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THE FUGLEDE CONJECTURE FOR CONVEX DOMAINS IS TRUE

IN ALL DIMENSIONS

NIR LEV AND MÁTÉ MATOLCSI

Abstract. A set Ω ⊂ R
d is said to be spectral if the space L

2(Ω) has an orthogonal
basis of exponential functions. A conjecture due to Fuglede (1974) stated that Ω is a
spectral set if and only if it can tile the space by translations. While this conjecture
was disproved for general sets, it has long been known that for a convex body Ω ⊂ R

d

the “tiling implies spectral” part of the conjecture is in fact true.
To the contrary, the “spectral implies tiling” direction of the conjecture for convex

bodies was proved only in R
2, and also in R

3 under the a priori assumption that Ω
is a convex polytope. In higher dimensions, this direction of the conjecture remained
completely open (even in the case when Ω is a polytope) and could not be treated
using the previously developed techniques.

In this paper we fully settle Fuglede’s conjecture for convex bodies affirmatively in
all dimensions, i.e. we prove that if a convex body Ω ⊂ R

d is a spectral set then Ω is a
convex polytope which can tile the space by translations. To prove this we introduce a
new technique, involving a construction from crystallographic diffraction theory, which
allows us to establish a geometric “weak tiling” condition necessary for a set Ω ⊂ R

d

to be spectral.

1. Introduction

1.1. Let Ω ⊂ R
d be a bounded, measurable set of positive measure. We say that Ω

is spectral if there exists a countable set Λ ⊂ R
d such that the system of exponential

functions
E(Λ) = {eλ}λ∈Λ, eλ(x) = e2πi〈λ,x〉, (1.1)

is orthogonal and complete in L2(Ω), that is, the system constitutes an orthogonal basis
in the space. Such a set Λ is called a spectrum for Ω. The classical example of a spectral

set is the unit cube Ω =
[
−1

2
, 1
2

]d
, for which the set Λ = Z

d serves as a spectrum.

Which other sets Ω can be spectral? The research on this problem has been influenced
for many years by a famous paper [Fug74] due to Fuglede (1974), who suggested that
there should be a concrete, geometric way to characterize the spectral sets. We say
that Ω tiles the space by translations if there exists a countable set Λ ⊂ R

d such that
the collection of sets {Ω+ λ}, λ ∈ Λ, consisting of translated copies of Ω, constitutes a
partition of Rd up to measure zero. In his paper, Fuglede stated the following conjecture:
“A set Ω ⊂ R

d is spectral if and only if it can tile the space by translations”.

For example, Fuglede proved that a triangle and a disk in the plane are not spectral
sets. He also proved that if Ω can tile with respect to a lattice translation set Λ then the
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dual lattice Λ∗ is a spectrum for Ω, and conversely. Fuglede’s conjecture inspired exten-
sive research over the years, and a number of interesting results establishing connections
between spectrality and tiling had since been obtained.

The conjecture remained open for 30 years until a counterexample was discovered
by Tao [Tao04], who constructed in dimensions 5 and higher an example of a spectral
set which cannot tile by translations. Since then, counterexamples to both directions
of the conjecture were found in dimensions d > 3 (see [KM10, Section 4]). These
examples are composed of finitely many unit cubes in special arithmetic arrangements.
The conjecture is still open in dimensions d = 1 and 2 in both directions.

On the other hand, it was believed that Fuglede’s conjecture should be true in all
dimensions d if the set Ω ⊂ R

d is assumed to be a convex body (that is, a compact convex
set with nonempty interior1). Indeed, all the known counterexamples to the conjecture
are highly non-convex sets, being the union of a finite number of unit cubes centered
at points of the integer lattice Z

d. Moreover, it has long been known [Ven54, McM80]
that a convex body which tiles by translations must be a polytope, and that it admits
a face-to-face tiling by a lattice translation set Λ and therefore has a spectrum given by
the dual lattice Λ∗. So this implies that for a convex body Ω ⊂ R

d the “tiling implies
spectral” part of the conjecture is in fact true in any dimension d.

To the contrary, the “spectral implies tiling” direction of the conjecture for convex
bodies was proved only in R

2 [IKT03], and also in R
3 under the a priori assumption that

Ω is a convex polytope [GL17]. In higher dimensions, this direction of the conjecture
remained completely open (even in the case when Ω is a polytope) and could not be
treated using the previously developed techniques.

It is our goal in the present paper to establish that the result in fact holds in all
dimensions and for general convex bodies. We will prove the following theorem:

Theorem 1.1. Let Ω be a convex body in R
d. If Ω is a spectral set, then Ω must be a

convex polytope, and it tiles the space face-to-face by translations along a lattice.

This fully settles the Fuglede conjecture for convex bodies affirmatively: we obtain
that a convex body in R

d is a spectral set if and only if it can tile by translations.

1.2. There is a complete characterization due to Venkov [Ven54], that was rediscovered
by McMullen [McM80, McM81], of the convex bodies which tile by translations:

A convex body Ω ⊂ R
d can tile the space by translations if and only if it satisfies the

following four conditions:

(i) Ω is a convex polytope;

(ii) Ω is centrally symmetric;

(iii) all the facets of Ω are centrally symmetric;

(iv) each belt of Ω consists of either 4 or 6 facets.

Moreover, a convex body Ω satisfying the four conditions (i)–(iv) admits a face-to-face
tiling by translations along a certain lattice.

1The compactness and nonempty interior assumptions can be made with no loss of generality, as
any convex set of positive and finite measure coincides with a convex body up to a set of measure zero.
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We recall that a facet of a convex polytope Ω ⊂ R
d is a (d − 1)-dimensional face of

Ω. If Ω has centrally symmetric facets, then a belt of Ω is a system of facets obtained in
the following way: Let G be a subfacet of Ω, that is, a (d−2)-dimensional face. Then G
lies in exactly two adjacent facets of Ω, say F and F ′. Since F ′ is centrally symmetric,
there is another subfacet G′ obtained by reflecting G through the center of F ′ (so in
particular, G′ is a translate of −G). In turn, G′ is the intersection of F ′ with another
facet F ′′. Continuing in this way, we obtain a system of facets F, F ′, F ′′, . . . , F (m) = F ,
called the belt of Ω generated by the subfacet G, such that the intersection F (i−1) ∩ F (i)

of any pair of consecutive facets in the system is a translate of either G or −G.

Fuglede’s conjecture for convex bodies can thus be equivalently stated by saying that
for a convex body Ω ⊂ R

d to be spectral, it is necessary and sufficient that the four
conditions (i)–(iv) above hold.

In relation with the first condition (i), a result proved in [IKP99] states that if Ω is a
ball in R

d (d > 2) then Ω is not a spectral set. In [IKT01] this result was extended to
the class of convex bodies Ω ⊂ R

d that have a smooth boundary.

As for (ii), Kolountzakis [Kol00] proved that if a convex body Ω ⊂ R
d is spectral,

then it must be centrally symmetric. If Ω is assumed a priori to be a polytope, then
another approach to this result was given in [KP02] (see also [GL17, Section 3]).

Recently, also the necessity of condition (iii) for spectrality was established. It was
proved in [GL17, Section 4] that if a convex, centrally symmetric polytope Ω ⊂ R

d is
a spectral set, then all the facets of Ω must also be centrally symmetric. The proof is
based on a development of the argument in [KP02].

The last condition (iv) was addressed so far only in dimensions d = 2 and 3. Iosevich,
Katz and Tao proved in [IKT03] that if a convex polygon Ω ⊂ R

2 is a spectral set,
then it must be either a parallelogram or a (centrally symmetric) hexagon. In three
dimensions, it was recently proved [GL16, GL17] that if a convex polytope Ω ⊂ R

3 is
spectral, then it can tile the space by translations (as a consequence, the condition (iv)
must hold, although the proof does not establish it directly).

In this paper, we will show that the conditions (i) and (iv) are in fact necessary for
the spectrality of a general convex body Ω in every dimension, thus obtaining a proof
of the full Fuglede conjecture for convex bodies. Our main results are as follows:

Theorem 1.2. Let Ω be a convex body in R
d. If Ω is a spectral set, then Ω must be a

convex polytope.

Theorem 1.3. Let Ω ⊂ R
d be a convex polytope, which is centrally symmetric and has

centrally symmetric facets. If Ω is a spectral set, then each belt of Ω must consist of
either 4 or 6 facets.

Theorem 1.1 above follows as a consequence of these two theorems, combined with the
results in [Kol00] (or [KP02]), [GL17, Section 4], and the Venkov-McMullen theorem.

