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STABILIZATION ARISING FROM PGEM: A REVIEW AND FURTHER

DEVELOPMENTS

RODOLFO ARAYA1, GABRIEL R. BARRENECHEA2, LEOPOLDO P. FRANCA3,

AND FRÉDÉRIC VALENTIN4

Abstract. The aim of this paper is twofold. First, we review the recent Petrov-Galerkin

enriched method (PGEM) to stabilize numerical solutions of BVP’s in primal and mixed

forms. Then, we extend such enrichment technique to a mixed singularly perturbed problem,

namely, the generalized Stokes problem, and focus on a stabilized finite element method

arising in a natural way after performing static condensation. The resulting stabilized

method is shown to lead to optimal convergences, and afterward, it is numerically validated.

1. Introduction

The Stokes problem emanates from modeling creeping flows and incompressible elasticity.

The problem fits into the abstract mixed method formulation [10, 12]. Mixed methods have

various applications, among them modeling deformation of beams, arches, plates and shells.

The approximation of these problems using standard finite element polynomials faces the

challenge of satisfying stability conditions known as inf-sup conditions [10]. These stability

conditions restrict which pairs of approximation (primal and dual variables) are allowed.

Convenient pairs, such as equal-order interpolations, are in general prohibited.

Stabilized methods address the limitations of mixed methods [29, 28]. Introduced for

advective-diffusive problems [16, 20], stabilized methods are built to enhance stability with-

out affecting consistency. This is accomplished by adding terms based on residuals of the

equations involving the trial functions while the test functions have different forms varying

from least-squares to adjoint operators. For the Stokes problem these methods have been
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proved convergent for almost all pairs of interpolation [29, 26]. The drawback of stabilized

methods is the choice of stability constants associated with the additional terms. In many

applications the value of these constants affects the numerical results.

To shed some light on how to produce the stability constant for the Stokes problem, in

[31] a relationship between the enrichment of a piecewise linear velocity field with a bubble

function (MINI element [4]) and the stabilized method from [29] was first pointed out. The

MINI element produces this stabilized method with a stability constant which is a function of

the bubble shape and value. This gives us a recipe for getting the stability constant, namely,

we pick a form of the bubble function and this gives us a specific value of the stability

constant. This relationship has been extended to the generalized Stokes problem in [8] (see

also [6] where this relationship was first highlighted) and to the advective-diffusive problem

in [11, 5].

The relationship discovery left an open problem, namely how to choose optimal bubbles

to produce the most accurate stabilized approximation. This question has been addressed

introducing the residual-free-bubbles concept [15, 25, 14, 13]. The idea is to construct the

bubbles by approximating a local problem dictated by the equations of the global problem.

The bubbles solve a PDE problem governed by the residual of the piecewise polynomial

component of the solution. The local problem is subject to a zero boundary condition

(except for some problems defined in L2), and this yields good solutions in some applications.

However, the zero boundary condition limits the capability of the approximation in some

cases. For example in the reactive dominated diffusive model (with, or without convection),

the residual-free bubbles method oscillates near a boundary layer. Several solutions have been

proposed in order to avoid this type of oscillations, including the use of adaptive meshes or

specially refined meshes, such as Shishkin meshes (see [30, 34], and references therein, and

[33] for a survey), but the detailed review of these techniques lies beyond the scope of this

work. Instead, in this work we focus on so-called Petrov-Galerkin Enriched Method (PGEM)

[22, 21], which is discussed in the next section.

The remainder of the paper is as follows: a review of PGEM is given in Section 2, in Section

3 PGEM is extended to the generalized Stokes problem, including a stabilized formulation

derived from it, for which we perform an a priori error analysis, and in Section 4 we present

some numerical results confirming the theoretical results.

1.1. Notations. Let Ω be an open bounded domain in R
2 with polygonal boundary. As

usual, (· , · )D stands for the inner product in L2(D) (or in L2(D)2, when necessary), and
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we denote by ‖· ‖s,D (|· |s,D) the norm (seminorm) in Hs(D) (or Hs(D)2, if necessary). By

{Th}h>0 we denote a family of regular triangulations of Ω, built up using triangles K with

boundary ∂K = F1 ∪ F2 ∪ F3, hK := diam(K) and h := max{hK : K ∈ Th}.
We denote by EΩ the set of internal edges of Th and for K ∈ Th we denote by E(K) the

set of its sides. The characteristic length of F ∈ EΩ is hF = |F |, n is the normal outward

vector on ∂K, ∂s and ∂n are the tangential and normal derivative operators, respectively,

and I is the R
2×2 identity matrix. Also, for K ∈ Th and F ∈ EΩ we define the following

neighborhoods:

ωK := ∪{K ′ ∈ Th : K ∩K ′ 6= ∅} , ωF := ∪{K ′ ∈ Th : F ∈ E(K ′)} .

For F ∈ EΩ we denote by JvKF the jump of a function v across F . Further, we introduce the

standard linear finite element space

Vh = {v ∈ C0(Ω) : v|K ∈ P1(K) , ∀K ∈ Th} . (1)

Finally, H1(Th) and H1
0 (Th) stand for the spaces of functions whose restriction to K ∈ Th

belongs to H1(K) and H1
0 (K), respectively, and we present a space Eh ⊂ H1(Th) (which,

although not supposed finite dimensional, will turn out to be of finite dimension), called

multiscale space, which will be used to enrich the trial space and will be problem dependent.

Although we do not need a priori this space to satisfy Vh ∩Eh = {0}, this is a propery that

the enrichment space ought to satisy.

2. A review of Petrov-Galerkin Enriched Methods

Petrov-Galerkin enriched methods (PGEM) are designed to give superior accuracy along

with enhanced stability. The method is based on the variational formulation of a specific

model and is obtained by approximating the trial function by piecewise polynomials enriched

with multiscale functions; the test function is approximated by piecewise polynomials en-

riched with bubble functions. This difference between the approximations of the test and

trial functions is part of the Petrov-Galerkin framework.

