowledge, no
previous account in the literature has provided any formal
conditions under which such simple and decoupled con-
trol strategies will work. In this paper, we apply simple
decoupled controllers using similar ideas (including the
exact same fore-aft (10) and pitch (22) controllers), but
with a new vertical hopping scheme (§3.1) and a new tail
appendage to enable it. Moreover, we construct abstract
models (that appear to, nevertheless, be representative of
empirical data) that enable us to present analyses of stabil-
ity for each of these subsystems, and make steps towards
a local proof of stability for the tailed hopper (a subject of
future work by the authors).

The first focus of future work is a complete analysis
of stability of tail-energized hopping on the Jerboa, and
development of formal tools for design and verification of
parallel composition. Second, our analysis in this paper is
very specifically targetted to the tailed hopper (including
the hand-designed hierarchy in Fig. 1), but in future work
we plan to generalize these ideas to other tasks as well
as platforms. As explained in §2, we focus on closed-
loop templates in this paper, but there is an accompanying
interesting problem of assignment of actuator affordances
to the control of specific compartments. ar
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Figure 14: Top: Snapshots of fore-aft hopping behavior in a trial where we test a “leaping” motion [14]—the robot stubs its toe
at the last touchdown in order to gain a boost in vertical height at the expense of forward speed (see §6.3). The red line shows the
CoM-trajectory of the robot. Bottom: Corresponding traces showing near-steady-state behavior in the fore-aft compartment (leg
angle, θ1 and vertical height, z are plotted) before the “stubbing” event (red overlay). The leg angle shows the “neutral angle”
with a thin horizontal line, and in order to leap; note that a much larger (in magnitude from vertical) touchdown angle is chosen
in order to leap. The leg height (z) plot shows the robot getting around 50% larger apex height in the subsequent flight phase.
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