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Abstract

We consider the problem of learning a halfspace in the agnostic framework of Kearns et al.
[18], where a learner is given access to a distribution on labelled examples but the labelling
may be arbitrary. The learner’s goal is to output a hypothesis which performs almost as well
as the optimal halfspace with respect to future draws from this distribution. Although the
agnostic learning framework does not explicitly deal with noise, it is closely related to learning
in worst-case noise models such as malicious noise.

We give the first polynomial-time algorithm for agnostically learning halfspaces with respect
to several distributions, such as the uniform distribution over the n-dimensional Boolean cube
{−1, 1}n or unit sphere in Rn, as well as any log-concave distribution in Rn. Given any constant
additive factor ε > 0, our algorithm runs in poly(n) time and constructs a hypothesis whose error
rate is within an additive ε of the optimal halfspace. We also show this algorithm agnostically
learns Boolean disjunctions in time 2Õ(

√
n) with respect to any distribution; this is the first

subexponential-time algorithm for this problem. Finally, we obtain a new algorithm for PAC
learning halfspaces under the uniform distribution on the unit sphere which can tolerate the
highest level of malicious noise of any algorithm to date.

Our main tool is a polynomial regression algorithm which finds a polynomial that best fits
a set of points with respect to a particular metric. We show that, in fact, this algorithm is
an arbitrary-distribution generalization of the well known “low-degree” Fourier algorithm of
Linial, Mansour, & Nisan [23] and has excellent noise tolerance properties when minimizing
with respect to the L1 norm. We apply this algorithm in conjunction with a non-standard
Fourier transform (which does not use the traditional parity basis) for learning halfspaces over
the uniform distribution on the unit sphere; we believe this technique is of independent interest.
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1 Introduction

Halfspaces have been used extensively in Machine Learning for decades. From the early work on
the Perceptron algorithm in the 50’s, through the learning of artificial neural networks in the 80’s,
and up to and including today’s Adaboost [9] and Support Vector Machines [35], halfspaces have
played a central role in the development of the field’s most important tools.

Formally, a halfspace is a Boolean function f(x) = sgn(
∑n

i=1 wixi−θ). While efficient algorithms
are known for learning halfspaces if the data is guaranteed to be noise-free, learning a halfspace from
noisy examples remains a challenging and important problem. Halfspace-based learning methods
appear repeatedly in both theory and practice, and they are frequently applied to labelled data sets
which are not linearly separable. This motivates the following natural and well-studied question:
what can one provably say about the performance of halfspace-based learning methods in the pres-
ence of noisy data or distributions that do not obey constraints induced by an unknown halfspace?
Can we develop learning algorithms which tolerate data generated from a “noisy” halfspace and
output a meaningful hypothesis?

1.1 Agnostic Learning. The agnostic learning framework, introduced by Kearns et al. [18],
is an elegant model for studying the phenomenon of learning from noisy data. In this model
the learner receives labelled examples (x, y) drawn from a fixed distribution over example-label
pairs, but (in contrast with Valiant’s standard PAC learning model [33]) the learner cannot assume
that the labels y are generated by applying some target function f to the examples x. Of course,
without any assumptions on the distribution it is impossible for the learner to always output a
meaningful hypothesis. Kearns et al. instead require the learner to output a hypothesis whose
accuracy with respect to future examples drawn from the distribution approximates that of the
optimal concept from some fixed concept class of functions C, such as the class of all halfspaces
f(x) = sgn(v ·x−θ). Given a concept class C and a distribution D over labelled examples (x, y), we
write opt = minf∈C PrD[f(x) 6= y] to denote the error rate of the optimal (smallest error) concept
from C with respect to D.

For intuition, one can view agnostic learning as a noisy learning problem in the following way:
There is a distribution D over examples x and the data is assumed to be labelled according to a
function f ∈ C, but an adversary is allowed to corrupt an η = opt fraction of the labels given to the
learning algorithm. The goal is find a hypothesis h with error PrD[h(x) 6= y] as close as possible to
η. (We note that such a noise scenario is far more challenging than the random classification noise
model, in which an η fraction of labels are flipped independently at random and for which a range
of effective noise-tolerant learning algorithms are known [16, 4].)

Unfortunately, only few positive results are known for agnostically learning expressive concept
classes. Kearns et al. [18] gave an algorithm for agnostically learning piecewise linear functions,
and Goldman et al. [11] showed how to agnostically learn certain classes of geometric patterns. Lee
et al. [21] showed how to agnostically learn some very restricted classes of neural networks in time
exponential in the fan-in. On the other hand, some strong negative results are known: in the case
of proper learning (where the output hypothesis must belong to C), agnostic learning is known to be
NP-hard even for the concept class C of disjunctions [18]. In fact, it is known [22] that agnostically
learning disjunctions, even with no restrictions on the hypotheses used, is at least as hard as PAC
learning DNF formulas, a longstanding open question in learning theory.

Thus, it is natural to consider — as we do in this paper — agnostic learning with respect to
various restricted distributions D for which the marginal distribution DX over the example space
X satisfies some prescribed property. This corresponds to a learning scenario in which the labels
are arbitrary but the distribution over examples is restricted.
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1.2 Our Main Technique. The following two observations are the starting point of our work:

• The “low-degree” Fourier learning algorithm of Linial et al. can be viewed as an algorithm
for performing L2-norm polynomial regression under the uniform distribution on {−1, 1}n.
(See Section 2.2.)

• A simple analysis (Observation 3) shows that the low-degree algorithm has some attractive
agnostic learning properties under the uniform distribution on {−1, 1}n. (See Section 2.3.)

The “low-degree” algorithm, however, will only achieve partial results for agnostic learning (the
output hypothesis will be within a factor of 8 of optimal). As described in Section 3, the above
two observations naturally motivate a new algorithm which can be viewed as an L1-norm version
of the low-degree algorithm; we call this simply the polynomial regression algorithm. (At this point
it may be slightly mysterious why the L1 norm would be significantly better than the L2 norm; we
discuss this point in Section 3.)

Roughly speaking our main result about the polynomial regression algorithm, Theorem 5, shows
the following (see Section 3 for the detailed statement):

Given a concept class C and a distribution D, if concepts in C can be approximated by
low-degree polynomials in the L2-norm relative to the marginal distribution DX , then
the L1 polynomial regression algorithm is an efficient agnostic learning algorithm for C
with respect to D.

A long line of research has focused on how well the truncated Fourier polynomial over the parity
basis approximates concept classes with respect to the L2 norm; this has led to numerous algorithms
for learning concepts with respect to the uniform distribution over the Boolean hypercube {−1, 1}n

[23, 6, 13, 15, 19]. For learning with respect to the uniform distribution on the unit sphere, our
analysis uses the Hermite polynomials [32], a family of orthogonal polynomials with a weighting
scheme related to the density function of the Gaussian distribution. As such, these polynomials
are well suited for approximating concepts with respect to the L2 norm over Sn−1. We believe this
approach will find further applications in the future.

1.3 Our Main Results. As described below, our main result about the polynomial regression
algorithm can be applied to obtain many results for agnostic learning of halfspaces with respect to a
number of different distributions, both discrete and continuous, some uniform and some nonuniform.

Theorem 1 Let D be a distribution over Rn × {−1, 1}. The L1 polynomial regression algorithm
has the following properties: its runtime is polynomial in the number of examples it is given, and

1. If the marginal DX is (a) uniform on {−1, 1}n or (b) uniform on the unit sphere in Rn,
then with probability 1−δ the polynomial regression algorithm outputs a hypothesis with error
opt + ε given poly(n1/ε4 , log 1

δ ) examples.

2. If the marginal DX is log-concave, then with probability 1 − δ the polynomial regression
algorithm outputs a hypothesis with error opt + ε given poly(nd(ε), log 1

δ ) examples, where
d : R+ → Z+ is a universal function independent of DX or n.

Part 1(a) follows from our analysis of the L1 polynomial regression algorithm combined with
the Fourier bounds on halfspaces given by Klivans et al. [19]. Part 1(b) follows from the same
analysis of the algorithm combined with concentration bounds over the n-dimensional sphere. In
proving such bounds, we use the Hermite polynomial basis in analogy with the Fourier basis used
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previously. (We note that learning halfspaces under the uniform distribution on Sn−1 is a well-
studied problem, see e.g. [1, 2, 16, 24, 25].) As before, we show that a related algorithm gives a
hypothesis with error O(opt + ε) in time nO(1/ε2).

As indicated by part (2) of Theorem 2, for any constant ε, we can also achieve a polynomial-
time algorithm for learning with respect to any log-concave distribution. Recall that any Gaussian
distribution, exponential distribution, and uniform distribution over a convex set is log-concave.

We next consider a simpler class of halfspaces: disjunctions on n variables. The problem of ag-
nostically learning an unknown disjunction (or learning noisy disjunctions) has long been a difficult
problem in computational learning theory and was recently re-posed as a challenge by Avrim Blum
in his FOCS 2003 tutorial [3]. By combining Theorem 5 with known constructions of low-degree
polynomials that are good L∞-approximators of the OR function, we obtain a subexponential time
algorithm for agnostically learning disjunctions with respect to any distribution (recall that since
this problem is at least as hard as PAC-learning DNF, given the current state of the art we do not
expect to achieve a polynomial-time algorithm):

Theorem 2 Let D be a distribution on X × Y where D is an arbitrary distribution over {−1, 1}n

and Y = {−1, 1}. For the class of disjunctions, with probability 1− δ the polynomial regression al-
gorithm outputs a hypothesis with error ≤ opt + ε in time 2Õ(

√
n·log(1/ε)) · poly(log 1

δ ).

1.4 Extensions and Other Applications. We believe that the polynomial regression algo-
rithm will have many extensions and applications; so far we have only explored a few of these
which we now describe.

In Section 5.1 we give a detailed analysis of an algorithm which is essentially the same as the
degree-1 version of the polynomial regression algorithm, for agnostic learning the concept class of
origin-centered halfspaces sgn(v · x) over the uniform distribution on the sphere Sn−1. While our
analysis from Section 3 only implies that this algorithm should achieve some fixed constant error
Θ(1) independent of opt, we are able to show that in fact we do much better if opt is small:

Theorem 3 Let D be a distribution on X×Y , where Y = {−1, 1} and the marginal DX is uniform
on the sphere Sn−1 in Rn. There is a simple algorithm for agnostically learning origin-centered
halfspaces with respect to D which uses m = O(n2

ε2
log n

δ ) examples, runs in poly(n, 1/ε, log 1
δ ) time,

and outputs a hypothesis with error O(opt
√

log 1
opt + ε).