We have zero boundary conditions on element edges (or faces in 3D) by selecting bubbles

as enrichment of test functions. This enables static condensation. As a result, a differential

equation for the enrichment function holds for each element and the multiscale enrichment

can be condensed as a function of the piecewise component of the solution and the data. Once

the expression of the multiscale component of the solution is available we then substitute it
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into the equation tested by the piecewise polynomial component. The method that arises is

a stabilized method with several improvements. Among these, we can quote;

• the enrichment produces an additional stability without compromising consistency

in a different manner than standard stabilized methods;

• the accuracy is improved by letting the multiscale enrichment be different than zero

on the element boundaries;

• the additional stabilizing terms may have a different form than the apparent canonical

modifications using least-squares or adjoint operators.

The latter is the key on accuracy comparisons with stabilized methods.

We start our review by looking at the first PGEM in reactive-diffusive problems [22, 21].

Let us start by recalling the model: find u such that

σu − △u = f in Ω , (2)

u = 0 on ∂Ω ,

where σ ∈ R
+ denotes the reactive constant and f is a given datum. The usual variational

formulation for this problem is given by: Find u ∈ H1
0 (Ω) such that:

A
(
u, v
)

= (f, v)Ω ∀ v ∈ H1
0 (Ω) , (3)

where

A
(
u, v
)

:= σ(u, v)Ω + (∇u,∇v)Ω . (4)

We take the trial enrichment to be in Eh and the test enrichment to be in H1
0 (K). These

are enrichments to piecewise linear u1 and v1, respectively. The starting point towards the

PGEM is then: find u1 + ue ∈ Vh + Eh such that

A
(
u1 + ue, v1 + vb

)
= (f, v1 + vb)Ω ∀ v1 + vb ∈ Vh ⊕H1

0 (Th). (5)

Considering v1 = 0 we have an equation in each element as follows:

Lue = −σu1 + ∆u1 + f = −σu1 + f, (6)

where we used the linearity of u1 in K.

This problem needs a boundary condition. One possibility is to set zero as the boundary

condition which would reduce the method to the residual-free-bubble method. We explore

new possibilities to allow the enrichment to be non-zero on the boundary. For this particular
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model, and with the aim of correcting the residual of the strong equation on the boundary

of K, in [22, 21] the following boundary condition is chosen for ue:

σ̄ue − ∂ssue =
σ̄

σ
(f − σu1) along each F ⊆ ∂K and ue = 0 at the nodes, (7)

where σ̄ represents σ multiplied by a suitable constant. This perturbation of σ has been

introduced to make it possible to compute the solution to this problem analytically.

Combining (6) and (7) we can solve for ue |K to get

ue = MK(f − σu1) , (8)

in every K ∈ Th, where MK is the solution operator associated to (6)-(7). This is then

replaced in (5) to obtain the following PGEM method: Find u1 ∈ Vh such that:

A(u1 − σMK(u1), v1) = (f, v1)Ω − A(MK(f), v1) ∀ v1 ∈ Vh ,

which is a stabilized alike method, which has been proved to be well-posed in [21]. Note

that (8) is a formal result that needs to be computed in detail. We do this by using basis

functions for u1 in the right-hand-sides of equations (6) and (7), and supposing that f ∈ Vh,

which is an approximation that does not undermine the precision of the method (see [1] for

the analysis in the case of a Stokes problem). For further details the interested reader is

referred to [22, 21] and to [3] for an a posteriori error estimator. Finally, we note that the

characterization (8) leads us to precisely define the space Eh as follows

Eh = {ve ∈ H1
0 (Th) : ve|K = MK(v1), v1 ∈ Vh,∀K ∈ Th} , (9)

and hence Eh is of finite dimension and moreover, it clearly satisfies Eh ∩ Vh = {0}.

Remark. We remark that the problem (5) may not be well-posed in its original version, but,

once the boundary condition (7) is chosen, then the problem becomes well-posed. �

Next, still keeping polynomial spaces enhanced with the solution of the local problem

(8), a parabolic version of PGEM is proposed in [24] to deal with the unsteady reaction-

diffusion problem. Stability is achieved for the reaction dominated case although persisting

spurious oscillations show up as soon as small time step procedure is used. Consequently, it

appears that overcoming such drawback demands replacing steady local enrichment (8) by

its time-dependent version. In [32] this issue is addressed.

When applied to advection dominated problems, the PGEM aims to resolve internal and

external exponential boundary layers. It stems from [23] that such cumbersome goal is accu-

rately accomplished for external layers but not for internal ones since it is still highly mesh
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dependent. Therefore, it emerges from [23, 17] that compromising stability and flexibility

leads to a non-conforming approach where the RFB method is adopted for internal elements

while the PGEM is set for elements touching external boundaries of Ω.

Turning back to mixed problems, a class of new stabilized finite element methods have

been derived to tackle the Stokes model. Roughly, this is accomplished following through

analogous steps as for the reaction-diffusion case, but now, just the velocity space is enhanced.

Continuous piecewise linear space for the velocity and continuous piecewise linear or constant

spaces for pressure have been made compatible in the sense of inf-sup condition by adding

the multiscale function ue to the linear contribution u1. The former solves the following

elliptic problem

−ν∆ue = f −∇pk,

where ν ∈ R
+ represents viscosity, pk the polynomial pressure variable with order k = 0, 1

and f is given datum. Concerning boundary conditions, however, we disregard the previous

strategy and propose a quite different approach based on a posteriori error estimates. As a

matter of fact, it can be shown that numerical errors are strongly related to the jumps of

pressure and normal derivative of velocity on internal edges, and thus, we propose to correct

them imposing the following boundary condition on ue: ue = 0 if F ⊂ ∂Ω, else ue solves

−ν ∂ssue =
1

hF

Jν∂nu1 ± pkI·nKF on F , (10)

ue = 0 at the nodes.

It can be proved that all the derived methods achieve optimal convergence [1] and lead,

naturally, to a posteriori error estimators [2].

A second example of a mixed problem is the Darcy model. In its mixed form it presents an

additional variable besides the pressure, the so-called Darcy velocity, which is proportional

to the gradient of pressure. Unlike the Stokes case, now we ought to enrich both velocity

and pressure spaces in order to make the continuous piecewise linear and constant spaces

compatible, and even more important, to end up with locally mass conservative methods [7].

