125 research outputs found

    Toward a new addressing scheme for a service-centric Internet

    Get PDF
    © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Traditional network architectures based on the Internet Protocol (IP) are now being questioned by the research community, since they are no longer positioned as the most suitable paradigm for supporting the increasing diversity of applications and uses of the Internet. A key issue in this subject is that, although the IP protocol has provided the basis for the rapid evolution of the Internet, its addressing scheme is not prepared to face the challenges posed by many foreseen applications. In light of this, different initiatives worldwide have started specific research programs to address these problems and work toward the "Future Internet". The TARIFA project represents one of these initiatives, and it is positioned as a clean slate alternative aimed at overcoming the critical issues in today's Internet. The novelty in TARIFA resides in the fact that any “commodity” in the network can be composed as a set of atomic services, which can be in turn assembled through a service-centric model for building a promising Internet architecture. In this paper, we focus on the space requirements and set the basis for a new addressing scheme suitable for service-centric network architectures such as the one proposed by TARIFA. The addressing scheme discussed in this paper is general in scope, and could be applied not only to architectures based on the composition of services but also to user and data-centric Internet architectures.This work was supported in part by the TARIFA project, by the Spanish Ministry of Science and Innovation under contract TEC2009-07041, and by the Catalan Research Council (CIRIT) under contract 2009 SGR1508.Postprint (author's final draft

    Use of locator/identifier separation to improve the future internet routing system

    Get PDF
    The Internet evolved from its early days of being a small research network to become a critical infrastructure many organizations and individuals rely on. One dimension of this evolution is the continuous growth of the number of participants in the network, far beyond what the initial designers had in mind. While it does work today, it is widely believed that the current design of the global routing system cannot scale to accommodate future challenges. In 2006 an Internet Architecture Board (IAB) workshop was held to develop a shared understanding of the Internet routing system scalability issues faced by the large backbone operators. The participants documented in RFC 4984 their belief that "routing scalability is the most important problem facing the Internet today and must be solved." A potential solution to the routing scalability problem is ending the semantic overloading of Internet addresses, by separating node location from identity. Several proposals exist to apply this idea to current Internet addressing, among which the Locator/Identifier Separation Protocol (LISP) is the only one already being shipped in production routers. Separating locators from identifiers results in another level of indirection, and introduces a new problem: how to determine location, when the identity is known. The first part of our work analyzes existing proposals for systems that map identifiers to locators and proposes an alternative system, within the LISP ecosystem. We created a large-scale Internet topology simulator and used it to compare the performance of three mapping systems: LISP-DHT, LISP+ALT and the proposed LISP-TREE. We analyzed and contrasted their architectural properties as well. The monitoring projects that supplied Internet routing table growth data over a large timespan inspired us to create LISPmon, a monitoring platform aimed at collecting, storing and presenting data gathered from the LISP pilot network, early in the deployment of the LISP protocol. The project web site and collected data is publicly available and will assist researchers in studying the evolution of the LISP mapping system. We also document how the newly introduced LISP network elements fit into the current Internet, advantages and disadvantages of different deployment options, and how the proposed transition mechanism scenarios could affect the evolution of the global routing system. This work is currently available as an active Internet Engineering Task Force (IETF) Internet Draft. The second part looks at the problem of efficient one-to-many communications, assuming a routing system that implements the above mentioned locator/identifier split paradigm. We propose a network layer protocol for efficient live streaming. It is incrementally deployable, with changes required only in the same border routers that should be upgraded to support locator/identifier separation. Our proof-of-concept Linux kernel implementation shows the feasibility of the protocol, and our comparison to popular peer-to-peer live streaming systems indicates important savings in inter-domain traffic. We believe LISP has considerable potential of getting adopted, and an important aspect of this work is how it might contribute towards a better mapping system design, by showing the weaknesses of current favorites and proposing alternatives. The presented results are an important step forward in addressing the routing scalability problem described in RFC 4984, and improving the delivery of live streaming video over the Internet