1.3. In the above mentioned papers [IKP99], [IKT01], [KP02], [IKT03], [GL17] the
approach relies on the asymptotic behavior of the Fourier transform of the indicator
function of Ω, and involves an analysis of its set of zeros. In the present paper we
introduce a new approach to the problem, based on establishing a link between the
notion of spectrality and a geometric notion which we refer to as “weak tiling”.
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Definition 1.4. Let Ω ⊂ R
d be a bounded, measurable set. We say that another

measurable, possibly unbounded, set Σ ⊂ R
d admits a weak tiling by translates of Ω, if

there exists a positive, locally finite (Borel) measure µ on R
d such that 1Ω ∗µ = 1Σ a.e.

If the measure µ is the sum of unit masses at the points of a locally finite set Λ, that
is, µ =

∑
λ∈Λ δλ, then the condition 1Ω ∗µ = 1Σ a.e. means that the collection {Ω+λ},

λ ∈ Λ, of translated copies of Ω, constitutes a partition of Σ up to measure zero. In
this case, we say that the weak tiling is a proper tiling.

For example, one can check that any bounded set Ω of positive Lebesgue measure tiles
the whole space R

d weakly by translates with respect to the measure dµ = m(A)−1 dx
(where dx denotes the Lebesgue measure on R

d). This is in sharp contrast to the obvious
fact that not every set Ω can tile the space properly by translations.

We will prove the following theorem, which gives a necessary condition for spectrality
in terms of weak tiling:

Theorem 1.5. Let Ω be a bounded, measurable set in R
d. If Ω is spectral, then its

complement Ω∁ = R
d \Ω admits a weak tiling by translates of Ω. That is, there exists a

positive, locally finite measure µ such that 1Ω ∗ µ = 1Ω∁ a.e.

Our proof of this result involves a construction due to Hof [Hof95], that is often used
in mathematical crystallography in order to describe the diffraction pattern of an atomic
structure (see also [BG13, Chapter 9]).

Notice that if the complement Ω∁ has a proper tiling by translates of Ω, then it just
means that Ω can tile the space by translations. Theorem 1.5 thus establishes a weak
form of the “spectral implies tiling” part of Fuglede’s conjecture, which is valid for all
bounded, measurable sets Ω ⊂ R

d. We observe that the weak tiling conclusion cannot
be strengthened to proper tiling without imposing extra assumptions on the set Ω, since
there exist examples of spectral sets which cannot tile by translations.

We will prove that if Ω is a convex body in R
d, and if it can tile its complement Ω∁

weakly by translations, then Ω must in fact be a convex polytope (Theorem 4.1). We
will also prove that if, in addition, Ω is centrally symmetric and has centrally symmetric
facets, then each belt of Ω must have either 4 or 6 facets (Theorem 6.1). So in the latter

case, it follows that Ω can in fact tile its complement Ω∁ not only weakly, but even
properly, by translations.

The potential applications of Theorem 1.5 are not limited to the class of convex
bodies in R

d. As an example, we will use this theorem to give a simple geometric
condition which is necessary for the spectrality of a bounded, measurable set Ω ⊂ R

d

(Theorem 3.5). Based on this condition we will prove that the boundary of a bounded,
open spectral set must have Lebesgue measure zero (Theorem 3.6).

1.4. The rest of the paper is organized as follows.

In Section 2 we present some preliminary background. We fix notation that will be
used in the paper and discuss basic results about measures and tempered distributions,
spectral sets and weak tiling.

In Section 3 we prove that if a bounded, measurable set Ω ⊂ R
d is spectral, then

its complement Ω∁ admits a weak tiling by translates of Ω (Theorem 1.5). As an
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application we show that a connected spectral domain cannot have any “holes”, and
that the boundary of an open spectral domain must have Lebesgue measure zero.

In Section 4 we prove that if a convex body K ⊂ R
d is a spectral set, then K must

be a convex polytope (Theorem 1.2).

In the last two Sections 5 and 6 we establish that each belt of a spectral convex
polytope K ⊂ R

d must consist of either 4 or 6 facets (Theorem 1.3). The proof is based
on an analysis of the measure µ that provides a weak tiling of K∁ by translates of K.

2. Preliminaries

2.1. Notation. If A ⊂ R
d then int(A) will denote the interior of A, and bd(A) the

boundary of A. We use A∁ to denote the complement Rd \A of the set A. If A,B ⊂ R
d

then A△B is the symmetric difference of A and B. We denote by |A| the number of
elements in A.

If A ⊂ R
d, then for each τ ∈ R

d we let A + τ = {a + τ : a ∈ A} denote the image of
A under translation by the vector τ . If s ∈ R, then sA = {sa : a ∈ A} will denote the
image of A under dilation with ratio s. If A,B are two subsets of Rd, then A +B and
A−B denote respectively their set of sums and set of differences.

We use 〈·, ·〉 and | · | to denote the Euclidean scalar product and norm in R
d.

By a lattice in R
d we mean a set L which can be obtained as the image of Zd under

an invertible linear transformation. The dual lattice L∗ is the set of all vectors λ∗ ∈ R
d

such that 〈λ, λ∗〉 ∈ Z for every λ ∈ L.

We denote by m(A) the Lebesgue measure of a set A ⊂ R
d. We also use mk(A) to

denote the k-dimensional volume measure of A (so, in particular, md(A) = m(A)).

If A ⊂ R
d is a bounded, measurable set, then we define

∆(A) := {x ∈ R
d : m(A ∩ (A + x)) > 0}.

Then ∆(A) is a bounded open set, and we have ∆(A) = −∆(A) (which means that
∆(A) is symmetric with respect to the origin). One can think of the set ∆(A) as the
measure-theoretic analog of the set of differences A − A. In particular, one can check
that if A is an open set then ∆(A) = A − A. In general we have ∆(A) ⊂ A − A, but
this inclusion can be strict.

The Fourier transform of a function f ∈ L1(Rd) is defined by

f̂(t) =

∫

Rd

f(x) e−2πi〈t,x〉dx.

2.2. Measures and distributions. By a “measure” we will refer to a Borel (either
positive, or complex) measure on R

d. We use supp(µ) to denote the closed support of
a measure µ. We denote by δλ the Dirac measure consisting of a unit mass at the point
λ. If Λ ⊂ R

d is a countable set, then we define δΛ :=
∑

λ∈Λ δλ.

If α is a tempered distribution on R
d, and if ϕ is a Schwartz function on R

d, then
we use 〈α, ϕ〉 to denote the action of α on ϕ. A tempered distribution α is positive
if we have 〈α, ϕ〉 > 0 for any Schwartz function ϕ > 0. If a tempered distribution
α is positive, then α is a positive measure. The Fourier transform α̂ of a tempered
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distribution α is defined by 〈α̂, ϕ〉 = 〈α, ϕ̂〉. A tempered distribution α is said to be
positive-definite if α̂ is a positive distribution. See [BG13, Section 8.4], [Rud91].

If µ is a measure on R
d, then µ is said to be locally finite if we have |µ|(B) < ∞ for

every open ball B.

A measure µ on R
d is said to be translation-bounded if for every (or equivalently, for

some) open ball B we have
sup
x∈Rd

|µ|(B + x) < ∞.

If a measure µ on R
d is translation-bounded, then it is a tempered distribution. If µ

is a translation-bounded measure on R
d, and if ν is a finite measure on R

d, then the
convolution µ ∗ ν is a translation-bounded measure.

Lemma 2.1. Let ν be a finite measure on R
d, and suppose that µ is a translation-

bounded measure on R
d whose Fourier transform µ̂ is a locally finite measure. Then the

Fourier transform of the convolution µ ∗ ν is the measure µ̂ · ν̂.

See e.g. [BG13, Section 8.6], [KL21, Section 2.5].

A sequence of measures {µn} is said to be uniformly translation-bounded if for every
(or equivalently, for some) open ball B one can find a constant C not depending on n,
such that supx |µn|(B + x) 6 C for every n.

If {µn} is a uniformly translation-bounded sequence of measures, then we say that µn

converges vaguely to a measure µ if for every continuous, compactly supported function
ϕ we have

∫
ϕdµn →

∫
ϕdµ. In this case, the vague limit µ must also be a translation-

bounded measure. For a uniformly translation-bounded sequence of measures {µn}
to converge vaguely, it is necessary and sufficient that {µn} converge in the space of
tempered distributions. From any uniformly translation-bounded sequence of measures
{µn} one can extract a vaguely convergent subsequence {µnj

}.