Going through the enriching methodology, it turns out that the piecewise linear velocity and

the constant pressure (u1, p0) have to be element-wise augmented with the function (ue, pe)

which solves the Darcy problem:

σue + ∇pe = f − σu1, ∇·ue = CK in K, (11)
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where CK is a suitable constant. Concerning the boundary condition for (11) two different

alternatives have been undertaken in [7] (leading to fix CK). First, following the idea used

for the Stokes case we set the boundary condition for ue as:

ue ·n =
αF hF

σ
Jp0KF on each F ⊆ ∂K ∩ Ω, (12)

where αF is a positive constant close to one and independent of h which can vary on each

F . We point out that such choice keeps final methods conforming while stability is achieved

without losing the local mass conservation feature. Alternatively, we can consider ue satis-

fying

ue ·n =
αF hF

σ
Jp0KF − u1·n +

1

hF

∫

F

u1·n on each F ⊆ ∂K ∩ Ω . (13)

This second choice mixes the strategy of [22] and [1] and preserves all desirable properties of

(12). Furthermore, analytical solutions arise easily avoiding additional computational costs

due to two level calculations.

Applying the technique described above, in the next section we derive a new stabilized

finite element method for the generalized Stokes problem taking care of the inf-sup condition

and the boundary layer issue simultaneously.

3. An application to the generalized Stokes problem

Let f ∈ L2(Ω)2 and let us consider the following generalized Stokes problem: Find (u, p)

such that

Lu + ∇p = f , ∇·u = 0 in Ω , (14)

u = 0 on ∂Ω ,

where Lu := σu−ν∆u, and we recall that σ, ν ∈ R
+ denote the reaction term and the fluid

viscosity, respectively. The usual variational formulation for problem (14) is given by: Find

(u, p) ∈ V ×Q := H1
0 (Ω)2 × L2

0(Ω) such that:

B
(
(u, p), (v, q)

)
= F

(
v, q
)

∀ (v, q) ∈ V ×Q , (15)

where

B
(
(u, p), (v, q)

)
:= σ(u,v)Ω + ν(∇u,∇v)Ω − (p,∇·v)Ω + (q,∇·u)Ω , (16)

F
(
v, q
)

:= (f ,v)Ω. (17)
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Hereafter, we will define the bilinear form a(., .) over V × V by

a(u,v) := σ(u,v)Ω + ν(∇u,∇v)Ω . (18)

In order to propose the Petrov-Galerkin method for (14), let Vh := [Vh ∩H1
0 (Ω)]2, Qh :=

Vh∩L2
0(Ω), where Vh is defined in (1). Then, we propose the following scheme for (14): Find

u1 + ue ∈ Vh + [Eh]
2 and p1 ∈ Qh such that

B
(
(u1 + ue, p1), (v1 + vb, q1)

)
= F

(
v1 + vb, q1

)
,

for all v1 + vb ∈ Vh ⊕ [H1
0 (Th)]

2 and all q1 ∈ Qh. This Petrov-Galerkin scheme may be

written as the following system:

B
(
(u1 + ue, p1), (v1, q1)

)
= F

(
v1, q1

)
∀(v1, q1) ∈ Vh ×Qh, (19)

a(u1 + ue,vb)K − (p1,∇·vb)K = (f ,vb)K ∀vb ∈ H1
0 (K)2 , ∀K ∈ Th , (20)

where the subindex K stands for integration over K. Equation (20) above may be written

in strong form in the following way

Lue = f − (σu1 + ∇p1) in K. (21)

From now on, and just for the derivation of the method, we will suppose that f ∈ [Vh]
2.

Now, this differential problem above must be completed with boundary conditions. In order

to correct also the residual of the strong equation on the boundary of K, we impose the

following boundary condition on ue:

ue = ge on Fi, i = 1, 2, 3, (22)

where ge will appear as solution of a suitable ODE, with right-hand side depending on f ,u1

and p1, on each edge Fi (this ODE will be specified, for the basis functions, in §3.1 below).

Since this problem is well posed, we can write (19) as follows: Find (u1, p1) ∈ Vh ×Qh such

that

∑

K∈Th

[
a(u1 + uK

e ,v1)K − (p1,∇·v1)K + (q1,∇· (u1 + uK
e ))K

]
= (f ,v1)Ω , (23)

for all (v1, q1) ∈ Vh ×Qh, where uK
e := ue

∣
∣
∣
K

. Next, in order to give a more practical (and

useful in the sequel) formulation, we define, as in (8), an operator MK : P1(K)2 → H1(K)2

such that

uK
e = MK (f − σu1 −∇p1) ∀K ∈ Th . (24)
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Thus, with the characterization (24), the problem (19) leads to the following Petrov-Galerkin

Enriched Method (PGEM): Find (u1, p1) ∈ Vh ×Qh such that

Bm((u1, p1), (v1, q1)) :=
∑

K∈Th

[a(u1 −MK (σu1 + ∇p1) ,v1)K − (p1,∇ · v1)K + (q1,∇ · (u1 −MK (σu1 + ∇p1)))K ]

= (f ,v1)Ω −
∑

K∈Th

[ a(MKf ,v1)K − (q1,∇· (MKf))K ] , (25)

for all (v1, q1) ∈ Vh ×Qh.

