2,212 research outputs found

    Link level modelling techniques for analysing the configuration of link adaptation algorithms in mobile radio networks

    Get PDF
    The operation of Link Adaptation algorithms is based on channel quality estimates. It is therefore important to analyse the performance of such algorithms with link level models that properly capture the channel conditions and dynamics. Previous research [1] concluded that the use of simple link level models does not give an accurate prediction of the estimated performance of Link Adaptation algorithms. Following this previous work, this paper shows that the link level model considered for the study of Link Adaptation algorithms can also influence the decisions regarding the optimum configuration of the algorithm

    Performance and configuration of link adaptation algorithms with mobile speed

    Get PDF
    Link Adaptation is an adaptive radio link technique that selects a transport mode, from a set of predefined modes of varying robustness, depending on the channel quality conditions and dynamics. Previous work has shown the need to adapt the configuration of the Link Adaptation algorithm to certain operating conditions such as the system load. Since the channel quality dynamics are also influenced by the user speed, this paper investigates the impact of the mobile speed on the performance and configuration of Link Adaptation algorithm

    On the importance of using appropriate link-to-system interfaces for the study of link adaptation

    Get PDF
    Link Adaptation is an adaptive radio link technique that selects a transport mode, from a set of predefined modes of varying robustness, depending on the channel quality conditions and dynamics. It is therefore very important, when analysing the performance and operation of Link Adaptation, to properly capture such conditions and dynamics. In this context, this paper investigates the effect that different link-to-system level interfaces have on the study of Link Adaptation, in particular on its throughput performance and associated signalling cost

    Active Queue Management for Fair Resource Allocation in Wireless Networks

    Get PDF
    This paper investigates the interaction between end-to-end flow control and MAC-layer scheduling on wireless links. We consider a wireless network with multiple users receiving information from a common access point; each user suffers fading, and a scheduler allocates the channel based on channel quality,but subject to fairness and latency considerations. We show that the fairness property of the scheduler is compromised by the transport layer flow control of TCP New Reno. We provide a receiver-side control algorithm, CLAMP, that remedies this situation. CLAMP works at a receiver to control a TCP sender by setting the TCP receiver's advertised window limit, and this allows the scheduler to allocate bandwidth fairly between the users

    Improved learning automata applied to routing in multi-service networks

    Get PDF
    Multi-service communications networks are generally designed, provisioned and configured, based on source-destination user demands expected to occur over a recurring time period. However due to network users' actions being non-deterministic, actual user demands will vary from those expected, potentially causing some network resources to be under- provisioned, with others possibly over-provisioned. As actual user demands vary over the recurring time period from those expected, so the status of the various shared network resources may also vary. This high degree of uncertainty necessitates using adaptive resource allocation mechanisms to share the finite network resources more efficiently so that more of actual user demands may be accommodated onto the network. The overhead for these adaptive resource allocation mechanisms must be low in order to scale for use in large networks carrying many source-destination user demands. This thesis examines the use of stochastic learning automata for the adaptive routing problem (these being adaptive, distributed and simple in implementation and operation) and seeks to improve their weakness of slow convergence whilst maintaining their strength of subsequent near optimal performance. Firstly, current reinforcement algorithms (the part causing the automaton to learn) are examined for applicability, and contrary to the literature the discretised schemes are found in general to be unsuitable. Two algorithms are chosen (one with fast convergence, the other with good subsequent performance) and are improved through automatically adapting the learning rates and automatically switching between the two algorithms. Both novel methods use local entropy of action probabilities for determining convergence state. However when the convergence speed and blocking probability is compared to a bandwidth-based dynamic link-state shortest-path algorithm, the latter is found to be superior. A novel re-application of learning automata to the routing problem is therefore proposed: using link utilisation levels instead of call acceptance or packet delay. Learning automata now return a lower blocking probability than the dynamic shortest-path based scheme under realistic loading levels, but still suffer from a significant number of convergence iterations. Therefore the final improvement is to combine both learning automata and shortest-path concepts to form a hybrid algorithm. The resulting blocking probability of this novel routing algorithm is superior to either algorithm, even when using trend user demands

    Investigation of EDFA power transients in circuit-switched and packet-switched optical networks

    Get PDF
    Erbium-doped fibre amplifiers (EDFA’s) are a key technology for the design of all optical communication systems and networks. The superiority of EDFAs lies in their negligible intermodulation distortion across high speed multichannel signals, low intrinsic losses, slow gain dynamics, and gain in a wide range of optical wavelengths. Due to long lifetime in excited states, EDFAs do not oppose the effect of cross-gain saturation. The time characteristics of the gain saturation and recovery effects are between a few hundred microseconds and 10 milliseconds. However, in wavelength division multiplexed (WDM) optical networks with EDFAs, the number of channels traversing an EDFA can change due to the faulty link of the network or the system reconfiguration. It has been found that, due to the variation in channel number in the EDFAs chain, the output system powers of surviving channels can change in a very short time. Thus, the power transient is one of the problems deteriorating system performance. In this thesis, the transient phenomenon in wavelength routed WDM optical networks with EDFA chains was investigated. The task was performed using different input signal powers for circuit switched networks. A simulator for the EDFA gain dynamicmodel was developed to compute the magnitude and speed of the power transients in the non-self-saturated EDFA both single and chained. The dynamic model of the self-saturated EDFAs chain and its simulator were also developed to compute the magnitude and speed of the power transients and the Optical signal-to-noise ratio (OSNR). We found that the OSNR transient magnitude and speed are a function of both the output power transient and the number of EDFAs in the chain. The OSNR value predicts the level of the quality of service in the related network. It was found that the power transients for both self-saturated and non-self-saturated EDFAs are close in magnitude in the case of gain saturated EDFAs networks. Moreover, the cross-gain saturation also degrades the performance of the packet switching networks due to varying traffic characteristics. The magnitude and the speed of output power transients increase along the EDFAs chain. An investigation was done on the asynchronous transfer mode (ATM) or the WDM Internet protocol (WDM-IP) traffic networks using different traffic patterns based on the Pareto and Poisson distribution. The simulator is used to examine the amount and speed of the power transients in Pareto and Poisson distributed traffic at different bit rates, with specific focus on 2.5 Gb/s. It was found from numerical and statistical analysis that the power swing increases if the time interval of theburst-ON/burst-OFF is long in the packet bursts. This is because the gain dynamics is fast during strong signal pulse or with long duration pulses, which is due to the stimulatedemission avalanche depletion of the excited ions. Thus, an increase in output power levelcould lead to error burst which affects the system performance

    Foutbestendige toekomstige internetarchitecturen

    Get PDF

    Inductive Approaches Based on Trial/Error Paradigm for Communications Network

    Get PDF
    corecore