This result thus trades off accuracy versus runtime compared with Theorem 1. We feel that
Theorem 3 is intriguing since it suggests that a deeper analysis might yield improved runtime
bounds for Theorem 1 as well.

In Section 5.2 we consider the problem of learning an unknown origin-centered halfspace under
the uniform distribution on Sn−1 in the presence of malicious noise (we give a precise definition
of the malicious noise model in Section 5.2). Recall from Section 1.1 that we can view agnostic
learning with respect to a particular marginal distribution DX as the problem of learning under
DX in the presence of an adversary who may change the labels of an η fraction of the examples,
without changing the actual distribution DX over examples. In contrast, in the model of learning
under malicious noise with respect to DX , roughly speaking the adversary is allowed to change an
η fraction of the labels and examples given to the learner. As described in Section 5.2 this is a
very challenging noise model in which only limited positive results are known. We show that by
combining the algorithm of Theorem 3 with a simple preprocessing step, we can achieve relatively
high tolerance to malicious noise:
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Theorem 4 There is a simple algorithm for learning origin-centered halfspaces under the uniform
distribution on Sn−1 to error ε in the presence of malicious noise when the noise rate η is at most
O( ε

n1/4 log1/2(n/ε)
). The algorithm runs in poly(n, 1/ε, log 1

δ ) time and uses m = O(n2

ε2
log n

δ ) many
examples.

This is the highest known rate of malicious noise that can be tolerated in polynomial time for
any nontrivial halfspace learning problem. The preprocessing step can be viewed as a somewhat
counterintuitive form of outlier removal – instead of identifying and discarding examples that lie
“too far” from the rest of the data set, we discard examples that lie too close to any other data
point! The analysis of this approach relies on classical results from sphere packing.

Finally, in Section 5.3 we show that the polynomial regression algorithm can be applied in
non-noisy settings. We obtain a slightly better running time bound than the algorithm of Klivans
et al. [19] for learning an intersection of halfspaces under the uniform distribution on {−1, 1}n.

2 Preliminaries

Let D be an arbitrary distribution on X × {−1, 1}, for some set X. Let C be a class of Boolean
functions on X. Define the error of f : X → {−1, 1} and the optimal error of C to be

err(f) = Pr(x,y)←D[f(x) 6= y], opt = min
c∈C

err(c),

respectively. Roughly speaking, the goal in agnostic learning of a concept class C is as follows:
given access to examples drawn from distribution D, we wish to efficiently find a hypothesis with
error not much larger than opt. More precisely, we say C is agnostically learnable if there exists an
algorithm which takes as input δ, ε, and has access to an example oracle EX(D) and outputs with
probability greater than 1 − δ a hypothesis h : X → {−1, 1} such that err(h) ≤ opt + ε. We say
C is agnostically learnable in time t if its running time (including calls to the example oracle) is
bounded by t(ε, δ, n). If the above only holds for a distribution D whose margin is uniform over
X, we say the algorithm agnostically learns C over the uniform distribution. See [18] for a detailed
description of the agnostic learning framework.

A distribution is log-concave if its support is convex and it has a probability density function
whose logarithm is a concave function from Rn to R.

In all our algorithms we assume that we are given m examples (x1, y1), . . . , (xm, ym) drawn
independently from the distribution D over X×{−1, 1}. The sgn : R → {−1, 1} function is defined
by sgn(z) = 1 if z ≥ 0, sgn(z) = −1 if z < 0.

2.1 Fourier preliminaries and the low-degree algorithm. For S ⊆ [n] the parity function
χS : {−1, 1}n → {−1, 1} over the variables in S is simply the multilinear monomial χS(x) =∏

i∈S xi. The set of all 2n parity functions {χS}S⊆[n] forms an orthonormal basis for the vector
space of real-valued functions on {−1, 1}n, with respect to the inner product (f, g) = E[fg] (here and
throughout Section 2.1 unless otherwise indicated all probabilities and expectations are with respect
to the uniform distribution over {−1, 1}n). Hence every real-valued function f : {−1, 1}n → R can
be uniquely expressed as a linear combination

f(x) =
∑

S⊆[n]

f̂(S)χS(x). (1)

The coefficients f̂(S) = E[fχS ] of the Fourier polynomial (1) are called the Fourier coefficients
of f ; collectively they constitute the Fourier spectrum of f . We recall Parseval’s identity, which
states that for every real-valued function f we have E[f(x)2] =

∑
S f̂(S)2. For Boolean functions

we thus have
∑

S f̂(S)2 = 1.
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The “low-degree algorithm” for learning Boolean functions under the uniform distribution via
their Fourier spectra was introduced by Linial et al. [23], and has proved to be a powerful tool
in uniform distribution learning. The algorithm works by empirically estimating each coefficient
f̂(S) ≈ f̃(S) := 1

m

∑m
j=1 f(xj)χS(xj) with |S| ≤ d from the data, and constructing the degree-

d polynomial p(x) =
∑
|S|≤d f̃(S)χS(x) as an approximation to f . (Note that the polynomial

p(x) is real-valued rather than Boolean-valued. If a Boolean-valued classifier h is desired, it can
be obtained by taking h(x) = sgn(p(x)), and using the simple fact PrD[sgn(p(x)) 6= g(x)] ≤
ED[(p(x)−f(x))2] which holds for any polynomial p, any Boolean function f : {−1, 1}n → {−1, 1},
and any distribution D.)

Let α(ε, n) be a function α : (0, 1/2)×N → N. We say that concept class C has a Fourier concen-
tration bound of α(ε, n) if, for all n ≥ 1, all 0 < ε < 1

2 , and all f ∈ Cn we have
∑
|S|≥α(ε,n) f̂(S)2 ≤ ε.

The low-degree algorithm is useful because it efficiently constructs a high-accuracy approximator
for functions that have good Fourier concentration bounds (we suppress the logarithmic dependence
on the failure probability δ to improve readability):

Fact 1 ([23]) Let C be a concept-class with concentration bound α(ε/2, n). Then for any f ∈ C,
given data labelled according to f and drawn from the uniform distribution on X = {−1, 1}n, the
low-degree algorithm outputs, with probability 1− δ, a polynomial p such that E[(p(x)− f(x))2] ≤ ε
and runs in time poly(nα(n,ε), log 1

δ ).

The idea behind Fact 1 is simple: if the coefficients of p were precisely f̂(S) instead of f̃(S), then the
Fourier concentration bound and Parseval’s identity would give

∑
|S|≥α(ε/2,n) = E[(p(x)−f(x))2] ≤

ε/2. The extra ε/2 is incurred because of approximation error in the estimates f̃(S).

2.2 The low-degree algorithm and L2 polynomial regression. The main observation of
this section is that the low-degree Fourier algorithm of [23] can be viewed as a special case of
least-squares polynomial regression over uniform distributions on the n-dimensional cube.

Let D be a distribution over X × {−1, 1}. In least-squares (L2-norm) polynomial regression,
one attempt to minimize the following:

min
deg(p)≤d

ED
[
(p(x)− y)2

]
≈ min

deg(p)≤d

1
m

m∑
j=1

(
p(xj)− yj

)2
. (2)

Ideally, one would like to minimize the LHS, i.e. find the best degree d polynomial L2 approximation
to y over D. To do this (approximately) given a data set, we minimize the right-hand side. In
particular, we write a polynomial as a sum over all degree ≤ d monomials, p(x) =

∑
b pb

∏n
i=1(xi)bi

where the sum is over {b ∈ Zn|∑n
i=1 bi ≤ d, ∀i bi ≥ 0}. In turn, this can be viewed as a standard

linear regression problem if we expand example xj into a vector with a coordinate
∏n

i=1(x
j
i )

bi , for
each of the ≤ nd+1 different b’s. Least-squares linear regression, in turn, can be solved by a single
matrix inversion; and thus in general we can approximate the RHS of (2) in nO(d) time.

Now let us consider L2 polynomial regression in the uniform distribution scenario where X =
{−1, 1}n, y = f(x) for some function f : X → {−1, 1}, and we have a uniform distribution UX over
x ∈ {−1, 1}n. Since x2 = 1 for x ∈ {−1, 1}, we may consider only degree-d multilinear polynomials,
i.e. sums of monomials χS(x) =

∏
i∈S xi with S ⊆ [n], |S| ≤ d. Using Parseval’s identity, it is not

difficult to show that best degree d polynomial is exactly

arg min
deg(p)≤d

EUX

[
(p(x)− f(x))2

]
=

∑
S⊆[n]:|S|≤d

f̂(S)χS(x), where f̂(S) = EUX
[f(x)χS(x)].
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Thus in this uniform case, one can simply estimate each coefficient f̂(S) ≈ 1
m

∑m
j=1 f(xj)χS(xj)

rather than solving the general least-squares regression problem; and this is precisely what the
low-degree algorithm does.

In the nonuniform case, it is natural to consider running general L2 polynomial regression
rather than the low-degree algorithm. We do something similar to this in Section 3, but first we
consider the agnostic learning properties of the low-degree algorithm in the next subsection.

2.3 Using the low-degree algorithm as an agnostic learner. Kearns et al. prove the
following statement about agnostic learning with the low-degree algorithm:

Fact 2 ([18], Corollary 1) Let C be a concept class with concentration bound α(ε, n). Then the
low-degree algorithm agnostically learns C under the uniform distribution to error 1

2−(1
2−opt)2+ε =

1
4 + opt(1− opt) + ε with probability 1− δ and in time poly(nα(ε/2,n), log 1

δ ).

This was termed a “weak agnostic learner” in [18] because as long as opt is bounded away from 1/2,
this resulting hypothesis has error bounded from 1/2. We now show that the low-degree algorithm
is in fact a “strong agnostic learner,” in that if opt is small it can in fact achieve very low error:

Observation 3 Let C be a concept class with concentration bound α(ε, n). Then the low-degree
algorithm agnostically learns C under the uniform distribution to error 8opt+ ε in time nO(α(ε/2,n)).