3.1. The basis functions. We describe now the way of implementing (25) in terms of the

basis functions. Let ψ1, ψ2, ψ3 denote the barycentric coordinates of the element K. We

enumerate the sides Fi, i = 1, 2, 3 such that ψi|Fi
= 0 and define as biK the solution of

LbiK = ψi in K , (26)

for j = 1, 2, 3 : σi
jb

i
K − ν∂ssb

i
K =

σi
j

σ
ψi on Fj , biK = 0 at the nodes ,

where, suggested by [22], we have made the choice

σi
j = σ

4|K|2
|Fj|2|Fi|2

. (27)

The local problem can be solved analytically, obtaining

biK(x, y) =
1

σ

(

ψi(x, y) −
sinh(αiψi)

sinh(αi)

)

where αi =

√

4σ |K|2
ν|Fi|2

, (28)

and hence, we see that, for a linear function g = (g1, g2) = (
∑3

i=1 g
i
1ψi,

∑3
j=1 g

j
2ψj), we have

that the operator MK defined in (24) is given by

MK(g) =

(
3∑

i=1

gi
1b

i
K ,

3∑

j=1

g
j
2b

j
K

)

. (29)

Hence, an exact expression for the basis functions to be used in the implementation of (25)

is available, thus leading to a method which is not of a two level type. Finally, we note that

we can exactly formulate the enriched space Eh as the sub-space of H1(Th) whose functions

are locally linear combinations of the functions biK , and hence it is again finite dimensional.
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Remark. Let bK =
∑3

i=1 b
i
K , i.e.,

bK(x, y) =
1

σ

(

1 −
3∑

i=1

sinh(αiψi)

sinh(αi)

)

. (30)

In Figure 1 we depict the function bK in a patch of equilateral elements for different values

of αK := α1 = α2 = α3. In there we can appreciate how this function varies with respect to

αK . This will have a direct impact on the error analysis performed in Section 3.3. We can

also compute the mean value of bK on K, which will be very useful in the definition of our

stabilization parameter (see (36) below). Indeed, from the expression for bK we obtain

(bK , 1)K

|K| =
1

σ

[

1 − 2
3∑

i=1

(
1

α2
i

− 1

αi sinh(αi)

)]

. (31)

We further remark that, in the case where the mesh Th is composed by equilateral triangles,

then σi
j = σ for i, j = 1, 2, 3, and then bK satisfies the following boundary value problem in

K:

L bK = 1 in K , bK = g on ∂K , (32)

where, for i = 1, 2, 3,

σ g − ν∂ssg =
σ

σ
on Fi, g = 0 at the nodes . (33)

Finally, using these functions, we may now give a precise definition of the function ge ap-

pearing in (22). Indeed, we have

ge =

(
3∑

i=1

(f 1
i − σu1

i )b
i
K − bK

∂p1

∂x1

,

3∑

j=1

(f 2
j − σu2

j)b
j
K − bK

∂p1

∂x2

)

, (34)

where fk
i , u

k
i , k = 1, 2, i = 1, 2, 3, stand for the nodal values of f and u1, respectively. �

Remark. We end this section by returning to the method (25). Since both the unknowns

(u1, p1) and the test functions (v1, q1) belong to the same space, (25) could be seen as a

Galerkin method. We remark nevertheless that it can be seen alternatively as a Petrov-

Galerkin method. Indeed, the solution of (25) may be also given by u1 +ue = u1 +MK(f −
σu1 −∇p1) ∈ Vh ⊕ [Eh]

2, and hence the discrete solution belongs to a space different from

the test space, hence, the Petrov-Galerkin character. �
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Figure 1. Shape of σbK on a patch of elements with αi = 1, αi = 10 and αi = 25.

3.2. A link to a stabilized formulation. We begin by presenting the stabilized finite

element method: Find (u1, p1) ∈ Vh ×Qh such that

Bτ ((u1, p1), (v1, q1)) = Fτ (v1, q1) ∀ (v1, q1) ∈ Vh ×Qh , (35)

where

Bτ ((u1, p1), (v1, q1)) := B((u1, p1), (v1, q1)) −
∑

K∈Th

τK (σu1 + ∇p1, σ v1 −∇q1)K ,

Fτ (v1, q1) := F(v1, q1) −
∑

K∈Th

τK (f , σ v1 −∇q1)K ,

and the stabilization parameter is given by

τK :=
1

σ

[

1 − 2
3∑

i=1

(
1

α2
i

− 1

αi sinh(αi)

)]

. (36)

Remark. Method (35) has some similarities with some existing stabilized finite element meth-

ods for this problem, specially with [8] and [6]. The are two main differences between the

present method and the method presented in [6]. The first one is related to the extension to
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higher order polynomials. Even if this work is focused in first order approximations, an ex-

tension to arbitrary order seems feasible. In that case, the resulting formulation would have

a structure similar to the unusual stabilized finite element methods from [8], thus having a

symmetric formulation, contrary to the method from [6] in which the formulation is non-

symmetric for higher degrees of interpolation. Concerning the stabilization parameter, the

main difference relies on the fact that in the present approach the stabilization parameter is

exactly known as being the mean value of the enrichment function on the element, contrary

to a ”virtual” (not known) bubble in [8] and an ad-hoc expression arising from the stability

analysis in [6]. �

3.2.1. Derivation. For completeness of the presentation, we resume the derivation carried

out in [9]. We will suppose that the mesh Th is made by equilateral triangles. The first step

is to replace in our formulation ue by

ũe := MK(f − σu1 −∇p1) = bK (f − σu1 −∇p1) , (37)

where, for a function v, v denotes its projection onto the P0(K) space, i.e.,

v :=
(v, 1)K

|K| .

We further remark that bK satisfies

‖bK‖0,K ≤ C h3
K and ‖bK‖0,∂K ≤ C h

5/2
K , (38)

where C > 0 is a positive constant depending possibly on σ and ν, but independent of h.

Next, in order to design a stabilized finite element method we integrate by parts and arrive

at the following rewriting of (19) (or (25)):

B((u1, p1), (v1, q1)) +
∑

K∈Th

[

(ũe, σ v1 −∇q1)K + (ũe, ν∂nv1 + q1I·n)∂K

]

= F(v1, q1) .

