338 research outputs found

    On the Distribution of the Fourier Spectrum of Halfspaces

    Full text link
    Bourgain showed that any noise stable Boolean function ff can be well-approximated by a junta. In this note we give an exponential sharpening of the parameters of Bourgain's result under the additional assumption that ff is a halfspace

    MCMC Learning

    Full text link
    The theory of learning under the uniform distribution is rich and deep, with connections to cryptography, computational complexity, and the analysis of boolean functions to name a few areas. This theory however is very limited due to the fact that the uniform distribution and the corresponding Fourier basis are rarely encountered as a statistical model. A family of distributions that vastly generalizes the uniform distribution on the Boolean cube is that of distributions represented by Markov Random Fields (MRF). Markov Random Fields are one of the main tools for modeling high dimensional data in many areas of statistics and machine learning. In this paper we initiate the investigation of extending central ideas, methods and algorithms from the theory of learning under the uniform distribution to the setup of learning concepts given examples from MRF distributions. In particular, our results establish a novel connection between properties of MCMC sampling of MRFs and learning under the MRF distribution.Comment: 28 pages, 1 figur

    The Fuglede conjecture for convex domains is true in all dimensions

    Get PDF
    A set Ω⊂Rd\Omega \subset \mathbb{R}^d is said to be spectral if the space L2(Ω)L^2(\Omega) has an orthogonal basis of exponential functions. A conjecture due to Fuglede (1974) stated that Ω\Omega is a spectral set if and only if it can tile the space by translations. While this conjecture was disproved for general sets, it has long been known that for a convex body Ω⊂Rd\Omega \subset \mathbb{R}^d the "tiling implies spectral" part of the conjecture is in fact true. To the contrary, the "spectral implies tiling" direction of the conjecture for convex bodies was proved only in R2\mathbb{R}^2, and also in R3\mathbb{R}^3 under the a priori assumption that Ω\Omega is a convex polytope. In higher dimensions, this direction of the conjecture remained completely open (even in the case when Ω\Omega is a polytope) and could not be treated using the previously developed techniques. In this paper we fully settle Fuglede's conjecture for convex bodies affirmatively in all dimensions, i.e. we prove that if a convex body Ω⊂Rd\Omega \subset \mathbb{R}^d is a spectral set then Ω\Omega is a convex polytope which can tile the space by translations. To prove this we introduce a new technique, involving a construction from crystallographic diffraction theory, which allows us to establish a geometric "weak tiling" condition necessary for a set Ω⊂Rd\Omega \subset \mathbb{R}^d to be spectral.Comment: To appear in Acta Mathematic

    Approximate resilience, monotonicity, and the complexity of agnostic learning

    Full text link
    A function ff is dd-resilient if all its Fourier coefficients of degree at most dd are zero, i.e., ff is uncorrelated with all low-degree parities. We study the notion of approximate\mathit{approximate} resilience\mathit{resilience} of Boolean functions, where we say that ff is α\alpha-approximately dd-resilient if ff is α\alpha-close to a [−1,1][-1,1]-valued dd-resilient function in ℓ1\ell_1 distance. We show that approximate resilience essentially characterizes the complexity of agnostic learning of a concept class CC over the uniform distribution. Roughly speaking, if all functions in a class CC are far from being dd-resilient then CC can be learned agnostically in time nO(d)n^{O(d)} and conversely, if CC contains a function close to being dd-resilient then agnostic learning of CC in the statistical query (SQ) framework of Kearns has complexity of at least nΩ(d)n^{\Omega(d)}. This characterization is based on the duality between ℓ1\ell_1 approximation by degree-dd polynomials and approximate dd-resilience that we establish. In particular, it implies that ℓ1\ell_1 approximation by low-degree polynomials, known to be sufficient for agnostic learning over product distributions, is in fact necessary. Focusing on monotone Boolean functions, we exhibit the existence of near-optimal α\alpha-approximately Ω~(αn)\widetilde{\Omega}(\alpha\sqrt{n})-resilient monotone functions for all α>0\alpha>0. Prior to our work, it was conceivable even that every monotone function is Ω(1)\Omega(1)-far from any 11-resilient function. Furthermore, we construct simple, explicit monotone functions based on Tribes{\sf Tribes} and CycleRun{\sf CycleRun} that are close to highly resilient functions. Our constructions are based on a fairly general resilience analysis and amplification. These structural results, together with the characterization, imply nearly optimal lower bounds for agnostic learning of monotone juntas