    HMS: A Hierarchical Mapping System for the Locator/ID Separation Network

    Get PDF
    The current Internet is facing serious scalability problems and the overloading of Internet Protocol (IP) addresses is regarded as an important reason. The Locator/ID Separation Protocol (LISP) is proposed as a network-based solution that separates IP addresses into Routing Locators (RLOCs) and Endpoint Identifiers (EIDs) to address the routing scalability problems. It is a critical challenge for LISP to design a scalable and efficient mapping system. In this paper, we propose a hierarchical mapping system (HMS). HMS consists of two levels with the bottom level maintaining the EID-to-RLOC mappings in an Autonomous System (AS) and the upper level storing the mappings between EID-prefixes and ASs in the global network. We adopt one-hop Distributed Hash Table (DHT) to organize EID-to-RLOC mappings in the bottom level and use a protocol like Border Gateway Protocol (BGP) to propagate EID-prefix-to-AS mappings in the upper level. HMS aggregates the prefixes in an AS and decreases the global mapping entries in the upper level. The evaluation results show that the number of mapping entries in HMS grows slower than the routing table size, which makes HMS scalable. In addition, the mobility in HMS does not cause mapping changes in the upper level. It makes HMS efficient in supporting host mobility. We estimate the map-requests sent to the mapping system, which show the load on HMS is small. Last, we compare HMS with LISP-TREE and LISP+ALT by quantitative analysis, in terms of resolution cost, and qualitative analysis. The results show that HMS has a good performance

    Managing Interdomain Traffic in Latin America: A New Perspective based on LISP

    Get PDF
    The characteristics of Latin American network infrastructures have global consequences, particularly in the area of interdomain traffic engineering. As an example, Latin America shows the largest de-aggregation factor of IP prefixes among all regional Internet registries, being proportionally the largest contributor to the growth and dynamics of the global BGP routing table. In this article we analyze the peculiarities of LA interdomain routing architecture, and provide up-to-date data about the combined effects of the multihoming and TE practices in the region. We observe that the Internet Research Task Force initiative on the separation of the address space into locators and identifiers can not only alleviate the growth and dynamics of the global routing table, but can also offer appealing TE opportunities for LA. We outline one of the solutions under discussion at the IRTF, the Locator/Identifier Separation Protocol, and examine its potential in terms of interdomain traffic management in the context of LA. The key advantage of LISP is its nondisruptive nature, but the existing proposals for its control plane have some problems that may hinder its possible deployment. In light of this, we introduce a promising control plane for LISP that can solve these issues, and at the same time has the potential to bridge the gap between intradomain and interdomain traffic management.Peer ReviewedPostprint (published version

    Insights on the Internet routing scalability issues

    Get PDF
    In recent years, the size and dynamics of the global routing table have increased rapidly along with an increase in the number of edge networks. The relation between edge network quantity and routing table size/dynamics reveals a major limitation in the current architecture. In this paper we introduce the two problematics target as the main cause for the Internet scalability issue. Subsequently, we describe the different proposals that address the scalability problem. We group them in three categories: Separation, Elimination and GeographicPostprint (published version

    RFC 9299 An Architectural Introduction to the Locator/ID Separation Protocol (LISP)

    Get PDF
    IETFThis document describes the architecture of the Locator/ID Separation Protocol (LISP), making it easier to read the rest of the LISP specifications and providing a basis for discussion about the details of the LISP protocols. This document is used for introductory purposes; more details can be found in the protocol specifications, RFCs 9300 and 9301

    Implementation and Evaluation of LISP Publish/Subscribe

    Full text link
    peer reviewedThe design of future 6G network will push even further the convergence of different types of mobile networks, integrating space, aerial and terrestrial access. Mobility, remains one of the most difficult aspects to tackle in this context. One approach under consideration is the use of an overlay solution able to cope with new mobility requirements. LISP (Locator/ID Separation Protocol) being one candidate overlay protocol. LISP separates the addressing space in two orthogonal spaces, one to identify end points, the other to locate them. End-to-end communication is guaranteed by a mapping system allowing to associate location with identities. Mapping resolution is done at communication setup, opening the question: how to guarantee that, in case of changes, the latest mapping is used? Originally, there was no mechanism to explicitly express the interest in updates of specific mappings. LISP Publish/Subscribe has been introduced in order to provide such a feature. This paper provides an implementation of LISP Publish/Subscribe in the NS-3 simulator and quantitatively analyze its benefits

    Architectures for the Future Networks and the Next Generation Internet: A Survey

    Get PDF
    Networking research funding agencies in the USA, Europe, Japan, and other countries are encouraging research on revolutionary networking architectures that may or may not be bound by the restrictions of the current TCP/IP based Internet. We present a comprehensive survey of such research projects and activities. The topics covered include various testbeds for experimentations for new architectures, new security mechanisms, content delivery mechanisms, management and control frameworks, service architectures, and routing mechanisms. Delay/Disruption tolerant networks, which allow communications even when complete end-to-end path is not available, are also discussed

    Locator/ID Separation Protocol (LISP) Impact

    Full text link
    corecore