Lemma 2.2. Let f ∈ L1(Rd), and let {µn} be a uniformly translation-bounded sequence
of measures on R

d, such that f ∗ µn = 1 a.e. for every n. If µn converges vaguely to a
measure µ then also f ∗ µ = 1 a.e.

Proof. Let ϕ be a continuous, compactly supported function on R
d. Then the sequence

of functions µn ∗ ϕ is uniformly bounded and converges pointwise to µ ∗ ϕ. Hence by
the dominated convergence theorem we have f ∗ (µn ∗ ϕ) → f ∗ (µ ∗ ϕ) pointwise. In
turn, this implies that (f ∗ µn) ∗ ϕ → (f ∗ µ) ∗ ϕ pointwise, since the convolution is
associative (by Fubini’s theorem). But f ∗ µn = 1 a.e. for every n, so we conclude that
(f ∗ µ) ∗ ϕ =

∫
ϕ. Since this is true for an arbitrary ϕ, the assertion follows. �

2.3. Spectra. If Ω is a bounded, measurable set in R
d of positive measure, then by a

spectrum for Ω we mean a countable set Λ ⊂ R
d such that the system of exponential

functions E(Λ) defined by (1.1) is orthogonal and complete in the space L2(Ω).

For any two points λ, λ′ in R
d we have 〈eλ, eλ′〉L2(Ω) = 1̂Ω(λ

′ − λ), where 1̂Ω is the
Fourier transform of the indicator function 1Ω of the set Ω. The orthogonality of the
system E(Λ) in L2(Ω) is therefore equivalent to the condition

Λ− Λ ⊂ Z(1̂Ω) ∪ {0}, (2.1)

where Z(1̂Ω) := {t ∈ R
d : 1̂Ω(t) = 0} is the set of zeros of the function 1̂Ω.
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A set Λ ⊂ R
d is said to be uniformly discrete if there is δ > 0 such that |λ′ − λ| > δ

for any two distinct points λ, λ′ in Λ. The condition (2.1) implies that every spectrum
Λ of Ω is a uniformly discrete set.

The set Λ is relatively dense if there is R > 0 such that every ball of radius R contains
at least one point from Λ. It is well-known that if Λ is a spectrum for Ω, then Λ must
be a relatively dense set (see e.g. [GL17, Section 2C]).

The following lemma gives a frequently used characterization of the spectra of Ω.

Lemma 2.3 (see [Kol04, Section 3.1]). Let Ω be a bounded, measurable set in R
d, and

define the function f := m(Ω)−2 |1̂Ω|
2. Then a set Λ ⊂ R

d is a spectrum for Ω if and
only if f ∗ δΛ = 1 a.e.

2.4. Weak tiling. If Ω is a bounded, measurable set in R
d, and if Σ is another, possibly

unbounded, measurable set in R
d, then we say that Σ admits a weak tiling by translates

of Ω, if there exists a positive, locally finite measure µ on R
d such that 1Ω ∗µ = 1Σ a.e.

The following lemma shows that the measure µ in any weak tiling is not only locally
finite, but in fact must be translation-bounded.

Lemma 2.4. Let Ω ⊂ R
d be a bounded, measurable set of positive Lebesgue measure,

and suppose that µ is a positive, locally finite measure such that 1Ω ∗ µ 6 1 a.e. Then
µ is a translation-bounded measure.

Proof. Fix r > 0, and let Br be the open ball of radius r centered at the origin. It will
be enough to show that there is a constant M > 0 such that (1Br

∗µ)(x) 6 M for every
x ∈ R

d. Since Ω is a bounded set, we can choose a sufficiently large number s > 0 such
that we have Bs + y ⊃ Br for every y ∈ Ω. It follows that 1Bs

∗ 1Ω > m(Ω)1Br
. In

turn, this implies that

m(Ω)1Br
∗ µ 6 (1Bs

∗ 1Ω) ∗ µ = 1Bs
∗ (1Ω ∗ µ) 6 1Bs

∗ 1 = m(Bs).

We thus see that the constant M := m(Bs)/m(Ω) satisfies 1Br
∗ µ 6 M as needed. �

The next lemma implies that if Ω tiles Σ weakly by translations with respect to a
measure µ, then we must have m((Ω + t) ∩ Σ∁) = 0 for every t ∈ supp(µ).

Lemma 2.5. Let Ω be a bounded, measurable set in R
d, and let µ be a positive, locally

finite measure on R
d. Suppose that we have 1Ω ∗ µ = 0 a.e. on the complement Σ∁ of

another measurable set Σ ⊂ R
d. Then m((Ω + t) ∩ Σ∁) = 0 for every t ∈ supp(µ).

Proof. Let ϕ(t) := m((Ω + t) ∩ Σ∁), t ∈ R
d. Suppose to the contrary that ϕ(t) > 0 for

some t ∈ supp(µ). Since ϕ is a continuous function, there is an open neighborhood U
of t such that ϕ(t′) > 0 for all t′ ∈ U . Since t ∈ supp(µ) we must have µ(U) > 0, and
it follows that

∫
ϕdµ > 0. But on the other hand, using Fubini’s theorem we have

∫
ϕdµ =

∫

Σ∁

(1Ω ∗ µ) dm = 0,

since we have assumed that 1Ω ∗ µ = 0 a.e. on Σ∁. We thus obtain a contradiction. �

Corollary 2.6. Let Ω be a bounded, measurable set in R
d. Assume that the complement

Ω∁ of Ω admits a weak tiling by translates of Ω, that is, there is a positive, locally finite
measure µ such that 1Ω ∗ µ = 1Ω∁ a.e. Then supp(µ) ⊂ ∆(Ω)∁.

Indeed, this follows from Lemma 2.5 in the special case when Σ = Ω∁.
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3. Spectrality and weak tiling

In this section, our main goal is to prove Theorem 1.5, which states that if a bounded,
measurable set Ω ⊂ R

d is spectral, then its complement Ω∁ admits a weak tiling by
translates of Ω. The proof of this result involves a construction due to Hof [Hof95],
that is often used in mathematical crystallography in order to describe the diffraction
pattern of an atomic structure.

We also present some simple applications of Theorem 1.5. As an example, we will
use it to prove that if a bounded, open set Ω ⊂ R

d is spectral, then its boundary must
have Lebesgue measure zero. Some other examples will also be discussed.

3.1. In [Hof95], Hof suggested a mathematical model for the diffraction experiment
used in crystallography to analyze the atomic structure of a solid. In this model, the
configuration of the atoms is represented by a uniformly discrete and relatively dense
set Λ ⊂ R

d. Hof used volume averaged convolution of the two measures δΛ and δ−Λ

in order to define the autocorrelation measure γ of the set Λ. He then argued that
the diffraction by the atomic structure is described by the Fourier transform γ̂ of the
autocorrelation, which is a positive measure called the diffraction measure of the set Λ
(for more details, see [BG13, Chapter 9]).

Here, we will apply this technique to a set Λ that constitutes a spectrum for a
bounded, measurable set Ω ⊂ R

d. We will obtain the following result:

Theorem 3.1. Let Ω be a bounded, measurable set in R
d. If Ω is a spectral set, then

there exists a measure γ on R
d with the following properties:

(a) γ is a positive, translation-bounded measure;

(b) the support of γ is contained in the closed set Z(1̂Ω) ∪ {0};

(c) γ = δ0 in some open neighborhood of the origin;

(d) γ̂ is also a positive, translation-bounded measure;

(e) γ̂ = m(Ω) δ0 in the open set ∆(Ω).

A similar result can be proved in the more general context of locally compact abelian
groups, but in this paper we work in the euclidean setting only.

We remark that a minor difference in our proof compared to the construction in
[Hof95], is that we define the autocorrelation measure γ not as the volume averaged
convolution of the two measures δΛ and δ−Λ, but instead as a convolution averaged with
respect to the number of points in Λ. It turns out that using this normalization allows
in our context to establish more directly the desired properties of the measure γ.