Proof sketch: Let f ∈ C be an optimal function, i.e. Pr[y 6= f(x)] = opt. As described above, the
low-degree algorithm (approximately) finds the best degree-d approximation p(x) to the data y, i.e.
mindeg(p)≤d E[(p(x)− y)2], and the same term represents the mean squared error of p. This can be
bounded using the “almost-triangle” inequality (a− c)2 ≤ 2

(
(a− b)2 + (b− c)2

)
for a, b, c ∈ R.

min
deg p≤d

E[(y − p(x))2] ≤ E
[(

y −∑
|S|<df̂(S)χS(x)

)2
]
≤2E

[
(y − f(x))2 +

(
f(x)−∑

|S|<df̂(S)χS(x)
)2

]

= 2
(
4Pr[y 6= f(x)] +

∑
|S|≥df̂(S)2

)
The first term is 8opt and the second is at most ε/2 for d = α(n, ε/2), where an additional ε/2 is due
to the sampling. Outputting h(x) = sgn(p(x)) gives error at most 8opt + ε because Pr[sgn(p(x)) 6=
y] ≤ E[(p(x)− y)2].

Another way to state this is that if f and f̃ are two functions and f has a Fourier concentration
bound of α(ε, n), then f̃ satisfies the concentration bound

∑
|S|≥α(n,ε)

ˆ̃
f(S)2 ≤ 8 Pr[f(x) 6= f̃(x)]+2ε.

3 L1 polynomial regression

Given the setup in Sections 2.2 and 2.3, it is natural to expect that we will now show that the general
L2 polynomial regression algorithm has agnostic learning properties similar to those established for
the low-degree algorithm in Observation 3. However, such an approach only yields error bounds
of the form O(opt + ε), and for agnostic learning our real goal is a bound of the form opt + ε. To
achieve this, we will instead use L1-norm, rather than L2-norm.

Analogous to (2), in L1-norm polynomial regression we attempt to minimize:

min
deg(p)≤d

ED [|p(x)− y|] ≈ min
deg(p)≤d

1
m

m∑
j=1

∣∣p(xj)− yj
∣∣ . (3)

To solve the RHS minimization problem, again each example is expanded into a vector of length
≤ nd+1 and an algorithm for L1 linear regression is applied. L1 linear regression is a well-studied
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problem, and the minimizing polynomial p for the RHS of (3) can be obtained in poly(nd) time
using linear programming (see Appendix A for an elaboration on this point). For our purposes we
will be satisfied with an approximate minimum, and hence one can use a variety of techniques for
approximately solving linear programs efficiently.

How do L1 and L2 polynomial regression compare? In the noiseless case, both (2) and (3)
approach 0 at related rates as d increases. However, in the noisy/agnostic case, flipping the sign of
y = ±1 changes (p(x) − y)2 by 4p(x) which can potentially be very large; in contrast, flipping y’s
sign can only change |p(x)− y| by 2. On the other hand, it is often easier to bound the L1 error in
terms of the mathematically convenient L2 error. Thus while our polynomial regression algorithm
works only with the L1 norm, the performance bound and analysis depends on the L2 norm.

3.1 The algorithm and proof of correctness. We now give the polynomial regression algo-
rithm and establish conditions under which it is an agnostic learner achieving error opt + ε.

The L1 polynomial regression algorithm(d, m, r):

1. Take m examples (x1, y1), . . . , (xm, ym).

2. Find polynomial p of degree ≤ d to minimize 1
m

∑m
j=1 |p(xj) − yj |. (This can be

done by expanding examples to include all monomials of degree ≤ d and then
performing L1 linear regression, as described earlier.)

3. Choose the threshold t ∈ [−1, 1] so as to minimize the error of the hypothesis
h(x) = sgn (p(x)− t) on the training data.

4. Repeat the above three steps r times, each time with m fresh examples, and output
the hypothesis with lowest error on its own data set.

Theorem 5 Suppose mindeg(p)≤d EDX
[(p(x)− c(x))2] ≤ ε2 for some degree d, some distribution D

over X×{−1, 1} with marginal DX , and any c in the concept class C. Then, with probability 1− δ,
using r = 4 log(2/δ)/ε repetitions of m = poly(nd/ε, log 1/δ) examples each, the L1 polynomial
regression algorithm outputs a hypothesis h(x) such that, PrD[h(x) 6= y] ≤ opt + ε.

Remark 4 Note that using Theorem 5, a Fourier concentration bound of α(n, ε) immediately im-
plies that the L1 regression algorithm achieves error opt + ε in time nO(α(n,ε2)) for distributions D
with marginal DX that is uniform on {−1, 1}n. As we will see in the next section, Theorem 5 can
be applied to other distributions as well.

Proof of Theorem 5: Let c be an optimal classifier in C. Using the triangle inequality and
E[|Z|] ≤ √

E[Z2] for any random variable Z, we see that,

min
deg(p)≤d

ED[|y − p(x)|] ≤ ED[|y − c(x)|] + min
deg(p)≤d

ED[|c(x)− p(x)|] ≤ 2opt + ε.

Let β = mindeg(p)≤d ED[|y − p(x)|] ≤ ε + 2opt (also clearly β ≤ 1), and let p∗ be a degree d
polynomial achieving that minimum. By Markov’s inequality, on any single repetition,

Pr
[

1
m

m∑
i=1

∣∣yi − p∗(xi)
∣∣ ≥ β + ε/3

]
≤ Pr

[
1
m

m∑
i=1

∣∣yi − p∗(xi)
∣∣ ≥ β(1 + ε/3)

]
≤ 1

1 + ε/3
.

Hence, after 4 log(2/δ)/ε repetitions, with probability at most (1 + ε/3)−4 log(2/δ)/ε ≤ δ/2 (using
(1+ε/3)4/ε ≤ 1/e for ε ∈ [0, 1]), one of the repetitions will have 1

m

∑m
i=1

∣∣yj − p∗(xi)
∣∣ ≤ (4/3)ε+2opt.
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By definition of L1 polynomial regression, the algorithm will have selected a polynomial p for which
this holds as well.

Now, suppose this is the case. Then, we will next argue that there is some t ∈ [−1, 1] such
that, for ht(x) = sgn (p(x)− t), its error on its training data is at most 1

2((4/3)ε + 2opt). To see
this, first imagine picking this threshold t uniformly at random from [−1, 1]. What is the expected
training error of ht(x)? Observe that,

∀y ∈ {−1, 1}, z ∈ R Prt∈[−1,1][y 6= sgn(z − t)] =
{

1
2 |y − z| |z| ≤ 1
1
2 |y − sgn(z)| |z| > 1

In either case, the right hand side above is at most 1
2 |y − z|. Hence, the expected error of ht is,

Et∈[−1,1]

[
1
m

m∑
j=1

I(ht(xj) 6= yj)

]
≤ 1

2m

m∑
j=1

∣∣yj − p(xj)
∣∣ .

The above is a measure of expected training error. Since it holds, in expectation, for a random
ht, there must be some ht for which the above inequality holds instantaneously. Hence, we will
find an ht whose training error is at most 1

2m

∑∣∣yi − p(xi)
∣∣, which, with probability 1− δ/3, is at

most opt + (2/3)ε. Next, note that our output hypothesis is a halfspace over nd attributes. By
VC theory, for m = poly(nd/ε, log(2r/δ)), with probability 1− δ/(2r), no such halfspace will have
generalization error more than ε/3 larger than its training error. Taking the union bound over all
r repetitions, with probability 1− δ, we have error at most opt + ε.

As noted at the very beginning of this section, an analogous L2 algorithm could be defined
to minimize 1

m

∑m
j=1(p(xj) − yj)2 rather than 1

m

∑m
j=1 |p(xj) − yj |. Error guarantees of the form

O(opt + ε) can be shown for this L2 algorithm, following the same argument but again using the
“almost-triangle” inequality.

4 Agnostic learning halfspaces and disjunctions via polynomial regression

In this section we sketch how to apply Theorem 5 to prove Theorems 1 and 2.
As noted in Remark 4, Theorem 5 implies that any concept class with a Fourier concentration

bound is in fact agnostically learnable to error opt+ε under the uniform distribution on {−1, 1}n. In
particular, Theorem 1 1(a) follows immediately from the Fourier concentration bound for halfspaces
of [19]:

Fact 5 [19] The concept class C of all halfspaces over {−1, 1}n has a Fourier concentration bound
of α(ε, n) = 441/ε2.

For the uniform distribution on Sn−1 and any log-concave distribution, we can prove the ex-
istence of a good low-degree polynomial as follows. Suppose we had a good degree-d univariate
approximation to the sign function pd(x) ≈ sgn(x), and say we have an n-dimensional halfspace
sgn(v · x− θ). Then, sgn(v · x− θ) ≈ pd(v · x− θ). Moreover, this latter quantity is now a degree-d
multivariate polynomial. The sense in which we measure approximations will be distributional, the
L2 error of our multivariate polynomial over the distribution D. Hence, we need a polynomial pd

that well-approximates the sign function on the marginal distribution in the direction v, i.e., the
distribution over projections onto the vector v.

For the uniform distribution on a sphere, the projection onto a single coordinate is distributed
very close to Gaussian distribution. For a log-concave distribution, its projection is distributed
log-concavely. In both of these cases, it so happens that the necessary degree to get approximation
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error ε boils down to a one-dimensional problem! For the sphere, we can upper-bound the degree
necessary as a function of ε using the following for the normal distribution N(0, 1√

2
) with density

e−x2
/
√

π:

Theorem 6 For any d > 0 and any θ ∈ R, there is a degree-d univariate polynomial pd,θ such that

∫ ∞

−∞
(pd,θ(x)− sgn(x− θ))2

e−x2

√
π

dx = O

(
1√
d

)
. (4)

The proof of this Theorem and the other necessary approximations for learning halfspaces over
uniform spherical and log-concave distributions are in Appendix B.

We note that the nO(1/ε2)-time, O(opt + ε)-error analogues of Theorem 1, part 1, mentioned
in Section 1.3 follows from Fact 5 and Theorem 6 using the L2-norm analogue of the polynomial
regression algorithm mentioned at the end of Section 3. The improved time bound comes from
the fact that we no longer need to invoke E[|Z|] ≤ √

E[Z2] to bound the square loss, since we are
minimizing the square loss directly rather than the absolute loss.