Next, we neglect the boundary terms (see [9] for a discussion about this matter). Also, using

(38) and the approximation properties of the projection (cf. [19]), we obtain
∑

K∈Th

(ũe, σ(v1 − v1))K ≤ C h3
K ‖f − σu1 −∇p1‖0,K |v1|1,K ,

and hence, using (37) and the orthogonality of the projection, the following approximation

is justified

∑

K∈Th

(ũe, σ v1 −∇q1)K ≈
∑

K∈Th

(bK , 1)K

|K| (f − σu1 −∇p1, σ v1 −∇q1)K .
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Collecting all the previous results, we can present the following stabilized finite element

method for (14): Find (u1, p1) ∈ Vh ×Qh such that

B((u1, p1), (v1, q1)) −
∑

K∈Th

(bK , 1)K

|K| (σu1 + ∇p1, σ v1 −∇q1)K

= F(v1, q1) −
∑

K∈Th

(bK , 1)K

|K| (f , σ v1 −∇q1)K , (39)

for all (v1, q1) ∈ Vh × Qh. We finally remark that, replacing the added terms in K by

(σu1 + ∇p1, σ v1 −∇q1)K (which introduces a new source of error, but, again, this error is

of a smaller size), and noting that (bK ,1)K

|K|
is equal to τK , then method (39) is nothing but

method (35).

3.3. Convergence analysis and error estimates. This section is devoted to the a priori

error analysis of the method (35). We will start by giving a technical result concerning the

properties of the stabilization parameter τK and then we will give a stability result for (35).

Lemma 1. Let K ∈ Th, let αK = max{αi : i = 1, 2, 3} and F ∈ E(K) and ωF = K ∪K ′.

Then, the following estimates hold for τK :

C1 min{1, α2
K} ≤ στK ≤ C2 min{1, α2

K} , (40)

C1

1 + α2
K

≤ 1 − στK ≤ C2

1 + α2
K

, (41)

|J1 − στKKF | ≤ C min{1, α2
K} , (42)

where the (positive) constans C,C1 and C2 do not depend on h, σ or ν.

Proof. The results can be proved using a Taylor series expansion for the function sinh(·), the

definition of τK and the regularity of the mesh. �

Next, let us define the following mesh-dependent norm:

‖(v, q)‖2
h :=

∑

K∈Th

[
σ(1 − στK) ‖v‖2

0,K + ν |v|21,K + τK ‖∇q‖2
0,K

]
. (43)
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Lemma 2. For all (v, q) ∈ [H1(Ω)]2 ×H1(Ω), the bilinear form Bτ satisfies

Bτ ((v, q), (v, q)) = ‖(v, q)‖2
h ,

Bτ ((v, q), (w, r)) ≤‖(v, q)‖h ‖(w, r)‖h +
∑

K∈Th

(1 − στK) (∇q,w)K

+
∑

K∈Th

(1 − στK) (∇ · v, r)K −
∑

F∈EΩ

JστKKF (v, r)F ,

and the discrete problem (35) has a unique solution.

Proof. The first equality follows easily from the definition of Bτ . The second one is straight-

foward from the definition of Bτ , integration by parts and the Cauchy-Schwarz inequality. �

The method (35) is not strongly consistent. Hence, we bound the consistency error in the

following result.

Lemma 3. Let us suppose that (u, p) ∈ [H2(Ω) ∩H1
0 (Ω)]2 × [H1(Ω) ∩ L2

0(Ω)]. Then, there

exists C > 0 such that

Bτ ((u − u1, p− p1), (v1, q1)) ≤
∑

K∈Th

τKν(∆u, σv1)K + C h
√
ν |u|2,Ω‖(v1, q1)‖h .

Proof. A simple computation shows that

Bτ ((u − u1, p− p1), (v1, q1)) =
∑

K∈Th

τK(ν∆u, σv1 −∇q1)K ,

and the result follows from (40), the Cauchy-Schwarz inequality and the definition of ‖.‖h. �

Remark. As it was done in [1] for the Stokes problem, we could have given a consistent

presentation of our method, just keeping the ∆u and ∆v terms that vanish in the integration

by parts appearing in the static condensation procedure from last section. In that case, the

proof of Lemma 4 below would change since Lemma 2 should be written differently (since

the modified bilinear form Bτ would not be elliptic in the whole continuous space), but the

results would be essentially the same. �

Lemma 4. Let us suppose that (u, p) ∈ [H2(Ω)∩H1
0 (Ω)]2 × [H1(Ω)∩L2

0(Ω)] is the solution

of (14) and that (u1, p1) ∈ Vh × Qh is the solution of (35), and let us denote (eu, ep) :=
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(u − u1, p− p1). Then, there exists C > 0, independent of h, σ and ν, such that

‖(eu, ep)‖2
h ≤ C inf

(v1,q1)∈Vh×Qh

{

‖(u − v1, p− q1)‖2
h +

∑

K∈Th

νh−2
K ‖u − v1‖2

0,K + ν h2 |u|22,Ω

+
∑

K∈Th

min{1, α2
K}

σ
(h−2

K ‖p− q1‖2
0,K + |p− q1|21,K)

}

.

Proof. Let (v1, q1) ∈ Vh ×Qh. Then, from Lemmas 2 and 3 there follows

‖(eu, ep)‖2
h = Bτ ((eu, ep), (eu, ep))

= Bτ ((eu, ep), (u − v1, p− q1)) + Bτ ((eu, ep), (v1 − u1, q1 − p1))

≤ ‖(eu, ep)‖h‖(u − v1, p− q1)‖h +
∑

K∈Th

(1 − στK) (∇ep, (u − v1))K

︸ ︷︷ ︸

I

+
∑

K∈Th

(1 − στK) (∇ · eu, (p− q1))K −
∑

F∈EΩ

JστKKF (eu · n, p− q1)F

︸ ︷︷ ︸

II
∑

K∈Th

τK(ν∆u, σ(v1 − u1))K

︸ ︷︷ ︸

III

+ C h
√
ν |u|2,Ω ‖(v1 − u1, q1 − p1)‖h . (44)

Now, we proceed term by term. First, using the Cauchy-Schwarz inequality we arrive at

I =
∑

K∈Th

(1 − στK)(∇ep,u − v1)K

≤
∑

K∈Th

(1 − στK)‖∇ep‖0,K‖u − v1‖0,K

≤ C

{
∑

K∈Th

τ−1
K

1 + α2
K

‖u − v1‖2
0,K

} 1

2

‖(eu, ep)‖h

≤ C

{
∑

K∈Th

σmin{1, α−2
K }max{1, α−2

K }‖u − v1‖2
0,K

} 1

2

‖(eu, ep)‖h

= C

{
∑

K∈Th

σα−2
K ‖u − v1‖2

0,K

} 1

2

‖(eu, ep)‖h , (45)
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where we have also used the fact that 1−στK ≤ 1, (40), (41) and the definition of the norm

‖ · ‖h. Also, applying (41) we obtain

II =
∑

K∈Th

(1 − στK)(p− q1,∇ · eu)K −
∑

F∈EΩ

JστKKF (eu · n, p− q1)F

≤
∑

K∈Th

C

1 + α2
K

‖p− q1‖0,K |eu|1,K +
∑

F∈EΩ

|JστKKF | ‖eu‖0,F‖p− q1‖0,F

≤C
{
∑

K∈Th

ν−1

1 + α2
K

‖p− q1‖2
0,K

} 1

2

‖(eu, ep)‖h +
∑

F∈EΩ

|JστKKF | ‖eu‖0,F‖p− q1‖0,F .