Proof of Theorem 3.1. Suppose that Ω is a spectral set, and let Λ be a spectrum for Ω.
Then Λ is a uniformly discrete and relatively dense set in R

d. For each r > 0 we denote
Λr := Λ ∩ Br, where Br is the open ball of radius r centered at the origin. Then there
is r0 such that Λr is nonempty for every r > r0. Consider a family of measures {γr},
r > r0, defined by γr := |Λr|

−1 δΛr
∗ δ−Λr

. Each γr is a positive, finite measure on R
d,

whose support is the finite set Λr−Λr. We have γ̂r(t) = |Λr|
−1 |δ̂Λr

(t)|2 > 0, hence γr is
a positive-definite measure. Since Λ is uniformly discrete, the measures γr are uniformly
translation-bounded, namely, for any open ball B we have supx γr(B + x) 6 C(Λ, B),
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where C(Λ, B) is a constant which does not depend on r. It follows that we may choose
a sequence rn → ∞ such that if we define µn := γrn, then the sequence {µn} converges
vaguely to some measure γ on R

d.

The measure γ is translation-bounded, positive and positive-definite. It follows from
the positive-definiteness of γ that its Fourier transform γ̂ is a positive measure. Given
any open ball B, let ϕB be a Schwartz function such that ϕB > 1B. Then we have

γ̂(B + x) 6

∫
ϕB(y − x) d γ̂(y) =

∫
e−2πi〈x,t〉 ϕ̂B(t) dγ(t),

and hence

sup
x∈Rd

γ̂(B + x) 6

∫
|ϕ̂B(t)| dγ(t) < ∞

(the last integral is finite since ϕ̂B has fast decay, while γ is translation-bounded). We
conclude that γ̂ is a translation-bounded measure.

Define now another sequence of measures {νn} by νn := |Λrn|
−1 δΛ ∗ δ−Λrn

. The
measures νn are uniformly translation-bounded, again due to the uniform discreteness
of Λ. We claim that the sequence {νn} converges vaguely to the same limit as the
sequence {µn}, namely, to the measure γ. To see this, it will be enough to check that
the sequence of differences {νn − µn} converges vaguely to zero. Indeed, we have

νn − µn = |Λrn|
−1 δΛ\Λrn

∗ δ−Λrn
.

For any fixed s > 0, the total mass of the measure νn − µn in the open ball Bs is equal
to |Λrn|

−1 times the number of pairs (λ, λ′) ∈ Λ × Λ such that |λ| < rn, |λ
′| > rn and

|λ′ − λ| < s. As n → ∞, the number of such pairs is not greater than a constant
multiple of rd−1

n since Λ is a uniformly discrete set, while the number of elements in the
set Λrn is not less than a constant multiple of rdn since Λ is also relatively dense. Hence
|νn − µn|(Bs) tends to zero as n → ∞. Since this is true for any s > 0, it follows that
the sequence {νn − µn} converges to zero, and so the sequence νn converges to γ.

Let f := m(Ω)−2 |1̂Ω|
2. Since Λ is a spectrum for Ω, by Lemma 2.3 we have f ∗δΛ = 1

a.e. As νn is an average of translates of the measure δΛ, we also have f ∗ νn = 1 a.e.
for every n. Since the measures νn are uniformly translation-bounded and converge
vaguely to γ, it follows from Lemma 2.2 that f ∗ γ = 1 a.e. as well. In turn, using

Lemma 2.1 this implies that f̂ · γ̂ = δ0. Since f̂(0) =
∫
f = m(Ω)−1, we deduce that

γ̂ = m(Ω) δ0 in the open set {t : f̂(t) 6= 0}. But the Fourier transform of f is the

function f̂ = m(Ω)−2
1Ω ∗1−Ω, that is, we have f̂(t) = m(Ω)−2m(Ω∩ (Ω+ t)) for every

t ∈ R
d. Hence f̂(t) 6= 0 if and only if t ∈ ∆(Ω), and we conclude that γ̂ = m(Ω) δ0 in

the open set ∆(Ω).

Since Λ is a uniformly discrete set, there exists ε > 0 such that (Λ − λ) ∩ Bε = {0}
for every λ ∈ Λ. In other words, for every λ ∈ Λ we have δΛ ∗ δ−λ = δ0 in the ball
Bε. The measure νn is an average of measures of the form δΛ ∗ δ−λ (λ ∈ Λ), so we also
have νn = δ0 in the ball Bε. It follows that the same is true for the vague limit γ of the
sequence νn, that is, we have γ = δ0 in the open ball Bε.

The supports of all the measures µn are contained in the set of differences Λ − Λ.
Since Λ is a spectrum for Ω, the set Λ − Λ is contained in the closed set Z(1̂Ω) ∪ {0}.
The measure γ is the vague limit of the sequence µn, so it follows that the closed support
of γ is also contained in the set Z(1̂Ω) ∪ {0}. The theorem is thus proved. �
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3.2. We can now use Theorem 3.1 to deduce Theorem 1.5.

Proof of Theorem 1.5. Let Ω be a bounded, measurable set in R
d, and assume that Ω

is spectral. We must show that Ω∁ admits a weak tiling by translates of Ω.

Indeed, let γ be the measure given by Theorem 3.1. We have 1̂−Ω(t) = 1̂Ω(t), and

hence supp(γ) is contained in the set Z(1̂−Ω) ∪ {0}. We also have γ = δ0 in some open

neighborhood of the origin. Since 1̂−Ω(0) = m(Ω), it follows that γ · 1̂−Ω = m(Ω) δ0.

The measure γ is translation-bounded, and its Fourier transform γ̂ is a translation-
bounded measure as well. Hence by Lemma 2.1, the Fourier transform of the measure
γ · 1̂−Ω is the function γ̂ ∗ 1Ω. We thus conclude that γ̂ ∗ 1Ω = m(Ω) a.e.

The measure γ̂ is positive, and satisfies γ̂ = m(Ω) δ0 in the open set ∆(Ω). We can
therefore write γ̂ = m(Ω) (δ0 + µ), where µ is a positive, translation-bounded (and
hence locally finite) measure. The condition γ̂ ∗ 1Ω = m(Ω) a.e. is then equivalent to
1Ω ∗ µ = 1Ω∁ a.e., and we obtain that Ω∁ has a weak tiling by translates of Ω. �

3.3. To illustrate the construction of the autocorrelation measure γ in the proof of
Theorem 3.1, and the corresponding weak tiling of Ω∁ obtained in Theorem 1.5, we now
look at a few examples.

Example 3.2. Assume that Ω ⊂ R
d tiles the space with respect to a lattice translation

set L. Let Λ be a spectrum of Ω given by the dual lattice, that is, Λ = L∗. Then
Λ−λ = Λ for every λ ∈ Λ, and hence the measures νn := |Λrn|

−1 δΛ∗δ−Λrn
, whose vague

limit is the autocorrelation measure γ, satisfy νn = δΛ for every n. We conclude that the
autocorrelation measure γ is given by γ = δΛ = δL∗ . In turn, by the Poisson summation
formula we get γ̂ = m(Ω) δL, and so the weak tiling measure µ in Theorem 1.5 is given
by µ = δL\{0}. We thus see that the weak tiling of Ω∁ is in this case a proper tiling.

Example 3.3. Let Ω = [0, 1
2
]∪ [1, 3

2
]. Then Ω tiles the real line R properly with respect

to the translation set Λ = 2Z ∪ (2Z + 1
2
). It is well-known and not difficult to verify

that the same set Λ is also a spectrum for Ω. The set Λ is periodic, but it is not a
lattice. We calculate the autocorrelation measure γ as the vague limit of the measures
νn := |Λn|

−1 δΛ ∗ δ−Λn
, where Λn := Λ ∩ [−2n, 2n). Then all the measures νn, as well as

the vague limit γ, coincide with the measure
∑

k∈Z cos
2(πk

4
)δk/2 (so that, in fact, νn does

not depend on n). In turn, one can check using the Poisson summation formula that
γ̂ = γ. We thus obtain that the weak tiling measure µ in Theorem 1.5 is a pure point
measure (that is, µ has no continuous part), but the weak tiling of Ω∁ with respect to
this measure µ is not a proper tiling.

Example 3.4. Let Ω = [−1
2
, 1
2
]2 be the unit cube in R

2, and let α be an irrational real
number. Define Λ to be the set of all points of the form (n, n2α +m) where n and m
are integers. It is easy to see that Ω tiles the plane R

2 with respect to the translation
set Λ. It is known, see [JP99], that the translation sets for tilings by the unit cube Ω
coincide with the spectra of Ω. Hence Λ is a spectrum for Ω.