4.1 Agnostically Learning Disjunctions under Any Distribution. We can use the poly-
nomial regression algorithm to learn disjunctions agnostically with respect to any distribution in
subexponential time. We make use of the existence of low-degree polynomials which strongly
approximate the OR function in the L∞ norm:

Theorem 7 [30, 28, 19] Let f(x1, . . . , xn) compute the OR function on some subset of (possibly
negated) input variables. Then there exists a polynomial p of degree O(

√
n log(1/ε)) such that for

all x ∈ {−1, 1}n, we have |f(x)− p(x)| ≤ ε.

For ε = Θ(1) this fact appears in [30, 28]; an easy extension to arbitrary ε is given in [19].
Theorem 2 follows immediately from Theorems 7 and Theorem 5, since for any distribution D the
L∞ bound given by Theorem 7 clearly implies the bound on expectation required by Theorem 5.

We note that some existence results are known for low-degree L∞-approximators of richer
concept classes than just disjunctions. For example, results of O’Donnell and Servedio [29] show
that any Boolean function f : {−1, 1}n → {−1, 1} computed by a Boolean formula of linear size and
constant depth is ε-approximated in the L∞ norm by a polynomial of degree Õ(

√
n) ·poly log 1

ε . By
combining Theorem 5 with such existence results, one can immediately obtain arbitrary-distribution
agnostic learning results analogous to Theorem 2 for those concept classes as well.

5 Extensions and Other Applications

5.1 Learning halfspaces over the sphere with the degree-1 version of the polynomial
regression algorithm. Let us return to the case, where the marginal distribution DX is uniform
over Sn−1, and now consider the d = 1 version of the polynomial regression algorithm. In this case,
we would like to find the vector w ∈ Rn that minimizes EDX

[(w · x− y)2]. By differentiating with
respect to wi and using the fact that E[xi] = E[xixj ] = 0 for i 6= j and E[x2

i ] = 1
n , we see that the

minimum is achieved at wi = 1
nE[xiyi].

This is essentially the same as the simple Average algorithm which was proposed by Servedio in
[31] for learning origin-centered halfspaces under uniform in the presence of random misclassification
noise. The Average algorithm draws examples until it has a sample of m positively labeled examples
x1, . . . , xm, and then it returns the hypothesis h(x) = sgn(v · x) where v = 1

m

∑m
i=1 xi is the vector

average of the positive examples. The intuition for this algorithm is simple: if there were no noise
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then the average of the positive examples should (in the limit) point exactly in the direction of the
target normal vector.

A straightforward application of the bounds from Section 3 and Section 4 implies only that the
degree-1 polynomial regression algorithm should achieve some fixed constant accuracy Θ(1) inde-
pendent of opt for agnostic learning halfspaces under the uniform distribution on Sn−1. However,
a more detailed analysis shows that the simple Average algorithm does surprisingly well, in fact
obtaining a hypothesis with error rate O(opt

√
log(1/opt))+ ε; this is Theorem 3. The proof, which

is somewhat technical, is given in Appendix D, and useful preliminaries are given in Appendix C.

5.2 Learning halfspaces in the presence of malicious noise. We now consider the problem
of PAC learning an unknown origin-centered halfspace, under the uniform distribution on Sn−1,
in the demanding malicious noise model introduced by Valiant [34] and subsequently studied by
Kearns and Li [17] and many others.

We first define the malicious noise model. Given a target function f and a distribution D over
X, a malicious example oracle with noise rate η is an oracle EXη(f,D) that behaves as follows. Each
time it is called, with probability 1− η the oracle returns a noiseless example (x, f(x)) where x is
drawn from D, and with probability η it returns a pair (x, y) about which nothing can be assumed;
in particular such a “malicious” example may be chosen by a computationally unbounded adversary
which has complete knowledge of f, D, and the state of the learning algorithm when the oracle is
invoked. We say that an algorithm learns to error ε in the presence of malicious noise at rate η
under the uniform distribution if it satisfies the following condition: given access to EXη(f,U) with
probability 1− δ the algorithm outputs a hypothesis h such that Prx∈U [h(x) 6= f(x)] ≤ ε.

Only few positive results are known for learning in the presence of malicious noise. Improving
on [34, 17] Decatur [7] gave an algorithm to learn disjunctions under any distribution that tolerates
a noise rate of O( ε

n ln 1
ε ). More recently, Mansour and Parnas studied the problem of learning

disjunctions under product distributions in an “oblivious” variant of the malicious noise model [27],
giving an algorithm that can tolerate a noise rate of O(ε5/3/n2/3). We note that the Perceptron
algorithm can be shown to tolerate malicious noise at rate O(ε/

√
n) when learning an origin-centered

halfspace under the uniform distribution U on Sn−1.
It is not difficult to show that the simple Average algorithm can also tolerate malicious noise

at rate O(ε/
√

n) (see Appendix E for the proof). We now show that by combining the Average
algorithm with a simple preprocessing step to eliminate some noisy examples, we can handle a higher
malicious noise rate of Ω( ε

(n log n)1/4 ). This algorithm, which we call TestClose, is the following:

1. Draw examples from EXη(f,U) until m = O(n2

ε2
log n

δ ) positively labelled examples have been
received; let S = {x1, . . . , xm} denote this set of examples.

2. Let ρ =
√

C
n log m

δ , where C is a fixed constant specified later. If any pair of examples xi, xj

with i 6= j has ‖xi − xj‖ <
√

2− ρ, remove xi and xj from S. (We say that such a pair of
examples is too close.) Repeat this until no two examples in S are too close to each other.
Let S′ denote this “reduced” set of examples.

3. Now run Average on S′ to obtain a vector v, and return the hypothesis h(x) = sgn(v · x).

The idea behind this algorithm is simple. If there were no noise, then all examples received by
the algorithm would be independent uniform random draws from Sn−1, and it is not difficult to
show that with very high probability no two examples would be too close to each other. Roughly
speaking, the adversary controlling the noise would like to cause v to point as far away from the
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true target vector as possible; in order to do this his best strategy (if we were simply running the
Average algorithm on the original data set S without discarding any points) would be to have all
noisy examples be located at some single particular point x? ∈ Sn−1. However, our “closeness”
test rules out this adversary strategy, since it would certainly identify all these collocated points as
being noisy and discard them. Thus intuitively, in order to fool our closeness test, the adversary
is constrained to place his noisy examples relatively far apart on Sn−1 so that they will not be
identified and discarded. But this means that the noisy examples cannot have a very large effect
on the average vector v, since intuitively placing the noisy examples far apart on Sn−1 causes their
vector average to have small magnitude and thus to affect the overall average v by only a small
amount. The actual analysis in the proof of Theorem 4, which we give in Appendix F, uses bounds
from the theory of sphere packing in Rn to make these intuitive arguments precise.

5.3 Revisiting learning intersections of halfspaces. Finally, we note that the polynomial
regression algorithm can be used to obtain a slight improvement on the runtime bound of Klivans
et al. [19] for learning an intersection of k halfspaces under the uniform distribution on {−1, 1}n.
Because of space constraints we give this result in Appendix H.

6 Directions for Future Work

There are many natural ways to extend our work. One promising direction is to try to develop
a broader range of learning results over the sphere Sn−1 using the Hermite polynomials basis, in
analogy with the rich theory of uniform distribution learning that has been developed for the parity
basis over {−1, 1}n. Another natural goal is to gain a better understanding of the distributions and
concept classes for which we can use the polynomial regression algorithm as an agnostic learner.
Is there a way to extend the analysis of the d = 1 case of the polynomial regression algorithm
(establishing Theorem 3) to obtain a stronger version of Theorem 1, Part 1(b)? Another natural
idea would be to use the “kernel trick” with the polynomial kernel to speed up the algorithm.
Finally, we intend to explore whether the polynomial regression algorithm can be used for other
challenging noisy learning problems beyond agnostic learning, such as learning with malicious noise.
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A Solving L1 polynomial regression in polynomial time

Let S denote the set of all indices of monomials of degree at most d over variables x1, . . . , xn, so
|S| ≤ nd+1. Our goal is to find wS ∈ R for S ∈ S to minimize 1

m

∑m
i=1 |yi −∑

S∈S wS(xi)S |, where
xS is the monomial indexed by S. This can be done by solving the following LP:

min
m∑

i=1
zi such that ∀i : zi ≥ yi − ∑

S∈S
wS(xi)S and

zi ≥ −
(

yi − ∑
S∈S

wS(xi)S

)
.

Using polynomial-time algorithm for linear programming this can be solved exactly in nO(d) time.
We will give more details in the full version of the paper.
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B Proof of Theorems 6 and 1

We begin by proving Theorem 6:

Theorem 6 For any d > 0 and any θ ∈ R, there is a degree-d univariate polynomial pd,θ such
that ∫ ∞

−∞
(pd,θ(x)− sgn(x− θ))2

e−x2

√
π

dx = O

(
1√
d

)
. (5)

We assume without loss of generality that θ ≥ 0; an entirely similar proof works for θ < 0.
First, suppose that θ >

√
d. Then we claim that the constant polynomial p(x) = −1 will be a

sufficiently good approximation of sgn(x− θ). In particular, it will have error,

∫ ∞

θ

4e−x2

√
π

dx ≤
∫ ∞
√

d

4e−x

√
π

dx =
4e−

√
d

√
π

≤ 4√
πd

.