    Embedding Hard Learning Problems Into Gaussian Space

    Get PDF
    We give the first representation-independent hardness result for agnostically learning halfspaces with respect to the Gaussian distribution. We reduce from the problem of learning sparse parities with noise with respect to the uniform distribution on the hypercube (sparse LPN), a notoriously hard problem in theoretical computer science and show that any algorithm for agnostically learning halfspaces requires n^Omega(log(1/epsilon)) time under the assumption that k-sparse LPN requires n^Omega(k) time, ruling out a polynomial time algorithm for the problem. As far as we are aware, this is the first representation-independent hardness result for supervised learning when the underlying distribution is restricted to be a Gaussian. We also show that the problem of agnostically learning sparse polynomials with respect to the Gaussian distribution in polynomial time is as hard as PAC learning DNFs on the uniform distribution in polynomial time. This complements the surprising result of Andoni et. al. 2013 who show that sparse polynomials are learnable under random Gaussian noise in polynomial time. Taken together, these results show the inherent difficulty of designing supervised learning algorithms in Euclidean space even in the presence of strong distributional assumptions. Our results use a novel embedding of random labeled examples from the uniform distribution on the Boolean hypercube into random labeled examples from the Gaussian distribution that allows us to relate the hardness of learning problems on two different domains and distributions

    Agnostically Learning Halfspaces

    Get PDF
    We consider the problem of learning a halfspace in the agnostic framework of Kearns et al., where a learner is given access to a distribution on labelled examples but the labelling may be arbitrary. The learner's goal is to output a hypothesis which performs almost as well as the optimal halfspace with respect to future draws from this distribution. Although the agnostic learning framework does not explicitly deal with noise, it is closely related to learning in worst-case noise models such as malicious noise. We give the first polynomial-time algorithm for agnostically learning halfspaces with respect to several distributions, such as the uniform distribution over the nn-dimensional Boolean cube {0,1}^n or unit sphere in n-dimensional Euclidean space, as well as any log-concave distribution in n-dimensional Euclidean space. Given any constant additive factor eps>0, our algorithm runs in poly(n) time and constructs a hypothesis whose error rate is within an additive eps of the optimal halfspace. We also show this algorithm agnostically learns Boolean disjunctions in time roughly 2^{\sqrt{n}} with respect to any distribution; this is the first subexponential-time algorithm for this problem. Finally, we obtain a new algorithm for PAC learning halfspaces under the uniform distribution on the unit sphere which can tolerate the highest level of malicious noise of any algorithm to date. Our main tool is a polynomial regression algorithm which finds a polynomial that best fits a set of points with respect to a particular metric. We show that, in fact, this algorithm is an arbitrary-distribution generalization of the well known "low-degree" Fourier algorithm of Linial, Mansour, and Nisan and has excellent noise tolerance properties when minimizing with respect to the L_1 norm. We apply this algorithm in conjunction with a non-standard Fourier transform (which does not use the traditional parity basis) for learning halfspaces over the uniform distribution on the unit sphere; we believe this technique is of independent interest

    Quantum algorithms for highly non-linear Boolean functions

    Full text link
    Attempts to separate the power of classical and quantum models of computation have a long history. The ultimate goal is to find exponential separations for computational problems. However, such separations do not come a dime a dozen: while there were some early successes in the form of hidden subgroup problems for abelian groups--which generalize Shor's factoring algorithm perhaps most faithfully--only for a handful of non-abelian groups efficient quantum algorithms were found. Recently, problems have gotten increased attention that seek to identify hidden sub-structures of other combinatorial and algebraic objects besides groups. In this paper we provide new examples for exponential separations by considering hidden shift problems that are defined for several classes of highly non-linear Boolean functions. These so-called bent functions arise in cryptography, where their property of having perfectly flat Fourier spectra on the Boolean hypercube gives them resilience against certain types of attack. We present new quantum algorithms that solve the hidden shift problems for several well-known classes of bent functions in polynomial time and with a constant number of queries, while the classical query complexity is shown to be exponential. Our approach uses a technique that exploits the duality between bent functions and their Fourier transforms.Comment: 15 pages, 1 figure, to appear in Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'10). This updated version of the paper contains a new exponential separation between classical and quantum query complexit
    • …
    corecore