In this example, we will calculate the autocorrelation measure γ as the vague limit
of the measures νN := |ΛN |

−1 δΛ ∗ δ−ΛN
, where ΛN := Λ ∩ QN is the intersection of Λ

with the cube QN := [−N,N)2, that is, we will be averaging not with respect to balls,
but instead with respect to cubes with sides parallel to the axes. Notice that the proof
of Theorem 3.1 remains valid if the averages are taken with respect to cubes instead



THE FUGLEDE CONJECTURE FOR CONVEX DOMAINS IS TRUE IN ALL DIMENSIONS 11

of balls (in fact, Hof used cubes and not balls in [Hof95]), although the autocorrelation
measure γ could, in principle, depend on the shape over which the average is taken.

It follows from the fact that Λ−Λ ⊂ Z×R that all the measures νN , and hence also
the autocorrelation measure γ, are supported on Z×R. The restriction of the measure
νN to a line of the form {h} × R, where h ∈ Z, is given by

1

2N

∑

−N6n<N

∑

k∈Z

δ(h,2hnα+h2α+k).

Since α is irrational, it follows from Weyl’s equidistribution theorem that νN converges
vaguely to the one-dimensional Lebesgue measure on each line {h}×R such that h 6= 0.
On the other hand, on the line {0} × R all the measures νN coincide with δ{0}×Z. We
conclude that γ = δ0×δZ+δZ\{0}×m1, where m1 denotes the one-dimensional Lebesgue
measure. In turn, the diffraction measure γ̂ is given by γ̂ = δZ × δ0 +m1 × δZ\{0}. So

in this example, we obtain that the weak tiling of Ω∁ given by Theorem 1.5 involves a
measure µ that has both a pure point part and a (singular) continuous part.

3.4. Our main application of Theorem 1.5 will be for the proof of Fuglede’s conjecture
for convex bodies in R

d. This will be done in the following sections. But before that,
we mention some simple applications of the theorem to other classes of domains.

The following result, for instance, excludes many sets from being spectral:

Theorem 3.5. Let Ω be a bounded, measurable set in R
d. Suppose that there exists a

measurable set S ⊂ R
d with the following properties:

(i) m(S) > 0;

(ii) m(S ∩ Ω) = 0;

(iii) for every x ∈ R
d, if m((Ω + x) ∩ S) > 0 then m((Ω + x) ∩ Ω) > 0.

Then Ω cannot be a spectral set.

Informally speaking, the assumption in this theorem means that there exists a portion
S of the complement Ω∁ of Ω, such that no translated copy Ω + x of Ω can even partly
cover S unless this translated copy also covers a part of Ω as well. The theorem says
that a set Ω satisfying this assumption cannot be spectral.

Proof of Theorem 3.5. Suppose to the contrary that Ω is spectral. Then by Theorem 1.5
the complement Ω∁ of Ω admits a weak tiling by translates of Ω, so there is a positive,
locally finite measure µ such that 1Ω ∗ µ = 1Ω∁ a.e. Using condition (ii), we then have

m(S) = m(S ∩ Ω∁) =

∫

S

1Ω∁ dm =

∫

S

(1Ω ∗ µ) dm =

∫
ϕdµ, (3.1)

where ϕ(x) := m((Ω+ x)∩S). The measure µ is supported on ∆(Ω)∁ by Corollary 2.6,

while the function ϕ vanishes on ∆(Ω)∁ due to condition (iii). Hence the right hand side
of (3.1) must be zero. It follows that m(S) = 0, a contradiction to condition (i). �

In Figure 3.1 we illustrate an example of a planar domain that can be shown to
be non-spectral using Theorem 3.5. The essential feature of this domain is that it is
connected but its complement is not connected, so that there is a “hole” inside the
domain. We observe that if S is a set of positive measure contained in the hole, then
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S satisfies the conditions (i), (ii) and (iii) in Theorem 3.5, and therefore the domain
cannot be spectral.

Figure 3.1. The illustration presents a planar domain that can be shown
to be non-spectral using Theorem 3.5.

As another example, we can use Theorem 3.5 to obtain the following result:

Theorem 3.6. Let Ω be a bounded, open set in R
d. If Ω is spectral, then its boundary

bd(Ω) must be a set of Lebesgue measure zero.

Proof. Suppose that bd(Ω) has positive Lebesgue measure. We will show that the set
S := bd(Ω) satisfies the conditions (i), (ii) and (iii) in Theorem 3.5, and hence Ω cannot
be spectral. Indeed, condition (i) holds by assumption. Since Ω is an open set, the two
sets Ω and S are disjoint, hence condition (ii) holds as well. To verify condition (iii),
we let x ∈ R

d be such that m((Ω + x) ∩ S) > 0. In particular, the set (Ω + x) ∩ S is
nonempty. The set Ω+ x is open, while S is contained in the closure of Ω, so it follows
that (Ω + x) ∩ Ω must be nonempty. But the set (Ω + x) ∩ Ω is open, since it is the
intersection of two open sets, so it can be nonempty only if m((Ω + x) ∩ Ω) > 0. This
confirms condition (iii), and thus the proof is concluded by Theorem 3.5. �

On the other hand, if Ω is a convex body in R
d, then there exists no set S satisfying

the conditions (i), (ii) and (iii) in Theorem 3.5. So in order to study the spectrality
problem for convex bodies, we must use the weak tiling condition 1Ω ∗ µ = 1Ω∁ a.e. in
a stronger way. This will be done in the following sections.

4. Spectral convex bodies are polytopes

In this section we prove Theorem 1.2, which states that if a convex body Ω ⊂ R
d is

spectral, then Ω must be a convex polytope. This shows that the first condition (i) in
the Venkov-McMullen theorem is necessary not only for tiling by translations, but also
for the spectrality of a convex body Ω.

The fact that a convex body which tiles by translations must be a polytope, is a
classical result that is due to Minkowski, see [McM80] or [Gru07, Section 32.2]. We will
prove a stronger version of this result, which involves only a weak tiling assumption:

Theorem 4.1. Let K be a convex body in R
d. If the complement K∁ of K has a weak

tiling by translates of K, then K must be a convex polytope.

Combining Theorem 4.1 with Theorem 1.5 yields that any spectral convex body in
R

d must be a convex polytope, and Theorem 1.2 thus follows.

The rest of the section is devoted to the proof of Theorem 4.1.
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4.1. We start by recalling some basic facts about convex bodies in R
d. For more details,

the reader is referred to [Gru07, Sections 4.1, 5.1, 14.1].

Recall that a set K ⊂ R
d is called a convex body if K is a compact, convex set with

nonempty interior. In what follows, we assume K to be a convex body in R
d.

A hyperplane H is called a support hyperplane of K at a point x ∈ bd(K), if x ∈ H
and K is contained in one of the two closed halfspaces bounded by H . In this case, we
denote the halfspace containing K by H−, and the other one by H+. H− is called a
support halfspace of K at the point x. It can be represented in the form

H− = {z ∈ R
d : 〈z, ξ〉 6 〈x, ξ〉},

where ξ is a vector in R
d such that |ξ| = 1. We call ξ an exterior normal unit vector of

K, or of H , at the point x.

For each x ∈ bd(K), there exists at least one support hyperplane H of K at x. The
support hyperplane at x need not, in general, be unique. If the support hyperplane
is unique then x is called a regular boundary point of K, and otherwise it is called a
singular boundary point.

For each vector ξ ∈ R
d, |ξ| = 1, there is a unique support hyperplane H(K, ξ) of K

with exterior normal vector ξ. The set S(K, ξ) := K ∩H(K, ξ) is called the support set
of K determined by ξ. The support set is a compact, convex subset of bd(K).

A hyperplane H is said to separate two convex bodies K and K ′, if K is contained
in one of the two closed halfspaces bounded by H , while K ′ is contained in the other
closed halfspace. Any two convex bodies K and K ′ with disjoint interiors have at least
one separating hyperplane H .

A convex polytope P ⊂ R
d is the convex hull of a finite number of points. Equivalently,

a convex polytope is a bounded set P which can be represented as the intersection of
finitely many closed halfspaces.

4.2.

Lemma 4.2. Let K be a convex body in R
d. If K is not a polytope, then there exists an

infinite sequence xn of regular boundary points of K such that the corresponding exterior
normal unit vectors ξn are distinct, that is, ξn 6= ξm whenever n 6= m.

Proof. We will rely on the fact that if K ⊂ R
d is a convex body, then the set of regular

boundary points of K constitutes a dense subset of bd(K) (see [Gru07, Section 5.1,
Theorem 5.1 or Theorem 5.2]).