So the case that θ >
√

d is easy, and for the remainder we assume that θ ∈ [0,
√

d].
We use the Hermite Polynomials Hd, d = 0, 1, . . . , (Hd is a degree-d univariate polynomial)

which are a set of orthogonal polynomials given the weighting e−x2
π−1/2. In particular,

∫ ∞

−∞
Hd1(x)Hd2(x)

e−x2

√
π

dx =
{

0 if d1 6= d2

2d1d1! if d1 = d2

Hence these polynomials form an orthogonal basis of polynomials with respect to the inner product
〈p, q〉 =

∫∞
−∞ p(x)q(x)e−x2

π−1/2dx. The functions H̄d(x) = Hd(x)/
√

2dd! are an orthonormal basis.
Now, the best degree d approximation to the function sgn(x− θ), in the sense of (5), for any d,

can be written as
∑d

i=0 ciH̄i(x). The ci ∈ R that minimize (5) are,

ci =
∫ ∞

−∞
sgn(x− θ)H̄i(x)

e−x2

√
π

dx

=
∫ ∞

θ
H̄i(x)

e−x2

√
π

dx−
∫ θ

−∞
H̄i(x)

e−x2

√
π

dx

= 2
∫ ∞

θ
H̄i(x)

e−x2

√
π

dx (for i ≥ 1) (6)

The last step follows from the fact that
∫∞
−∞ sgn(x− θ)H̄i(x) e−x2

√
π

dx = 0 for i ≥ 1 by orthogonality
of H̄i with H̄0. Next, to calculate our error, we use Parseval’s identity,

∫ ∞

−∞

(
d∑

i=0

ciH̄i(x)− sgn(x− θ)

)2
e−x2

√
π

dx = 1−
d∑

i=0

c2
i =

∞∑
i=d+1

c2
i .

The above holds because
∫∞
−∞

e−x2

√
π

= 1 and hence
∑∞

i=0 c2
i = 1 (sgn(x) ∈ L2(R, e−x2

) and polyno-
mials are dense in this set). It thus suffices for us to bound

∑∞
i=d+1 c2

i .
It is now easy to calculate each coefficient ci using standard properties of the Hermite Polyno-

mials. It is well known [32] that the Hermite polynomials can be defined by:

Hi(x)e−x2
= (−1)i dn

dxn
e−x2

, which implies
d

dx
Hi(x)e−x2

= −Hi+1(x)e−x2
.
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In turn, this and (6) imply that for i ≥ 1,

ci =
2√

π2ii!

∫ ∞

θ
Hi(x)e−x2

dx =
2√

π2ii!

(
−Hi−1(x)e−x2

)∣∣∣∞
θ

=
2√

π2ii!
Hi−1(θ)e−θ2

. (7)

We must show that
∑∞

i=d+1 c2
i = O(1/

√
d). To do this, it suffices to show that for each i we

have c2
i = O(i−3/2). From (7) we have, for i ≥ 1,

c2
i =

4
π2ii!

(Hi−1(θ))2e−2θ2
. (8)

Now, conveniently Theorem 1.i of [5] states that, for all i ≥ θ2,

1
2ii!

Hi(θ)2e−θ2 ≤ C√
i

where C is some absolute constant. Since we have θ ≤ √
d by assumption, we have that for i ≥ d+1,

c2
i ≤ 4C

2πi
√

i−1
, which is of the desired form O(i−3/2), and Theorem 6 is proved.

With Theorem 6 in hand it is not difficult to to establish Theorem 1 Part 1(b), which we restate
below:

Let D be a distribution over Rn × {−1, 1}, with DX uniform over Sn−1. With proba-
bility 1− δ, the L1 polynomial regression outputs a hypothesis with error opt + ε given
poly(n1/ε4 , log 1

δ ) examples.

Proof: Let f(x) = sgn(v · x − τ) be any halfspace over the unit ball Sn−1, where without loss of
generality we may assume ‖v‖ = 1 (and thus |τ | ≤ 1). Let U denote the uniform distribution over
Sn−1. It suffices to establish the existence of a degree-d polynomial P (x), with d = O(1/ε4), which
satisfies the condition Ex∈U [(P (x) − f(x))2] ≤ ε2; given such a polynomial we apply Theorem 5
and Theorem 1 Part 1(b) immediately follows.

Let θ =
√

n−3
2 τ and let P (x) = pd,θ(

√
n−3

2 v ·x). For d = O(1/ε4), we show that the polynomial

P (x) = pd,θ

(√
n−3

2 (v · x)
)

satisfies EU [(P (x)− f(x))2] ≤ ε2.
We have (justifications are given below):

Ex∈U [(P (x)− f(x))2] = Ex∈U
[(

pd,θ

(√
n−3

2 (v · x)
)
− sgn

(√
n−3

2 (v · x)− θ
))2

]

=
An−2

An−1

∫ 1

−1
(1− z2)(n−3)/2

(
pd,θ

(√
n−3

2 z
)
− sgn(

√
n−3

2 z − θ)
)2

dz (9)

≤ An−2

An−1

∫ ∞

−∞
e−z2(n−3)/2

(
pd,θ

(√
n−3

2 z
)
− sgn(

√
n−3

2 z − θ)
)2

dz (10)

=
An−2

An−1

∫ ∞

−∞
e−y2

(pd,θ(y)− sgn(y − θ))2 dy√
(n−3)/2

(11)

≤ ε2 (12)

where (9) follows from Fact 8 on the pdf of the uniform distribution over Sn−1; (10) follows from
1−z ≤ exp(−z) and the fact that the integrand is nonnegative; (11) follows from a change of variable
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y =
√

n−3
2 · z; and (12) follows from An−2

An−1
= Θ(

√
n), Theorem 6, and our choice of d = O(1/ε4).

This concludes the proof of Theorem 1 Part 1(b).

Since we have proven Theorem 1 Part 1(a) in Section 4, we are now ready to move on to
the log-concave part. The first thing to notice is that, just as the normal distribution served as a
prototypical distribution for all spheres, there is a log-concave distribution that is not much smaller
than any other:

Lemma 6 Let ν be the distribution on R with density dν(x) = e−|x|/16/32. Let µ be any log-concave
distribution on R with mean 0 and variance 1. Then, for all x ∈ R, dµ(x) ≤ (32e)dν(x).

In the above, we necessarily chose a distribution ν that did not have variance 1.

Proof: To prove this lemma, we will use the properties of log-concave functions given by Lovasz and
Vempala [26]. Specifically, for any log-concave density dµ with mean 0 and variance 1, ∀x dµ(x) ≤ 1,
and dµ(0) ≥ 1/8. From the latter fact, we next argue that dµ(x) ≤ e−|x|/16 for |x| > 16. It suffices
to show this for x > 16 by symmetry. Suppose not, i.e., suppose ∃r > 16 dµ(r) ≥ e−r/16. Then
log-concavity implies that dµ(x) ≥ (1/8)1−x/r(e−r/16)x/r for x ∈ [0, r]. In turn, this means,∫ 16

0
dµ(x) ≥

∫ 16

0

1
8
e−x/16dx > 1,

which is a contradiction. Hence, dµ(x) ≤ e−|x|/16 = 32dν(x) for |x| > 16. (These bounds are far
from tight.) Also, for |x| < 16, dµ(x) ≤ 1 ≤ (32e)dν(x).

This lemma will enable us to transfer a bound on the error of a fixed log-concave function such
as e−2|x| to all log-concave functions.

Lemma 7 There exists a fixed function d : R → R, such that, for any log-concave distribution µ,
and any θ ∈ R, there exists a degree-d(ε) polynomial p, such that∫ ∞

−∞
(p(x)− sgn(x− θ))2dµ(x) ≤ ε.

Proof: It suffices to show it for any log-concave distribution µ with mean 0 and variance 1. This
is because we can always apply an affine transformation to x, x → ax + b which puts it in such
standard position and maintains the properties of the lemma (for a suitably transformed polynomial
p and θ). Thus, we assume that µ has mean 0 and variance 1.

Next, we claim it suffices to show the lemma for the log-concave density dν(x) = e−|x|/16/32,
which has mean 0 but variance > 1. To see this, suppose it holds for dν and p, and we have some
mean 0 variance 1 log-concave density dµ. Then by Lemma 6,∫ ∞

−∞
(p(x)− sgn(x− θ))2dµ(x) ≤ 32e

∫ ∞

−∞
(p(x)− sgn(x− θ))2dν(x) ≤ 32eε.

Hence it would hold for mean-0 variance-1 dµ with function d′ : R → R where d′(ε) = d(ε/(32e)).
By a similar stretching argument, it suffices to show it for dν(x) = e−2|x|.

Next, again WLOG, it suffices to show it for |θ| < log 1/ε. For if |θ| > 2 log 1/ε, then the
constant polynomial p(x) = −sgn(θ) has error less than ε under dν(x) = e−2|x|. Continuing on the
seemingly endless chain of WLOGs, we next that it suffices to show it for θ = 0. Suppose it holds
for dν(x) = e−2|x|, a particular p and ε, and sgn(x). That is,∫ ∞

−∞
(p(x)− sgn(x))2dν(x) ≤ ε (13)
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Then consider the function sgn(x− θ) and the density dρ(x) = e−2|x−θ|/ log(1/ε)/ log(1/ε). For this
density, by (13) and change of variable z = log(1/ε)(x− θ),∫ ∞

−∞
(p(z)− sgn(z))2dν(z) =

∫ ∞

−∞
(p(log(1/ε)(x− θ))− sgn(x− θ))2dρ(x) ≤ ε (14)

Now, observe that as long as log(1/ε) > 1, (ε ≤ 1/e)

dν(x)
dρ(x)

= log(1/ε)e2(
|x−θ|

log(1/ε)
−|x|) ≤ log(1/ε)e2(

|x−θ|−|x|
log(1/ε)

) ≤ log(1/ε)e2
|θ|

log(1/ε) ≤ log(1/ε)e2.

By this and (14), ∫ ∞

−∞
(p(log(1/ε)(x− θ))− sgn(x− θ))2dµ(x) ≤ e2ε log(1/ε).

Hence a bound of ε on the error of p for sgn(x) implies a bound of e2ε log(1/ε) on the error of
p(log(1/ε)(x− θ)). So, it suffices to show we can achieve such a bound for sgn(x), dν(x) = e−2|x|,
and arbitrarily small ε.

At this point we have a single function sgn(x), a single density e−2|x|, and we must establish
that for any ε there is some d = d(ε) for which there is a degree-d polynomial p for which (13) holds.
But sgn(x) ∈ L2(R, e−2|x|) because

∫∞
−∞ sgn(x)2e−2|x|dx = 1 < ∞ and it is known that polynomials

are dense in L2(R, e−2|x|) [32].

C Learning Halfspaces on the Unit Sphere: Preliminaries

We write Sn−1 to denote the n-dimensional Euclidean sphere Sn−1 = {x ∈ Rn :
∑n

i=1 x2
i = 1}.