Next, using the local trace result (cf. [35]): there exists C > 0, independent of h, such that,

for all K ∈ Th, F ∈ EK and all v ∈ H1(ωF )

‖v‖0,F ≤ C
(

h
− 1

2

F ‖v‖0,ωF
+ h

1

2

F |v|1,ωF

)

, (46)

the regularity of the mesh, (41), (42) and the definition of αK , we obtain

∑

F∈EΩ

|JστKKF | ‖eu‖0,F‖p− q1‖0,F

≤C
∑

F∈EΩ

|JστKKF | {h
− 1

2

F ‖eu‖0,ωF
+ h

1

2

F |eu|1,ωF
}{h−

1

2

F ‖p− q1‖0,ωF
+ h

1

2

F |p− q1|1,ωF
}

=C
∑

F∈EΩ

|J1 − στKKF | {‖eu‖0,ωF
+ hF |eu|1,ωF

}{h−1
F ‖p− q1‖0,ωF

+ |p− q1|1,ωF
}

≤C
{
∑

K∈Th

(1 − στK)‖eu‖2
0,K +

h2
K

1 + α2
K

|eu|21,K

} 1

2

×

{
∑

K∈Th

min{1, α2
K} (h−2

K ‖p− q1‖2
0,K + |p− q1|21,K)

} 1

2

≤
{
∑

K∈Th

min{1, α2
K}

σ
(h−2

K ‖p− q1‖2
0,K + |p− q1|21,K)

} 1

2

‖(eu, ep)‖h . (47)
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Finally, in an analogous way arrive at the following

III =
∑

K∈Th

ντK(∆u, σ(v1 − u1))K =
∑

K∈Th

ντK(∆u, σeu)K +
∑

K∈Th

ντK(∆u, σ(u − v1))K

≤C
{
∑

K∈Th

ν2τ 2
Kσ

1 − στK
|u|22,K

} 1

2

‖(eu, ep)‖h + C
∑

K∈Th

νστK |u|2,K‖u − v1‖0,K

≤C
{
∑

K∈Th

ν2 min{1, α2
K}

σ
(1 + α2

K) |u|22,K

} 1

2

‖(eu, ep)‖h + C
∑

K∈Th

ν |u|2,K‖u − v1‖0,K

≤C
{
∑

K∈Th

ν2

σ
min{1, α2

K}max{1, α2
K} |u|22,K

} 1

2

‖(eu, ep)‖h + C
∑

K∈Th

ν |u|2,K‖u − v1‖0,K

=C

{
∑

K∈Th

ν2α2
K

σ
|u|22,K

} 1

2

‖(eu, ep)‖h + C
∑

K∈Th

ν |u|2,K‖u − v1‖0,K . (48)

Summing up, from (44)-(48), and the definition of αK , we obtain

‖(eu, ep)‖2
h ≤ ‖(eu, ep)‖h‖(u − v1, p− q1)‖h

+ C

{
∑

K∈Th

σ α−2
K ‖u − v1‖2

0,K

} 1

2

‖(eu, ep)‖h + C

{
∑

K∈Th

ν−1

1 + α2
K

‖p− q1‖2
0,K

} 1

2

‖(eu, ep)‖h

+ C

{
∑

K∈Th

min{1, α2
K}

σ
(h−2

K ‖p− q1‖2
0,K + |p− q1|21,K)

} 1

2

‖(eu, ep)‖h

+ C

{
∑

K∈Th

ν2α2
K

σ
|u|22,K

} 1

2

‖(eu, ep)‖h + C
∑

K∈Th

ν |u|2,K‖u − v1‖0,K

+ Ch
√
ν |u|2,Ω‖(eu, ep)‖h + Ch

√
ν |u|2,Ω‖(u − v1, p− q1)‖h

≤C
{

‖(u − v1, p− q1)‖2
h +

∑

K∈Th

(
σ α−2

K ‖u − v1‖2
0,K + ν |u|2,K‖u − v1‖0,K

)
+ ν h2 |u|22,Ω

+
∑

K∈Th

ν−1

1 + α2
K

‖p− q1‖2
0,K +

∑

K∈Th

min{1, α2
K}

σ
(h−2

K ‖p− q1‖2
0,K + |p− q1|21,K)

}

+
1

2
‖(eu, ep)‖2

h ,
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and the result follows using that

ν−1

1 + α2
K

≤ C
min{1, α2

K}h−2
K

σ
,

and rearranging terms. �

For the proof of the next result we introduce the Clément interpolation operator (cf.

[18, 19]) Ch : H1(Ω) → Vh (if v ∈ H1
0 (Ω), then we may define Ch(v) with values in Vh∩H1

0 (Ω)),

satisfying

‖v − Ch(v)‖0,K ≤ C ‖v‖0,ωK
, (49)

|v − Ch(v)|m,K ≤ C h1−m
K |v|1,ωK

, (50)

for m = 0, 1, with the obvious extension to vector-valued functions.