We construct the sequence xn by induction. Let x1 be any regular boundary point
of K, and ξ1 be the exterior normal unit vector at the point x1. Now suppose that the
points x1, x2, . . . , xn−1 have already been chosen, that they are regular boundary points
of K, and their corresponding exterior normal unit vectors ξ1, ξ2, . . . , ξn−1 are distinct.

Let

Fn :=

n−1⋃

j=1

S(K, ξj),

where S(K, ξj) is the support set of K determined by ξj . Then Fn is a closed subset of
bd(K). We claim that Fn must be a proper subset of bd(K). Indeed, suppose to the
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contrary that bd(K) = Fn. Then each point y ∈ bd(K) belongs to S(K, ξj(y)) for some
1 6 j(y) 6 n− 1. Hence the closed halfspace

H−
y := {z : 〈z, ξj(y)〉 6 〈xj(y), ξj(y)〉}

is a support halfspace ofK at the point y. It is known (see [Gru07, Section 4.1, Corollary
4.1]) that if for each y ∈ bd(K), H−

y is a support halfspace of K at the point y, then

K =
⋂

y∈bd(K)

H−
y .

But the collection {H−
y : y ∈ bd(K)} has at most n−1 distinct members. It follows that

K is the intersection of finitely many closed halfspaces, hence K is a convex polytope.
Since we have assumed that K is not a polytope, we arrive at a contradiction. This
establishes our claim that Fn must be a proper subset of bd(K).

Since Fn is a closed set, it follows that its complement bd(K) \ Fn is a nonempty,
relatively open subset of bd(K). The set of regular boundary points of K is dense in
bd(K), hence we can choose a regular point xn in bd(K) \ Fn. The exterior normal
unit vector ξn at the point xn is then distinct from all the vectors ξ1, ξ2, . . . , ξn−1. This
completes the inductive construction, and thus concludes the proof of the lemma. �

4.3.

Lemma 4.3. Let K be a convex body in R
d, let x be a regular boundary point of K,

and let ξ be the exterior normal unit vector at the point x. Suppose that U is an
open neighborhood of the set −S(K,−ξ) + x, where S(K,−ξ) is the support set of K
determined by the vector −ξ. Then there is an open neighborhood V of x such that for
any t ∈ ∆(K)∁, the set K + t cannot intersect V unless t ∈ U .

Proof. Suppose to the contrary that the assertion is not true. Then there is a sequence
tj ∈ ∆(K)∁ ∩ U∁, and for each j there is a point xj ∈ K + tj , such that xj → x. Since
tj must remain bounded as j → ∞, we may assume, by passing to a subsequence if
needed, that tj → t.

Since the set ∆(K)∁ is closed, the limit t of the sequence tj belongs to ∆(K)∁. Hence
K and K + t are two convex bodies with disjoint interiors. It follows that there exists
a hyperplane H separating K from K + t. The point x lies on both K and K + t, and
therefore x must lie on H . It follows that x is a boundary point of both K and K + t,
and H is a support hyperplane of both K and K + t at the point x. Since x is a regular
boundary point of K, H is the unique support hyperplane H(K, ξ) of K at the point x.

Now H(K, ξ) is a support hyperplane of K + t at the point x, with exterior normal
vector −ξ. It follows that H(K, ξ)− t is a support hyperplane of K at the point x− t,
with exterior normal vector −ξ. Since a support hyperplane of K with a given exterior
normal vector is unique, we must have that H(K, ξ) − t = H(K,−ξ), and hence the
point x − t lies on the support set S(K,−ξ) determined by the vector −ξ. In other
words, we have obtained that t ∈ −S(K,−ξ) + x. But since the latter set is contained
in U , we conclude that t ∈ U . However this is not possible, since t is the limit of a
sequence {tj} ⊂ U∁ and the set U is open. This contradiction completes the proof. �
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4.4.

Lemma 4.4. Let K ⊂ R
d be a convex body whose complement K∁ admits a weak

tiling by translates of K, that is, there is a positive, locally finite measure µ such that
1K ∗ µ = 1K∁ a.e. Let x be a regular boundary point of K, and let ξ be the exterior
normal unit vector at the point x. Then we have

µ(−S(K,−ξ) + x) > 1,

where S(K,−ξ) is the support set of K determined by the vector −ξ.

Proof. Suppose to the contrary that µ(−S(K,−ξ) + x) < 1. Then there is an open
neighborhood U of the set −S(K,−ξ) + x such that also µ(U) < 1. By Lemma 4.3
there is an open neighborhood V of x such that for any t ∈ ∆(K)∁, the set K+ t cannot
intersect V unless t ∈ U .

We now decompose the measure µ into a sum µ = µ′ + µ′′, where µ′ := µ · 1U and
µ′′ := µ · 1U∁. The support of the measure µ must be contained in ∆(K)∁ due to the
weak tiling assumption (Corollary 2.6), and therefore µ′′ is supported on the closed set
∆(K)∁ ∩ U∁. Hence for any t ∈ supp(µ′′), the set K + t does not intersect V , which
implies that 1K ∗ µ′′ = 0 a.e. in V . It follows that

1V ∩K∁ = 1V · (1K ∗ µ) = 1V · (1K ∗ µ′) + 1V · (1K ∗ µ′′) = 1V · (1K ∗ µ′) a.e.,

and therefore

‖1V ∩K∁‖L∞(Rd) 6 ‖1K ∗ µ′‖L∞(Rd) 6

∫
dµ′ = µ(U) < 1.

This implies that the set V ∩ K∁ must have Lebesgue measure zero. But this is not
possible, since V is an open neighborhood of the point x ∈ bd(K), and hence V ∩K∁ has
nonempty interior. We thus arrive at a contradiction, which concludes the proof. �

4.5.

Lemma 4.5. Let K be a convex body in R
d, and x, x′ be two regular boundary points of

K. Let ξ and ξ′ be the exterior normal unit vectors at the points x and x′ respectively,
and let S(K,−ξ) and S(K,−ξ′) be the support sets of K determined by −ξ and −ξ′

respectively. If we have ξ 6= ξ′, then the two sets −S(K,−ξ) + x and −S(K,−ξ′) + x′

are disjoint.

Proof. Suppose to the contrary that the two sets −S(K,−ξ) + x and −S(K,−ξ′) + x′

are not disjoint, so they have at least one point in common. Then there exist two points
y ∈ S(K,−ξ) and y′ ∈ S(K,−ξ′) such that x− y = x′ − y′.

The support hyperplanes of K with exterior normal vectors ξ and −ξ are respectively
given by

H(K, ξ) = {z : 〈z, ξ〉 = 〈x, ξ〉} and H(K,−ξ) = {z : 〈z, ξ〉 = 〈y, ξ〉}. (4.1)

Since K is contained in the closed slab bounded by these two hyperplanes, we have

K ⊂ {z : 〈y, ξ〉 6 〈z, ξ〉 6 〈x, ξ〉}. (4.2)

The point x′ is a regular boundary point of K, and so H(K, ξ′) is the unique support
hyperplane of K at the point x′. Since ξ 6= ξ′, it follows that x′ does not lie on H(K, ξ).
Using (4.1) and (4.2) this implies that 〈x′, ξ〉 < 〈x, ξ〉.
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Now denote h := x− y = x′ − y′, then it follows that

〈y′, ξ〉 = 〈x′ − h, ξ〉 < 〈x− h, ξ〉 = 〈y, ξ〉.

But since y′ ∈ K this contradicts (4.2), and thus the lemma is proved. �

4.6.

Proof of Theorem 4.1. Assume that K ⊂ R
d is a convex body whose complement K∁

has a weak tiling by translates of K. We will prove that K is necessarily a polytope.

Suppose to the contrary that K is not a polytope. Then by Lemma 4.2 there exists
an infinite sequence xn of regular boundary points of K, such that the corresponding
exterior normal unit vectors ξn are mutually distinct.

The set K∁ has a weak tiling by translates of K, so there is a positive, locally finite
measure µ such that 1K∗µ = 1K∁ a.e. Let S(K,−ξn) be the support set ofK determined
by the vector −ξn, then by Lemma 4.4 we have µ(−S(K,−ξn) + xn) > 1 for each n.