Given two nonzero vectors u, v ∈ Rn we write α(u, v) to denote arccos( u·v
‖u‖·‖v‖), the angle between

u and v. If the target halfspace is sgn(u · x) and sgn(v · x) is a hypothesis halfspace, then it is easy
to see that we have Prx∈U [sgn(u · x) 6= sgn(v · x)] = α(u, v)/π.

We write An−1 to denote the surface area of Sn−1. It is well known (see e.g. [1]) that An−2/An−1 =
Θ(n1/2). The following fact (see e.g. [1]) is useful:

Fact 8 For any unit vector v ∈ Rn and any −1 ≤ α < β ≤ 1, we have

Pr
x∈U

[α ≤ v · x ≤ β] =
An−2

An−1
·
∫ β

α
(1− z2)(n−3)/2dz.

The following straightforward result lets us deal easily with sample error:

Fact 9 Let D be any distribution over Sn−1. Let v denote the expected location Ex∈D[x] of a
random draw from D, and suppose that ‖v‖ ≥ ξ. Then if v = 1

m

∑m
i=1 xi is a sample estimate

of Ex∈D[x] where each xi is drawn independently from D and m = O( n
ε2ξ2 log n

δ ), we have that
Prx∈U [sgn(v · x) 6= sgn(v · x)] ≤ ε with probability at least 1− δ.

Proof: We define an orthonormal basis for Rn by letting vector u1 denote v
‖v‖ and letting u2, . . . , un

be an arbitrary orthonormal completion. Given a vector z ∈ Rn, we may write z1 for z · u1 and
z2, . . . , zn for z · u2, . . . , z · un respectively. We have Ex∈D[x1] = ξ so standard additive Chernoff
bounds imply that taking m = O( 1

ξ2 log 1
δ ) many draws will result in |v1−ξ| ≤ ξ

2 with probability at
least 1− δ

2 . For i = 2, . . . , n we have Ex∈D[xi] = 0; again standard additive Chernoff bounds imply
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that taking m = O( n
ε2ξ2 log n

δ ) many draws will result in |vi| ≤ εξ
2
√

n
for each i with probability at

least 1− δ
2 . Thus, with overall probability at least 1− δ we have

α(v, v) = arctan

(√
v2

2 + · · ·+ v2
n

v1

)
≤ arctan (ε) ≤ ε

and thus Prx∈U [sgn(v · x) 6= sgn(v · x)] ≤ α(v, v)/π < ε/π < ε.

D Proof of Theorem 3

We have that D is a distribution over X × {−1, 1} whose marginal is the uniform distribution U
on Sn−1. Without loss of generality we may suppose that the optimal origin-centered halfspace is
f(x) = sgn(x1), i.e. the normal vector to the separating hyperplane is e1 = (1, 0, . . . , 0). We write
S+ to denote the “positive hemisphere” {x ∈ Sn−1 : x1 ≥ 0} and write S− to denote Sn−1 \ S+.
We may also suppose without loss of generality that the optimal halfspace’s error rate opt is such
that O(opt

√
log 1

opt) is less than 1
4 , i.e. opt is less than some fixed absolute constant that we do

not specify here.
Let p : Sn−1 → [0, 1] be the function

p(z) = Pr
(x,y)∈D

[y 6= f(z) | x = z] (15)

so intuitively p(z) is the probability of getting a “noisy label” y on instance z. (We assume the
joint distribution D on X ×Y is sufficiently “nice” in terms of measurability, etc. so that p is well-
defined as specified above.) Let v denote the true vector average of all positively labeled examples
generated by D, i.e.

v =
∫

x∈S+

x(1− p(x))U(x) +
∫

x∈S−
xp(x))U(x).

If the number m of examples used by Average went to infinity, the vector average v that Average
computes would converge to v. We prove Theorem 3 by first establishing bounds on v, and then
using Fact 9 (in Appendix C) to deal with sample error.

Let u denote the vector average of all points in S+. It is clear from symmetry that u =
(u1, 0, . . . , 0) for some u1 > 0; in fact we have

Claim 10 u1 = 2 · An−2

An−1
· ∫ 1

0 z(1− z2)(n−3)/2dz = Θ( 1√
n
).

Proof: The first equality follows immediately from Fact 8 (the factor of 2 is present because u
is the vector average of half the points of Sn−1). For the second equality, since An−2

An−1
= Θ(

√
n)

we need to show that
∫ 1
0 z(1 − z2)(n−3)/2dz is Θ(1/n). For each z ∈ [1/

√
n, 2/

√
n] the value of

the integrand z(1 − z2)(n−3)/2 is at least (1/
√

n)(1 − 4
n)(n−3)/2 = Θ(1/

√
n), so this implies that

the whole integral is Ω(1/n). The integrand is clearly at most 1/
√

n for all z ∈ [0, 1/
√

n], so we
have

∫ 2/
√

n
0 z(1 − z2)(n−3)/2dz = Θ(1/n); to finish the proof we need only show that

∫ 1
2/
√

n z(1 −
z2)(n−3)/2dz = O(1/n). We can piecewise approximate this integral (in increments of 1/

√
n) as

∫ 1

2/
√

n
z(1− z2)(n−3)/2dz ≈

√
n∑

j=2

j√
n

e−j2/2 · 1√
n

=
1
n

√
n∑

j=2
je−j2/2 <

1
n

∞∑
j=2

je−j2/2 = O(1/n)

and this gives the claim.
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If there were no noise then then the vector average v would equal u; since there is noise we
must add in a contribution from true negative examples that are falsely labeled as positive, and
subtract off a contribution from true positive examples that are falsely labeled as negative.

Let opt− and opt+ be defined as

opt− =
∫

x∈S−
p(x)U(x) and opt+ =

∫
x∈S+

p(x)U(x),

so opt− is the overall probability of receiving an example that is truly negative but falsely labeled
as positive, and vice versa for opt+. Clearly opt = opt− + opt+. Let u− and u+ be the vectors

u− =

∫
x∈S− xp(x)U(x)

opt−
and u+ =

∫
x∈S+ xp(x)U(x)

opt+

so u− (u+ respectively) is the vector average of all the false positive (false negative respectively)
examples generated by p. Then the vector average v of all positively labeled examples is

v =
u/2 + opt−u− − opt+u+

1/2 + opt− − opt+
= C1 · v′

where v′ = u/2 + opt−u− − opt+u+ and 4
3 ≤ C1 = 1

1/2+opt−−opt+
≤ 4; the bounds on C1 hold since

by assumption we have opt ≤ 1
4 . So v′ is a constant multiple of v, and it suffices to analyze v′.

We have v′ = (v′1, . . . , v′n), where v′1 is the component parallel to e1. In the rest of this subsection
we will establish the following bounds on v′:

Theorem 8 (i) The component of v′ that is parallel to the target vector e1 is v′1 ≥ u1(1
2 −

O(opt
√

log 1
opt)) > u1

4 . (ii) The component of v′ that is orthogonal to e1, namely v′⊥ = v′ − v′1e1 =

(0, v′2, . . . , v′n), satisfies ‖v′⊥‖ = O(opt
√

log 1
opt)u1.

Note that given Theorem 8, the error rate of the hypothesis sgn(v · x) under U is

Pr[sgn(v′ · x) 6= sgn(x1)] =
tan−1

(
v′1
‖v′⊥‖

)
π

≤
tan−1(O(opt

√
log 1

opt))

π
= O(opt

√
log 1

opt).

By Fact 9 the sample average vector v has Prx∈U [sgn(v · x) 6= sgn(v · x)] ≤ ε with probability at
least 1− δ, and we obtain Theorem 3.

Now we prove Theorem 8. Note that if opt−u− − opt+u+ is the zero vector then the theorem
clearly holds, so we henceforth assume that opt−u− − opt+u+ is not the zero vector.

Fix any unit vector w ∈ Sn−1. Suppose that p is such that the vector opt−u−−opt+u+ points in

the direction of w, i.e. w = opt−u−−opt+u+

‖opt−u−−opt+u+‖ ; let τ > 0 denote ‖opt−u−−opt+u+‖, so v′ = u/2+τw.

To establish Theorem 8, it suffices to show that the desired bounds hold for any function p which
satisfies (15) and is such that: (a) the vector opt−u−−opt+u+ points in the direction of w, and (b)
the magnitude of τ = ‖opt−u−−opt+u+‖ is as large as possible. (Since u/2 contributes zero to v′⊥,
we have that ‖v⊥‖ scales with τ and thus condition (ii) only becomes harder to satisfy as τ increases.
If w1 > 0 then condition (i) holds for any τ > 0, and if w1 < 0 then the larger τ is the more difficult
it is to satisfy condition (i).) We let τmax denote this maximum possible value of τ ; if we can show
that |τmax| = O(opt

√
log 1

opt)u1, then since v′1 = u1
2 + τw1 and v′⊥ = τ(0, w2, w3, . . . , wn), this gives

Theorem 8.
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We upper bound τmax by considering an even more relaxed scenario. Let w be any unit vector
in Rn. Let A be any subset of Sn−1 and let B be any subset of Sn−1 \ A such that optA +

optB = opt, where optA =
∫
x∈A p(x)U(x) and optB =

∫
x∈B p(x)U(x). Let uA =

∫
x∈A xp(x)U(x)

optA
and

uB =
∫

x∈B xp(x)U(x)

optB
. Let p : Sn−1 → [0, 1] be any function such that (i) equation (15) holds, and (ii)

the vector optAuA − optBuB points in the direction of w. If we can upper bound the magnitude of
optAuA−optBuB, then this gives an upper bound on τmax. (This is a more relaxed scenario because
we are not requiring that A ⊆ S− and B ⊆ S+.) But now a simple convexity argument shows
that ‖optAuA − optBuB‖ is maximized by taking A to be {x ∈ Sn−1 : x ·w ≥ y} where y is chosen
so that

∫
x∈A U(x) = opt

2 ; taking B to be −A; and taking p(x) to be 1 on x ∈ (A ∪ B) and 0 on
x /∈ (A∪B) (note that this gives optA = optB = opt

2 ). Let τMAX be the value of ‖optAuA−optBuB‖
that results from taking A, B, optA, optB and p as described in the previous sentence; we will show
that τMAX = O(opt

√
log 1

opt)u1 and thus prove Theorem 8.