Lemma 5. Let us suppose that (u, p) ∈ [H2(Ω)∩H1
0 (Ω)]2 × [H1(Ω)∩L2

0(Ω)] is the solution

of (14). Then, there exists C > 0 such that

‖(u − Ch(u), p− p̃h)‖2
h +

∑

K∈Th

νh−2
K ‖u − Ch(u)‖2

0,K

+
∑

K∈Th

min{1, α2
K}

σ
(h−2

K ‖p− p̃h‖2
0,K + |p− p̃h|21,K) ≤ C h2ν |u|22,Ω +

min{1, α2
K}

σ
|p|21,Ω,

where p̃h = Ch(p) − (Ch(p),1)Ω
|Ω|

∈ Qh.

Proof. The result follows from the definition of the norm ‖.‖h. Indeed, using (49)-(50),

(40)-(41) and the regularity of the mesh we obtain

‖(u − Ch(u), p− p̃h)‖2
h =

∑

K∈Th

σ(1 − στK) ‖u − Ch(u)‖2
0,K + ν |u − Ch(u)|21,K + τK |p− p̃h|21,K

≤ C
∑

K∈Th

[( σh4
K

1 + α2
K

+ νh2
K

)

|u|22,ωK
+

min{1, α2
K}

σ
|p|21,ωK

]

≤ C
(

ν h2 |u|22,Ω +
min{1, α2

K}
σ

|p|21,Ω

)

.

The other terms are bounded in a similar way. �

Finally, using the previous result and the asymptotic behavior of τK (cf. Lemma 1) we

can prove the following optimal convergence result.
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Theorem 6. Let us suppose that (u, p) ∈ [H2(Ω)∩H1
0 (Ω)]2× [H1(Ω)∩L2

0(Ω)] is the solution

of (14) and that (u1, p1) ∈ Vh × Qh is the solution of (35). Then, there exists C > 0

independent of h, σ and ν, such that

‖(eu, ep)‖h ≤ C (
√
νh |u|2,Ω +

min{1, αK}√
σ

|p|1,Ω).

Proof. The result follows applying Lemmas 4 and 5 with v1 = Ch(u) and q1 = p̃h. �

Remark. The estimate from Theorem 6 may written as:

[ ∑

K∈Th

σ(1 − στK)

ν
‖eu‖2

0,K +
τK

ν
|ep|21,K

] 1

2

+ |eu|1,Ω ≤ C (h |u|2,Ω +
min{1, αK}√

σν
|p|1,Ω) ,

which, using (41) leads to

[ ∑

K∈Th

σ

σh2
K + ν

‖eu‖2
0,K

] 1

2

+ |eu|1,Ω ≤ C (h |u|2,Ω +
min{1, αK}√

σν
|p|1,Ω) , (51)

which may be seen as a robust estimate for the velocity. Now, if ν ≤ σh2
K , then (51) provides

the following estimate

‖eu‖0,Ω ≤ C h2 (|u|2,Ω +
1

ν
|p|1,Ω) , (52)

which is an optimal error estimate for ‖eu‖0,Ω, which does not need the use of a duality

argument. �

In the next result we state an error estimate for the pressure in its natural norm.

Theorem 7. Under the same assumptions as in Theorem 6, there exists a positive constant

C > 0 such that

‖ep‖0,Ω ≤ C
√
σmax{1,√ν}

(√
νh |u|2,Ω +

min{1, αK}√
σ

|p|1,Ω + min{1, αK} |u|2,Ω

)

.

Proof. From the continuous inf-sup condition (see [27]), there exists w ∈ H1
0 (Ω)2 such that

∇·w = ep in Ω and ‖w‖1,Ω ≤ C ‖ep‖0,Ω. Let wh = Ch(w) ∈ Vh be the Clément interpolant

of w. Then, integrating by parts, (35) (applied to (wh, 0)) and using Cauchy-Schwarz
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inequality, we obtain

‖ep‖2
0,Ω = (∇·w, ep)Ω

= (∇· (w − wh), ep)Ω + (∇·wh, ep)Ω

= − (w − wh,∇ep)Ω + ν (∇eu,∇wh)Ω + σ (eu,wh)Ω

−
∑

K∈Th

τK (σ eu + ∇ep, σwh)K −
∑

K∈Th

τK(ν∆u, σwh)K

= − (w − wh,∇ep)Ω + ν (∇eu,∇wh)Ω +
∑

K∈Th

((1 − στK)eu, σwh)K

−
∑

K∈Th

τK (∇ep, σwh)K −
∑

K∈Th

τK(ν∆u, σwh)K

≤C
∑

K∈Th

hK |w|1,ωK
‖∇ep‖0,K + ν |eu|1,Ω|wh|1,Ω +

∑

K∈Th

σ(1 − στK)‖eu‖0,K‖wh‖0,K

+
∑

K∈Th

στK ‖∇ep‖0,K‖wh‖0,K +
∑

K∈Th

στKν|u|2,K‖wh‖0,K

≤C
[ ∑

K∈Th

(τK +
σ2τ 2

K

ν
) |ep|21,K + ν|eu|21,K +

σ2(1 − σ τK)2

ν
‖eu‖2

0,K + σ2τ 2
Kν |u|22,K

] 1

2×

[ ∑

K∈Th

ν |w|21,ωK
+ ν |wh|21,Ω + ν ‖wh‖2

0,Ω

] 1

2

≤C
√
σ max{1,√ν}

[

‖(eu, ep)‖2
h +

∑

K∈Th

min{1, α4
K}|u|22,K

] 1

2

[

|w|21,Ω + |wh|21,Ω + ‖wh‖2
0,Ω

] 1

2

.

(53)

Now, using the approximation properties of the Clément interpolant (cf. [19]) we obtain

[

|w|21,Ω + |wh|21,Ω + ‖wh‖2
0,Ω

] 1

2 ≤ C ‖w‖1,Ω ≤ C ‖ep‖0,Ω .