Since the exterior normal unit vectors ξn are distinct, we get from Lemma 4.5 that
the sets −S(K,−ξn) + xn are pairwise disjoint. On the other hand, all these sets are
contained in K − K. Hence the set K − K contains an infinite sequence of pairwise
disjoint subsets, such that the total mass of µ in each one of these sets is at least 1. It
follows that we must have µ(K −K) = +∞. But this is not possible, as K −K is a
bounded set and µ is a locally finite measure. We thus arrive at a contradiction, which
concludes the proof of the theorem. �

5. Spectral convex polytopes can tile by translations, I

So far, we have established that a spectral convex body Ω ⊂ R
d must be a convex

polytope (Theorem 1.2). We also know from the result in [Kol00] (or [KP02]) that Ω
must be centrally symmetric, and from the result in [GL17, Section 4] that all the facets
of Ω must be centrally symmetric as well. It now remains to prove that each belt of Ω
must consist of either 4 or 6 facets (Theorem 1.3). The proof will be given throughout
the present section and the next one.

The key results of the present section are Lemma 5.8 and Lemma 5.9.

5.1. We begin by recalling some basic facts about convex polytopes in R
d. For more

details, we refer to [BG09, Section 1.A], [Gru07, Section 14.1] and [Sch14, Section 2.4].

A convex polytope A ⊂ R
d is the convex hull of a finite number of points. Equivalently,

a convex polytope is a bounded set A which can be represented as the intersection of
finitely many closed halfspaces.

We denote by aff(A) the affine hull of a convex polytope A ⊂ R
d, that is, aff(A) is

the smallest affine subspace containing A. By the relative interior and relative boundary
of A we refer respectively to the interior and boundary relative to aff(A). The relative
interior of A will be denoted by relint(A).

A face of a convex polytope A is a support set of A, that is, the intersection of A
with a support hyperplane of A. (There is also an alternative, equivalent definition,
according to which a face of A is an extreme subset of A, that is, a convex subset F ⊂ A
such that if x, y ∈ A, (1− λ)x+ λy ∈ F , 0 < λ < 1, then x, y ∈ F .)
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If A ⊂ R
d is a convex polytope with nonempty interior, then a (d − 1)-dimensional

face of A is called a facet of A, while a (d − 2)-dimensional face is called a subfacet of
A. If G is a subfacet of A, then there exist exactly two facets F1 and F2 of A which
contain G, and we have G = F1 ∩ F2 (see [BG09, Proposition 1.12]).

A convex polytope A ⊂ R
d is said to be centrally symmetric if the set −A is a

translate of A. In this case, there is a unique point x ∈ R
d such that −A + x = A− x.

The point x is called the center of symmetry of A, and A is then said to be symmetric
with respect to x.

If X, Y are two convex subsets of Rd, then we use conv{X, Y } to denote the convex
hull of the union X ∪ Y .

A prism in R
d is a convex polytope of the form conv{F, F + τ}, where F is a (d− 1)-

dimensional convex polytope, and τ is a vector such that F and F + τ do not lie on the
same hyperplane. The two sets F and F + τ are called the bases of the prism.

A slab in R
d is the closed region between two parallel hyperplanes, that is, a set of

the form {z : c1 6 〈z, ξ〉 6 c2}, where ξ is a nonzero vector and c1, c2 are constants.

5.2.

Lemma 5.1. Let A ⊂ R
d be a convex polytope with nonempty interior. Then

int(A)− int(A) = int(A)− A = int(A− A).

Proof. The fact that int(A) is a subset of A implies that int(A)− int(A) ⊂ int(A)−A.
In turn, int(A)−A is the union of all sets of the form int(A)− x where x ∈ A, and all
these sets are open. Hence int(A) − A is an open subset of A− A, and it follows that
int(A)−A ⊂ int(A−A). It remains to prove that int(A−A) ⊂ int(A)− int(A). Indeed,
let h ∈ int(A − A). Then there is ε > 0 such that h + εh is in A − A. Let x, y ∈ A
be such that h + εh = y − x. Let a be an interior point of A, and define the points
x′ := λx+ (1− λ)a and y′ := λy + (1− λ)a, where λ := (1 + ε)−1. Then x′, y′ ∈ int(A)
and we have y′ − x′ = h, which shows that h ∈ int(A)− int(A). �

Lemma 5.2. Let A ⊂ R
d be a convex polytope with nonempty interior, and let F be a

facet of A. Then
relint(F − F ) ⊂ int(A−A).

Proof. Let h ∈ relint(F−F ). Then there is an open set U such that h ∈ U∩H ⊂ F−F ,
where H denotes the hyperplane through the origin parallel to F . It follows that if we
choose ε > 0 small enough then h + εh is in F − F . Let x, y ∈ F be such that
h+ εh = y−x. Let a be an interior point of A, and define the points x′ = λx+(1−λ)a
and y′ = λy + (1 − λ)a, where λ = (1 + ε)−1. Then x′, y′ ∈ int(A) and we have
y′ − x′ = h, which shows that h ∈ int(A)− int(A). Using Lemma 5.1 we conclude that
h ∈ int(A− A) and the lemma is proved. �

Lemma 5.3. Let A ⊂ R
d be a convex polytope with nonempty interior. Let F be a

facet of A, and let H− be the support halfspace of A at the facet F . Suppose that E is a
compact subset of relint(F ). Then there is an open neighborhood V of E such that the
set V ∩H− is contained in A.

Proof. Let Fi, i = 1, 2, . . . , m, be all the facets of A, and suppose that F = F1. For each
i, let Hi be the hyperplane containing the facet Fi, and let H−

i be the support halfspace
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of A at the facet Fi. Then

A = H−
1 ∩H−

2 ∩ · · · ∩H−
m (5.1)

(see [Gru07, Theorem 14.2]). In particular, the set E is contained in all the halfspaces
H−

i . On the other hand no point of E can lie on any one of the hyperplanes Hi, i 6= 1,
since E is a subset of relint(F ). Hence there is an open neighborhood V of E such that
V is contained in H−

i for all i 6= 1. Using this together with (5.1) implies the claim. �

Lemma 5.4. Let A ⊂ R
d be a convex polytope with nonempty interior, and let G be a

subfacet of A. Let F1 and F2 be the two adjacent facets of A that meet at the subfacet G,
and let H−

1 and H−
2 be the support halfspaces of A at the facets F1 and F2 respectively.

Suppose that E is a compact subset of relint(G). Then there is an open neighborhood V
of E such that the set V ∩H−

1 ∩H−
2 is contained in A.

Proof. We continue to use the same notations as in the proof of Lemma 5.3. The set E
is again contained in all the halfspaces H−

i . However no point of E can lie on any one
of the hyperplanes Hi, i 6= 1, 2, since E is a subset of relint(G). Hence there is an open
neighborhood V of E such that V is contained in H−

i for all i 6= 1, 2. Using this with
(5.1) we obtain the assertion of the lemma. �

5.3.

Lemma 5.5. Let A ⊂ R
d be a convex polytope with nonempty interior, and let F be a

facet of A. Suppose that ξ is the exterior normal unit vector of A at the facet F , and
that H− = {z : 〈z, ξ〉 6 c} is the support halfspace of A at the facet F . For each δ > 0
we let Pδ = A ∩ Sδ be the intersection of A with the slab Sδ = {z : c− δ 6 〈z, ξ〉 6 c},
and we let Qδ = conv{F, F − δξ} be the prism with bases F and F − δξ. Then we have
m(Pδ△Qδ) = o(δ) as δ → 0 (see Figure 5.1).

A

F

δ

Figure 5.1. The shaded region in the illustration represents the sym-
metric difference Pδ△Qδ of the sets Pδ and Qδ in Lemma 5.5.

Proof. Let H be the hyperplane containing the facet F . For each ε > 0, let F+ε be the
set of all points of H whose distance from F is at most ε, and F−ε be the set of all
points of F whose distance from the relative boundary of F is at least ε.
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Let Iδ = {sξ : 0 6 s 6 δ} be the closed line segment connecting the origin to the
point δξ. Then there is δ0 = δ0(A, F, ε) > 0 such that for every δ < δ0 we have

F−ε − Iδ ⊂ Pδ ⊂ F+ε − Iδ.

(the left inclusion may be deduced from Lemma 5.3). Observe that Qδ = F − Iδ, hence

Pδ△Qδ ⊂ (F+ε \ F−ε)− Iδ.

This implies that

md(Pδ△Qδ) 6 δ md−1(F+ε \ F−ε).

Since md−1(F+ε \ F−ε) tends to zero as ε → 0, the assertion follows. �

5.4.

Lemma 5.6. Let A ⊂ R
d be a convex polytope with nonempty interior, and let G be a

subfacet of A. Let F1 and F2 be the two adjacent facets of A that meet at the subfacet G,
and let H−

1 and H−
2 be the support halfspaces of A at the facets F1 and F2 respectively.