It is clear that optAuA = −optBuB, so it suffices to bound ‖optAuA‖ = τMAX
2 . Let y ∈ [0, 1] be

the value described above, so

opt

2
= Pr

x∈U
[x · w ≥ y] =

An−2

An−1
·
∫ 1

y
(1− z2)(n−3)/2dz. (16)

We have

optAuA =
∫

x∈A
xp(x)U(x) =

(
An−2

An−1
·
∫ 1

y
z(1− z2)(n−3)/2dz

)
w,

so it remains to show that γ = O(opt
√

log 1
opt) where γ > 0 is such that

An−2

An−1
·
∫ 1

y
z(1− z2)(n−3)/2dz = γu1 (17)

where y satisfies (16). We do this in the following two claims.

Claim 11 Write y = √̀
n
. Then e−`2/2 = Θ(opt).

Proof: We have
∫ 1
y (1 − z2)(n−3)/2dz = opt

2An−2/An−1
= Θ( opt√

n
). Write y = √̀

n
. Piecewise approxi-

mating the integral in increments of 1/
√

n we have∫ 1

y
(1− z2)(n−3)/2dz ≈

√
n∑

j=`

e−j2/2 · 1√
n

= Θ(e−`2/2) · 1√
n

.

Since this equals Θ( opt√
n
), we have that e−`2/2 = Θ(opt), which gives the claim. (Note that we

thus have ` = Θ(
√

log 1
opt) À 1, which permits us to approximate the integral with a sum as done

above.)

Claim 12 We have γ = Θ(opt
√

log(1/opt)).

Proof: From Claim 10 we have u1 = Θ( 1√
n
). Since An−2

An−1
= Θ(

√
n), by Equation (17) we have that

γ = Θ(n · ∫ 1
y z(1 − z2)(n−3)/2dz). Since y = `/

√
n where ` = Θ(

√
log(1/opt)) (and more precisely

e−`2/2 = Θ(opt)), again a piecewise approximation with pieces of length 1/
√

n gives us∫ 1

y
z(1− z2)(n−3)/2dz ≈

√
n∑

j=`

j√
n
· e−j2/2 · 1√

n
<

1
n

∞∑
j=`

je−j2/2 = Θ(
`e−`2/2

n
)
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and thus γ = Θ(opt
√

log 1/opt) as desired.

E Malicious Noise Tolerance of the Average Algorithm

Theorem 9 For any ε > 0, algorithm Average (with m = O(n2

ε2
· log n

δ )) learns the class of origin-
centered halfspaces to error ε in the presence of malicious noise at rate η = O( ε√

n
) under the

uniform distribution.

Proof: If there were no noise the true average vector (average of all positive examples) would be
(u1, 0, . . . , 0) where by Claim 10 we have u1 = Θ(1/

√
n). By Chernoff bounds, we may assume that

the true frequency η′ of noisy examples in the sample is at most 2η = O(ε/
√

n). Let v denote the
average of the noiseless vectors in the sample; Chernoff bounds are easily seen to imply that we have
v1 = Θ(1/

√
n) and |vi| ≤ ε

n for each i = 2, . . . , n. Let z denote the average location of the malicious
examples in the sample; since even malicious example must lie on Sn−1 (for otherwise we could
identify and discard them), it must be the case that ‖z‖ ≤ 1. ¿From this it is easy to see that the
average v of the entire sample must satisfy v1 = Θ(1/

√
n)−ε/

√
n = Θ(1/

√
n) and

√
v2

2 + · · ·+ v2
n =

O(ε/
√

n). We thus have Prx∈U [sgn(v · x) 6= sgn(x1)] = α(v, e1)/π = arctan(O(ε/
√

n)
Θ(1/

√
n)

)/π ≤ ε.

F Proof of Theorem 4

Let Sbad ⊆ S denote the set of “bad” examples in S that were chosen by the adversary, and let Sgood

be S \ Sbad, the set of “good” noiseless examples. Let S′bad (S′good, respectively) denote Sbad ∩ S′

(Sgood∩S′, respectively), i.e. the set of bad (good, respectively) examples that survive the closeness
test in Step 2.

Let us write vgood to denote the vector average of all points in S′good and vbad to denote the

vector average of all points in Sbad. If we let η′ denote |S′bad|
|S′| , then we have that the overall vector

average v of all examples in S′ is (1− η′)vgood + η′vbad.
We first show that our closeness test does not cause us to discard any good examples:

Lemma 13 With probability at least 1− δ
2 we have S′good = Sgood.

Proof: Let x′ be any fixed point on Sn−1. We will show that a uniform example drawn from U lies
within distance

√
2− ρ of x′ with probability at most δ

2m2 . Since there are at most m examples in
Sgood, this implies that for any individual example xi ∈ S, the probability that xi lies too close to
any example in Sgood is at most δ

2m ; taking a union bound gives the lemma.
Wlog we may take x′ = (1, 0, . . . , 0). It is easy to see that for any y = (y1, . . . , yn) ∈ Sn−1, we

have ‖y − x′‖ =
√

2− 2y1 and thus ‖y − x′‖ <
√

2− ρ if and only if y > ρ/2. But by Fact 8, we
have that if y is drawn from U , then

Pr
y∈U

[y > ρ/2] =
An−2

An−1
·
∫ 1

ρ/2
(1− z2)(n−3)/2dz. (18)

It is easy to verify from the definition of ρ that for a suitable absolute constant C, the integrand
(1− z2)(n−3)/2 is at most (1− (ρ/2)2)(n−3)/2 ≤ δ

2m2·Θ(
√

n)
over the interval [ρ/2, 1], and thus (since

An−2/An−1 = Θ(
√

n)) we have that (18) is at most δ
2m2 as required.

The “true” frequency of bad examples is η, and the previous lemma implies that with probability
1− δ

2 we do not throw away any good examples from S. Using Chernoff bounds, it is easy to show
that with overall probability at least 1 − δ we have η′ < 2η. By Lemma 13 we also have that
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S′good is in fact an unbiased uniform sample of true positive examples from U . Let vgood denote
1

|Sgood|
∑

x∈Sgood
x, the average location of the vectors in Sgood. We have that the expected value

of vgood is (u1, 0, . . . , 0) where u1 = Θ( 1√
n
) is as defined in Claim 10. For m = O(n2

ε2
log n

δ ), as
in the proof of Fact 9, Chernoff bounds imply that with probability at least 1 − δ we have that
(vgood)1 = Θ( 1√

n
) while (vgood)i = O( ε

n) for each i = 2, . . . , n.
We now show that ‖vbad‖ must be small; once we establish this it is straightforward to combine

our bounds to prove the theorem. This is a consequence of the following lemma:

Lemma 14 Let T be any set of M = ω(n3/2/
√

ρ) many examples on Sn−1 such that no two
examples in T lie within distance

√
2− ρ of each other. Then the vector average t = 1

|T |
∑

x∈T x of

T satisfies ‖t‖ = O

(
(log m

δ
)1/2

n1/4

)
.

Proof: Without loss of generality we may suppose that t = (c, 0, . . . , 0) for some c > 0 (by
rotating the set T ); our goal is to upper bound c. We consider a partition of T based on the
value of the first coordinate as follows. For τ = 1, 1 − 1√

n
, 1 − 2√

n
, . . . we define the set Tτ to be

{x ∈ T : τ − 1
2
√

n
≤ xi < τ + 1

2
√

n
}. The idea of the proof is that for any value of τ which is

not very small, the set Tτ must be small because of sphere-packing bounds. This implies that the
overwhelming majority of the M examples in T must have a small first coordinate, which gives the
desired result.

More precisely, we have the following claim:

Claim 15 There is a fixed constant K > 0 such that if τ > K
√

ρ, then |Tτ | ≤ n.

Proof: We first give a crude argument to show that that if τ > 0.1 then |Tτ | ≤ n. (It will be clear
from the argument that any positive constant could be used in this argument instead of 0.1.) This
argument uses the same basic ideas as the general case of τ > K

√
ρ but is simpler because we do

not need our bounds to be as precise; later for the general case it will be useful to be able to assume
that τ < 0.1.

Fix some τ > 0.1. For x ∈ Rn let x′ denote (x2, . . . , xn). Since each x ∈ Tτ has x1 ∈ [τ −
1

2
√

n
, τ + 1

2
√

n
), we have that each x ∈ Tτ satisfies ‖x′‖ =

√
1− τ2 · (1 ± o(1)). Let x̃′ denote the

rescaled version of x′ so that ‖x̃′‖ equals
√

1− τ2 exactly, and let T̃ ′τ denote {x̃′ : x ∈ Tτ}. Since
the first coordinates of any two points in Tτ differ by at most 1√

n
, it is not difficult to see that that

the minimum pairwise distance condition on Tτ implies that any pair of points in T̃ ′τ must have
distance at least (

√
2− ρ− 1√

n
) · (1− o(1)) =

√
2 · (1− o(1)) from each other.

We now recall Rankin’s second bound on the minimum pairwise distance for point sets on
Euclidean spheres (see e.g. Theorem 1.4.2 of [8]). This bound states that for any value κ >

√
2,

at most n + 1 points can be placed on Sn−1 if each point is to have distance at least κ from all
other points. By rescaling, this immediately implies that at most n points can be placed on the
Euclidean sphere of radius

√
1− τ2 in Rn−1 if all pairwise distances are at least κ

√
1− τ2. Now

recall from the previous paragraph that all points in T̃ ′τ lie on the sphere of radius
√

1− τ2, and
all pairwise distances in in T̃ ′τ are at least

√
2 · (1− o(1)). It follows by a suitable choice of κ >

√
2

that |T̃ ′τ |, and thus |Tτ |, is at most n.

We henceforth assume that τ < 0.1, and give a more quantitatively precise version of the above
argument to handle this case. We consider the following transformation f that maps points in Tτ
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onto the ball of radius
√

1− τ in Rn−1: given x = (x1, . . . , xn) ∈ Tτ , let

f(x) = (1− τ2)1/4 · x′

‖x′‖
i.e. f(x) is obtained by removing the first coordinate and normalizing the resulting (n − 1)-
dimensional vector to have magnitude

√
1− τ2.

