6 research outputs found

    On the Performance of Cell-Free Massive MIMO Relying on Adaptive NOMA/OMA Mode-Switching

    Get PDF
    The downlink (DL) of a non-orthogonal-multiple-access (NOMA)-based cell-free massive multiple-input multipleoutput (MIMO) system is analyzed, where the channel state information (CSI) is estimated using pilots. It is assumed that the users are grouped into multiple clusters. The same pilot sequences are assigned to the users within the same clusters whereas the pilots allocated to all clusters are mutually orthogonal. First, a user’s bandwidth efficiency (BE) is derived based on his/her channel statistics under the assumption of employing successive interference cancellation (SIC) at the users’ end with no DL training. Next, the classic max-min optimization framework is invoked for maximizing the minimum BE of a user under peraccess point (AP) power constraints. The max min user BE of NOMA-based cell-free massive MIMO is compared to that of its orthogonal multiple-access (OMA) counter part, where all users employ orthogonal pilots. Finally, our numerical results are presented and an operating mode switching scheme is proposed based on the average per-user BE of the system, where the mode set is given by Mode = { OMA, NOMA }. Our numerical results confirm that the switching point between the NOMA and OMA modes depends both on the length of the channel’s coherence time and on the total number of users

    Max-Min Rate of Cell-Free Massive MIMO Uplink with Optimal Uniform Quantization

    Get PDF
    Cell-free Massive multiple-input multiple-output (MIMO) is considered, where distributed access points (APs) multiply the received signal by the conjugate of the estimated channel, and send back a quantized version of this weighted signal to a central processing unit (CPU). For the first time, we present a performance comparison between the case of perfect fronthaul links, the case when the quantized version of the estimated channel and the quantized signal are available at the CPU, and the case when only the quantized weighted signal is available at the CPU. The Bussgang decomposition is used to model the effect of quantization. The max-min problem is studied, where the minimum rate is maximized with the power and fronthaul capacity constraints. To deal with the non-convex problem, the original problem is decomposed into two sub-problems (referred to as receiver filter design and power allocation). Geometric programming (GP) is exploited to solve the power allocation problem whereas a generalized eigenvalue problem is solved to design the receiver filter. An iterative scheme is developed and the optimality of the proposed algorithm is proved through uplink-downlink duality. A user assignment algorithm is proposed which significantly improves the performance. Numerical results demonstrate the superiority of the proposed schemes

    Cell-Free Massive MIMO and Millimeter Wave Channel Modelling for 5G and Beyond

    Get PDF
    Huge demand for wireless throughput and number of users which are connected to the base station (BS) has been observed in the last decades. Massive multiple-input multiple-output (MIMO) is a promising technique for 5G for the following reasons; 1) high throughput; 2) serving large numbers of users at the same time; 3) energy efficiency. However, the low throughput of cell-edge users remains a limitation in realistic multi-cell massive MIMO systems. In cell-free massive MIMO, on the other hand, distributed access points (APs) are connected to a central processing unit (CPU) and jointly serve distributed users. This thesis investigates the performance of cell-free Massive MIMO with limited-capacity fronthaul links from the APs to the CPU which will be essential in practical 5G networks. To model the limited-capacity fronthaul links, we exploit the optimal uniform quantization. Next, closed-form expressions for spectral and energy efficiencies are presented. Numerical results investigate the performance gap between limited fronthaul and perfect fronthaul cases, and demonstrate that exploiting a relatively few quantization bits, the performance of limited-fronthaul cell-free Massive MIMO closely approaches the perfect fronthaul performance. Next, the energy efficiency maximization problem and max-min fairness problems are considered with per-user power and fronthaul capacity constraints. We propose an iterative procedure which exploits a generalized eigen vector problem and geometric programming (GP) to solve the max-min optimization problem. Numerical results indicate the superiority of the proposed algorithms over the case of equal power allocation. On the other hand, the performance of communication systems depends on the propagation channel. To investigate the performance of MIMO systems, an accurate small scale fading channel model is necessary. Geometry-based stochastic channel models (GSCMs) are mathematically tractable models to investigate the performance of MIMO systems

    On the Energy Efficiency of Limited-Backhaul Cell-Free Massive MIMO

    Get PDF
    We investigate the energy efficiency performance of cell-free Massive multiple-input multiple-output (MIMO), where the access points (APs) are connected to a central processing unit (CPU) via limited-capacity links. Thanks to the distributed maximum ratio combining (MRC) weighting at the APs, we propose that only the quantized version of the weighted signals are sent back to the CPU. Considering the effects of channel estimation errors and using the Bussgang theorem to model the quantization errors, an energy efficiency maximization problem is formulated with per-user power and backhaul capacity constraints as well as with throughput requirement constraints. To handle this non-convex optimization problem, we decompose the original problem into two sub-problems and exploit a successive convex approximation (SCA) to solve original energy efficiency maximization problem. Numerical results confirm the superiority of the proposed optimization scheme
    corecore