Hence, dividing in (53) by ‖ep‖0,Ω, and using the definition of the norm ‖ · ‖h, we have

‖p− p1‖0,Ω ≤ C
√
σmax{1,√ν}

(

‖(u − u1, p− p1)‖h + min{1, αK} |u|2,Ω

)

,

and the result follows applying Theorem 6. �

Throughout the next lemma we will suppose that the solution of the problem: Find (ϕ, π)

such that:

σϕ − ν∆ ϕ − ∇π = u − u1 , ∇·ϕ = 0 in Ω , (54)

ϕ = 0 on ∂Ω ,
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where (u1, p1) is the solution of (35), belongs to [H2(Ω) ∩H1
0 (Ω)]2 × [H1(Ω) ∩ L2

0(Ω)], and

that there exists a constant C, possibly depending on σ and ν, but not on h, such that

‖ϕ‖2,Ω + ‖π‖1,Ω ≤ C ‖u − u1‖0,Ω . (55)

Theorem 8. Under the same assumptions of Theorem 6 the following error estimates hold:

If ν ≤ σh2
K, then there exists C > 0, independent of h, σ and ν, such that

‖eu‖0,Ω ≤ C h2 (|u|2,Ω +
1

ν
|p|1,Ω) .

If σh2
K < ν, then there exists C > 0, independent of h, but depending on σ and ν, such that

‖eu‖0,Ω ≤ C h2 (|u|2,Ω + |p|1,Ω) .

Proof. Since we only need to prove the diffusive-dominated case (σh2
K < ν), then we will

treat σ and ν as fixed constants. Let (ϕh, πh) := (Ch(ϕ), Ch(π) − (Ch(π),1)Ω
|Ω|

) ∈ Vh × Qh.

Then, multiplying the first equation in (54) by u − u1 and second by −(p − p1), from the

definition of the bilinear form Bτ , interpolation inequalities (50)-(49), and Theorems 6 and

7, we obtain

‖u − u1‖2
0,Ω =σ(ϕ,u − u1)Ω + ν(∇ϕ,∇(u − u1))Ω + (π,∇· (u − u1))Ω − (p− p1,∇·ϕ)Ω

=Bτ ((u − u1, p− p1), (ϕ, π)) +
∑

K∈Th

τK (σ(u − u1) + ∇(p− p1), σϕ + ∇π)K

=Bτ ((u − u1, p− p1), (ϕ − ϕh, π − πh)) +
∑

K∈Th

τKν(∆u, σϕh −∇πh)K

+
∑

K∈Th

τK (σ(u − u1) + ∇(p− p1), ν∆ϕ + (u − u1))K

≤C
{

‖(u − u1, p− p1)‖2
h + ‖u − u1‖2

0,Ω + h2 |u|22,Ω + ‖p− p1‖2
0,Ω

} 1

2×
{ ∑

K∈Th

‖ϕ − ϕh‖2
0,K + |ϕ − ϕh|21,K + ‖π − πh‖2

0,K + τK‖∇(π − πh)‖2
0,K

+ h2 ‖ϕh‖2
0,K + h2 |πh|21,K + τK |ϕ|22,K + τK‖u − u1‖2

0,K

} 1

2

≤C h2 (|u|2,Ω +
1√
ν
|p|1,Ω)

(

|ϕ|22,Ω + |π|21,Ω + ‖u − u1‖2
0,Ω

) 1

2

,

and the result follows applying (55) and dividing by ‖u − u1‖0,Ω. �
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Figure 2. Convergence history for σ = 1 and ν = 1.

4. Numerical validations

4.1. A problem with an analytical solution. We first perform a convergence validation.

To do this, we set Ω = (0, 1)× (0, 1) and f and the boundary conditions such that the exact

solution of (14) is given by

u(x, y) =

(

sinh
(√

σ
ν
y
)

sinh
(√

σ
ν

) , 0

)t

,

p(x, y) = (x− 0.5)(y − 0.5) .

In Figures 2-4 we depict the convergence history as h→ 0 for all the variables for σ = 1 and

ν = 1, 10−2 and 10−4, respectively, where we see that all the variables converge as predicted

by the theory.

4.2. The lid-driven cavity flow. Next, we address the lid-driven cavity problem, with

domain Ω as before, f = 0, and, in order to test the performance of the method for the

large σ case, we perform experiments with σ = 1 and σ = 104, both using ν = 1. We depict

in Figure 5 elevations for the pressure field and in Figure 6 of the horizontal velocity, for an

unstructured (and very close to equilateral) mesh. We observe the absence of oscillations for
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Figure 3. Convergence history for σ = 1 and ν = 10−2 .
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Figure 4. Convergence history for σ = 1 and ν = 10−4.

the pressure in both cases, which shows that the method treats well the inf-sup condition

and the presence of a boundary layer for the reaction-dominated regime.



24 R. ARAYA, G.R. BARRENECHEA, L.P FRANCA, AND F. VALENTIN

PRESSURE PRESSURE

Figure 5. Pressure elevation for ν = 1 and σ = 1 (left) and σ = 104 (right).

Next, we consider a structured mesh and test the method for σ = 104, ν = 1. We see in

Figure 7 that a small oscillation appears. This unexpected fact deserves further investigation,

but, we also remark that this oscillation may be corrected by changing the definition of αi

as follows:

αi :=

√

8σ |K|2
ν|Fi|2

. (56)

This fact may be explained as follows, although the method was justified for a regular mesh,

we recall that the derivation was performed supposing an equilateral mesh, and the regular

mesh we used for this example differs from the equilateral case.
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stabilized finite element methods and the Galerkin method with bubble functions, Comput. Methods Appl.

Mech. Engrg., 96 (1992), pp. 117–129.

[12] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, 1991.

[13] F. Brezzi, L. P. Franca, T. J. R. Hughes, and A. Russo, b =
∫

g, Comput. Methods Appl. Mech.

Engrg., 145 (1997), pp. 329–339.

[14] F. Brezzi, L. P. Franca, and A. Russo, Further considerations on residual-free bubbles for advective-

diffusive equations, Comput. Methods Appl. Mech. Engrg., 166 (1998), pp. 25–33.

[15] F. Brezzi and A. Russo, Choosing bubbles for advection-diffusion problems, Math. Models Methods

Appl. Sci., 4 (1994), pp. 571–587.

[16] A. N. Brooks and T. J. R. Hughes, Streamline upwind Petrov-Galerkin formulations for convec-

tive dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput.

Methods Appl. Mech. Engrg., 32 (1982), pp. 199–259.
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