12,795 research outputs found

    A stabilized finite element method for the two-field and three-field Stokes eigenvalue problems

    Get PDF
    In this paper, the stabilized finite element approximation of the Stokes eigenvalue problems is considered for both the two-field (displacement-pressure) and the three-field (stress-displacement-pressure) formulations. The method presented is based on a subgrid scale concept, and depends on the approximation of the unresolvable scales of the continuous solution. In general, subgrid scale techniques consist in the addition of a residual based term to the basic Galerkin formulation. The application of a standard residual based stabilization method to a linear eigenvalue problem leads to a quadratic eigenvalue problem in discrete form which is physically inconvenient. As a distinguished feature of the present study, we take the space of the unresolved subscales orthogonal to the finite element space, which promises a remedy to the above mentioned complication. In essence, we put forward that only if the orthogonal projection is used, the residual is simplified and the use of term by term stabilization is allowed. Thus, we do not need to put the whole residual in the formulation, and the linear eigenproblem form is recovered properly. We prove that the method applied is convergent, and present the error estimates for the eigenvalues and the eigenfunctions. We report several numerical tests in order to illustrate that the theoretical results are validated

    A stabilized finite element method for the two-field and three-field Stokes eigenvalue problems

    Get PDF
    In this paper, the stabilized finite element approximation of the Stokes eigenvalue problems is considered for both the two-field (displacement–pressure) and the three-field (stress–displacement–pressure) formulations. The method presented is based on a subgrid scale concept, and depends on the approximation of the unresolvable scales of the continuous solution. In general, subgrid scale techniques consist in the addition of a residual based term to the basic Galerkin formulation. The application of a standard residual based stabilization method to a linear eigenvalue problem leads to a quadratic eigenvalue problem in discrete form which is physically inconvenient. As a distinguished feature of the present study, we take the space of the unresolved subscales orthogonal to the finite element space, which promises a remedy to the above mentioned complication. In essence, we put forward that only if the orthogonal projection is used, the residual is simplified and the use of term by term stabilization is allowed. Thus, we do not need to put the whole residual in the formulation, and the linear eigenproblem form is recovered properly. We prove that the method applied is convergent, and present the error estimates for the eigenvalues and the eigenfunctions. We report several numerical tests in order to illustrate that the theoretical results are validated.Peer ReviewedPostprint (author's final draft

    Stabilization arising from PGEM : a review and further developments

    Get PDF
    The aim of this paper is twofold. First, we review the recent Petrov-Galerkin enriched method (PGEM) to stabilize numerical solutions of BVP's in primal and mixed forms. Then, we extend such enrichment technique to a mixed singularly perturbed problem, namely, the generalized Stokes problem, and focus on a stabilized finite element method arising in a natural way after performing static condensation. The resulting stabilized method is shown to lead to optimal convergences, and afterward, it is numerically validated

    Consistent local projection stabilized finite element methods

    Get PDF
    This work establishes a formal derivation of local projection stabilized methods as a result of an enriched Petrov-Galerkin strategy for the Stokes problem. Both velocity and pressure finite element spaces are enhanced with solutions of residual-based local problems, and then the static condensation procedure is applied to derive new methods. The approach keeps degrees of freedom unchanged while gives rise to new stable and consistent methods for continuous and discontinuous approximation spaces for the pressure. The resulting methods do not need the use of a macro-element grid structure and are parameter-free. The numerical analysis is carried out showing optimal convergence in natural norms, and moreover, two ways of rendering the velocity field locally mass conservative are proposed. Some numerics validate the theoretical results
    corecore