We now claim that if x 6= y, x, y ∈ Tτ , then we have ‖f(x) − f(y)‖ >
√

2− ρ − 1√
n
− 3τ2

5 . To
see this, fix any x, y ∈ Tτ . By the triangle inequality we have

‖f(x)− f(y)‖ ≥ ‖x′ − y′‖ − ‖f(x)− x′‖ − ‖f(y)− y′‖, (19)

so it suffices to bound the terms on the right hand side.
For the first term, we have

√
2− ρ ≤ ‖x− y‖ ≤ 1√

n
+

√
(x2 − y2)2 + · · ·+ (xn − yn)2,

where the first inequality holds since x, y ∈ T and the second inequality holds since the first
coordinates of x and y differ by at most 1√

n
. This immediately gives ‖x′ − y′‖ ≥ √

2− ρ− 1√
n
.

For the second term, since x1 ∈ [τ − 1
2
√

n
, τ + 1

2
√

n
), it must be the case that

‖x′‖2 = x2
2 + · · ·+ x2

n ∈
(

1− (τ +
1

2
√

n
)2, 1− (τ − 1

2
√

n
)2

]
. (20)

We have

‖f(x)− x′‖ =

∥∥∥∥∥(1− τ2)1/4

‖x′‖ x′ − x′
∥∥∥∥∥ =

∣∣∣∣∣(1− τ2)1/4

‖x′‖ − 1

∣∣∣∣∣ · ‖x′‖ ≤
∣∣∣∣∣(1− τ2)1/4

‖x′‖ − 1

∣∣∣∣∣ (21)

where the last inequality uses ‖x′‖ ≤ 1. A tedious but straightforward verification (using the fact
that τ < 0.1) shows that condition (20) implies that the right side of (21) is at most 3τ2

10 (see
Appendix G for the proof). The third term ‖f(y)− y′‖ clearly satisfies the same bound.

Combining the bounds we have obtained, it follows from (19) that ‖f(x) − f(y)‖ ≥ √
2− ρ −

1√
n
− 3τ2

5 . For some fixed absolute constant K > 0, we have that if τ2 > K2ρ (i.e. τ > K
√

ρ), then

the right side of this last inequality is at least
√

2− 2τ2

3 . So we have established that the transformed
set of points f(Tτ ) have all pairwise distances at least

√
2− 2τ2

3 . But just as in the crude argument
at the beginning of the proof, Rankin’s bound implies that any point set on the radius-

√
1− τ2

ball in Rn−1 with all pairwise distances strictly greater than
√

2 · √1− τ2 must contain at most n
points. Since (as is easily verified)

√
2 − 2τ2

3 >
√

2 · √1− τ2 for 0 < τ < 0.1, it must be the case
that |Tτ | ≤ n. (Claim 15)

With Claim 15 in hand, it is clear that at most n3/2 examples x ∈ T can have x1 ≥ K
√

ρ. Since
certainly each point in T has first coordinate at most 1, the average value of the first coordinate of
all points in T must be at most

n3/2 + MK
√

ρ

M
≤ 2K

√
ρ = Θ

(
(log m

δ )1/2

n1/4

)

(where we used M = ω(n3/2/
√

ρ) for the inequality above), and Lemma 14 is proved.
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Lemma 14 implies that ‖vbad‖ = O( (log m
δ

)1/2

n1/4 ). (Note that if Sbad is not of size M , we can
augment it with examples from Sgood in order to make it large enough so that we can apply the
lemma. This can easily be done since we only need M = ω̃(n7/4) for the lemma and we have
|Sgood| = Θ̃(n2

ε2
).) Putting all the pieces together, we have that with probability 1 − δ all the

following are true:

• (vgood)1 = Θ( 1√
n
);

• (vgood)i = O( ε
n) for i = 2, . . . , n;

• ‖vbad‖ = O( (log m
δ

)1/2

n1/4 );

• η′ ≤ 2η, where v = (1− η′)vgood + η′vbad.

Combining all these bounds, a routine analysis shows that the angle between v and the target
(1, 0, . . . , 0) is at most ε provided that

(2η) log1/2(m/δ)

n1/4

1√
n

≤ c · ε

for some sufficiently small constant c. This proves Theorem 4.

G Proof that (21) is at most 3τ2

10

We have that (21) ≤
∣∣∣ (1−τ2)1/4

‖x′‖ − 1
∣∣∣. To bound this quantity we will consider the largest value

greater than 1 and smallest value less than 1 that (1−τ2)1/4

‖x′‖ can take. Throughout the following
bounds we repeatedly use the fact that 0 < τ < 0.1.

We have that

‖x′‖ >

√
1− (τ +

1
2
√

n
)2 > 1− 9τ2

16

where the first inequality is from (20) and the second is easily verified. Since (1− τ2)1/4 < 1− τ2

4 ,

we have (1−τ2)1/4

‖x′‖ < 1−τ2/4
1−9τ2/16

= 1 + 5τ2/16
1−9τ2/16

< 1 + 3τ2

10 . On the other hand, we also have that

‖x′‖ ≤ 1 so (1−τ2)1/4

‖x′‖ ≥ (1 − τ2)1/4 > 1 − 3τ2

10 (again using the fact that τ < 0.1). We thus have

that
∣∣∣ (1−τ2)1/4

‖x′‖ − 1
∣∣∣ < 3τ2

10 as claimed.

H Intersections of Halfspaces Revisited

Learning an intersection of halfspaces is a challenging and well-studied problem even in the noise-
free setting. Klivans et al. [19] showed that the standard low-degree algorithm can learn the
intersection of k halfspaces with respect to the uniform distribution on {−1, 1}n to error ε in time
nO(k2/ε2), provided that ε < 1/k2. Note that because of the requirement on ε, the algorithm always
takes time at least nΩ(k6) even if the desired final error is ε = Θ(1) independent of k.

Building off of our results from the previous section, we can use our approach to obtain the
following runtime bound which is better than [19] for ε > 1

k :

Theorem 10 Let f = h1 ∧ . . . ∧ hk be an intersection of k halfspaces over {−1, 1}n. Then f is
learnable with respect to the uniform distribution over {−1, 1}n in time nO(k4/ε2) for any ε > 0.
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We note that a comparable bound can be proved via techniques from recent work due to
Jackson et al. [15] which does not involve agnostic learning. The presentation here, however, is
more straightforward and shows how agnostic learning can have applications even in the non-noisy
framework.

The approach that establishes Theorem 10 is similar to Jackson’s Harmonic Sieve [14]: we
apply a boosting algorithm, using the polynomial regression algorithm at each stage to identify
a low-degree polynomial which, after thresholding, has advantage at least Ω(1/k) on the target
function.

H.1 Proof of Theorem 10. We begin with the following easy fact which follows directly from
the “discriminator lemma” [12]:

Fact 16 Let f = h1 ∧ . . . ∧ hk be an intersection of k halfspaces. Then for any distribution D on
{0, 1}n either there exists an hi such that |ED[fhi]| ≥ 1/k or we have |ED[f ]| ≥ 1/k.

Hence for any distributionD there exists a single halfspace which has accuracy at least 1/2+1/2k
with respect to f and D. We will be concerned only with distributions that are c-bounded (c will
be chosen later), i.e. distributions D such that D(x) ≤ c/2n for all x. Fix such a c-bounded
distribution D and let hD denote the halfspace obtained from Fact 16. Applying Fact 5 it is not
difficult to see that for any halfspace (and in particular hD) and sufficiently large constant a,

∑
S,|S|≥a·k4c2

ĥD(S)2 ≤ c/16k2.

By setting g =
∑

S,|S|≤a·k4c2 ĥD(S)χS(x), we have ED[|g − hD|] ≤ 1/4k for any c-bounded
distribution D.

We now show that the polynomial regression algorithm can be used as a weak learning algorithm
for f :

Lemma 17 There exists an algorithm A such that for any c-bounded distribution D and 0 < δ <
1, if A is given access to examples drawn from D labelled according to f , then A runs in time
poly(nk4c2 , 1/δ) and with probability at least 1− δ, A outputs a hypothesis h such that PrD[f(x) =
h(x)] ≥ 1/2 + 1/8k.

Proof: Let ` = ak4c2 for a sufficiently large constant a. Apply the polynomial regression algorithm
from Section 3 to obtain a hypothesis g∗ = sgn

(∑
|S|≤`wSχS(x)− t

)
. For ξ > 0, we claim that g∗

has error less than 1/2− 1/4k + ξ as long as m ≥ poly(n`, 1/ξ2, log(1/δ)) as in Theorem 5. To see
this note that

ED[|f(x)− g∗|] ≤ ED[|f(x)− hD(x)|] + ED[|hD(x)− g∗|]
and recall that the first term on the right hand side is at most 1/2 − 1/2k. For the second
term, recall that minw ED[|hD(x) − ∑

|S|≤` wSχS |] ≤ 1/4k. But g∗ is an approximation to the
truncated Fourier polynomial for hD(x) and as in the proof of Theorem 5, for our choice of m,
ED[|hD(x) − g∗(x)|] ≤ minw ED[|hD(x) − ∑

|S|≤` wSχS |] + ξ with probability greater than 1 − δ.
Hence with probability 1− δ we have ED[|f(x)− g∗(x)|] ≤ 1/2− 1/4k + ξ. Taking ξ = 1/(8k) gives
the lemma.

At this point we will need to recall the definition of a boosting algorithm, see e.g. [10]. Roughly
speaking, a boosting algorithm iteratively applies a weak learning algorithm as a subroutine in
order to construct a highly accurate final hypothesis. At each iteration, the boosting algorithm
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generates a distribution D and runs the weak learner to obtain a hypothesis which has accuracy
1/2 + γ with respect to D. After t = poly(1/γ, 1/ε) iterations, the boosting algorithm outputs
a hypothesis with accuracy greater than 1 − ε. The following fact from [20] is sufficient for our
purposes:

Theorem 11 There is a boosting algorithm which runs in t = O(1/ε2γ2) iterations and at each
stage generates an O(1/ε)-bounded distribution D.

By combining this boosting algorithm with the weak learning algorithm from Lemma 17 we
obtain Theorem 10:

Proof of Theorem 10: Run the boosting algorithm to learn f using the weak learner from
Lemma 17 as a subroutine. The boosting algorithm requires at most O(1/ε2k2) iterations since
the distributions are all O(1/ε) bounded and the weak learner outputs a hypothesis with accuracy
1/2 + Ω(1/k). The running time of the weak learning algorithm is at most nO(k4/ε2) since each
distribution is c = O(1/ε) bounded.
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