For each δ > 0 we let Pδ be the set of all points of A whose distance from aff(G) is
not greater than δ, and we let Qδ = (G + Sδ) ∩ H−

1 ∩ H−
2 , where Sδ is a closed 2-

dimensional ball of radius δ centered at the origin and orthogonal to aff(G). Then we
have m(Pδ△Qδ) = o(δ2) as δ → 0.

Proof. The proof is similar to that of Lemma 5.5. For each ε > 0, let G+ε be the set of
all points of aff(G) whose distance from G is at most ε, and G−ε be the set of all points
of G whose distance from the relative boundary of G is at least ε. If δ0 = δ0(A,G, ε) > 0
is small enough, then for every δ < δ0 we have

(G−ε + Sδ) ∩H−
1 ∩H−

2 ⊂ Pδ ⊂ (G+ε + Sδ) ∩H−
1 ∩H−

2

(here, the left inclusion may be inferred from Lemma 5.4), and hence

Pδ△Qδ ⊂ ((G+ε \G−ε) + Sδ) ∩H−
1 ∩H−

2 .

This implies that

md(Pδ△Qδ) 6 md−2(G+ε \G−ε)m2(Sδ).

But we have m2(Sδ) = πδ2, while md−2(G+ε \G−ε) tends to zero as ε → 0. �

5.5.

Lemma 5.7. Let A and B be two convex polytopes in R
d with nonempty interiors. Let

L be one of the facets of B, let ξ be the exterior normal unit vector of B at the facet L,
and let E be a compact subset of relint(L). Suppose that A has a facet F on which the
exterior normal unit vector is −ξ, and let U be an open neighborhood of the set E −F .
Then there is an open neighborhood V of E such that for any t, if A + t and B have
disjoint interiors and if A+ t intersects V , then t ∈ U .

This can be proved in essentially the same way as Lemma 4.3 above.
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5.6.

Lemma 5.8. Let A and B be two convex polytopes in R
d with nonempty, disjoint

interiors, and suppose that A and B share a common facet F . Assume that µ is a
positive, locally finite measure such that 1A ∗ µ > 1 a.e. on A, while 1A ∗ µ = 0 a.e.
on B. Let µ′ denote the restriction of the measure µ to relint(F − F ). Then we have
1F ∗ µ′ > 1 a.e. with respect to the (d− 1)-dimensional volume measure on the facet F .

Notice that the convolution 1F ∗ µ′ vanishes outside of aff(F ), since F + t lies on
aff(F ) for every t ∈ supp(µ′). An equivalent way to formulate the conclusion of the
lemma is to say that if σF denotes the (d − 1)-dimensional volume measure restricted
to the facet F , then we have (σF ∗ µ′)(E) > σF (E) for every Borel set E.

Proof of Lemma 5.8. By applying a rotation and a translation we may assume that the
facet F is contained in the hyperplane {x : x1 = 0}. Hence F has the form F = {0}×Ω,
where Ω is a convex polytope in R

d−1 with nonempty interior. We may also suppose
that A ⊂ {x : x1 > 0} and B ⊂ {x : x1 6 0}.

Let η > 0, and let Σ be a compact subset of int(Ω). Then the set E := {0} × Σ is
a compact subset of relint(F ) = {0} × int(Ω). Choose ε > 0 such that the total mass
of the measure µ in the set ((−ε, 0) ∪ (0, ε)) × int(Ω − Ω) is less than η, and define
U := (−ε, ε)× int(Ω−Ω). Using Lemma 5.1 we see that U is an open neighborhood of
the set E − F . By Lemma 5.7 there is an open neighborhood V of E such that for any
t, if A+ t and B have disjoint interiors and if A+ t intersects V , then t ∈ U .

Consider the following three subsets of Rd:

(i) Y ′ := {0} × int(Ω− Ω) = relint(F − F );

(ii) Y ′′ := ((−ε, 0) ∪ (0, ε))× int(Ω− Ω);

(iii) Y ′′′ := (Y ′ ∪ Y ′′)∁ = U∁.

Then the sets Y ′, Y ′′, Y ′′′ are pairwise disjoint, and they cover the whole space. It follows
that we may decompose the measure µ into the sum µ = µ′ + µ′′ + µ′′′, where the three
measures µ′, µ′′, µ′′′ are the restrictions of µ to the sets Y ′, Y ′′, Y ′′′ respectively.

The assumption that 1A ∗ µ = 0 a.e. on B implies that the sets A + t and B must
have disjoint interiors for every t ∈ supp(µ) (Lemma 2.5). Since the support of the

measure µ′′′ is contained in supp(µ) ∩ U∁, it follows that if t ∈ supp(µ′′′) then A + t
cannot intersect V . Hence we have 1A ∗ µ′′′ = 0 a.e. in V . We also have

‖1A ∗ µ′′‖L∞(Rd) 6

∫

Rd

dµ′′ = µ(Y ′′) < η.

Combining this with the assumption that 1A ∗ µ > 1 a.e. on A, this implies that

1A ∗ µ′ = 1A ∗ µ− 1A ∗ µ′′ − 1A ∗ µ′′′ > 1− η a.e. on A ∩ V . (5.2)

For each δ > 0 we let Pδ := A ∩ Sδ be the intersection of A with the slab Sδ :=
[0, δ]× R

d−1, and we also consider the prism Qδ := [0, δ]× Ω. Then by Lemma 5.5, we
can choose δ small enough such that

m(Pδ△Qδ)µ(F − F ) < δη2md−1(Σ). (5.3)

We can also assume, by choosing δ small enough, that the setDδ := [0, δ]×Σ is contained
in both V and A (the inclusion in A can be deduced from Lemma 5.3).
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The support of the measure µ′ is contained in the hyperplane {0} × R
d−1. For each

t ∈ supp(µ′) we therefore have (A+ t)∩Sδ = Pδ + t. This implies that 1A ∗µ′ = 1Pδ
∗µ′

a.e. on the slab Sδ. In particular, it follows from (5.2) that

1Pδ
∗ µ′ > 1− η a.e. on Dδ. (5.4)

Let D′
δ be the set of all points x ∈ Dδ such that (1Pδ△Qδ

∗ µ′)(x) < η, then we have

1Qδ
∗ µ′ > 1Pδ

∗ µ′ − 1Pδ△Qδ
∗ µ′ > 1− 2η a.e. on D′

δ,

which follows from (5.4). On the other hand, by (5.3) we have
∫

Rd

(1Pδ△Qδ
∗ µ′) dm = m(Pδ△Qδ)

∫

Rd

dµ′ < δη2md−1(Σ),

which in turn implies that

m(Dδ \D
′
δ) 6 η−1

∫

Rd

(1Pδ△Qδ
∗ µ′) dm < δηmd−1(Σ) = η m(Dδ),

that is, we have m(D′
δ) > (1− η)m(Dδ). We conclude that

1Qδ
∗ µ′ > 1− 2η a.e. on D′

δ, D′
δ ⊂ Dδ, m(D′

δ) > (1− η)m(Dδ). (5.5)

Now recall that the support of the measure µ′ is contained in {0}×R
d−1. This implies

that the value of (1Qδ
∗ µ′)(x) does not depend, in the slab Sδ, on the first coordinate

x1 of the point x. Hence it follows from (5.5) that 1F ∗ µ′ > 1− 2η a.e. with respect to
the (d− 1)-dimensional volume measure on some set of the form {0} × Σ′, where Σ′ is
a subset of Σ (which depends on both Σ and η) such that md−1(Σ

′) > (1− η)md−1(Σ).

However, as the number η was arbitrary, it follows that we must have 1F ∗µ′ > 1 a.e.
with respect to the (d − 1)-dimensional volume measure on {0} × Σ. In turn, Σ was
an arbitrary compact subset of int(Ω). Using the fact that bd(Ω) is a set of measure
zero in R

d−1, this implies that 1F ∗ µ′ > 1 a.e. with respect to the (d− 1)-dimensional
volume measure on {0} × Ω = F , which is what we had to prove. �

5.7.

Lemma 5.9. Let A be a convex polytope in R
d with nonempty interior, and let G be a

subfacet of A. Let F1 and F2 be the two adjacent facets of A that meet at the subfacet G,
and let H−

1 and H−
2 be the support halfspaces of A at the facets F1 and F2 respectively.

For each δ > 0 we let Qδ := (G+Sδ)∩H−
1 ∩H−

2 , where Sδ is a closed 2-dimensional ball
of radius δ centered at the origin and orthogonal to aff(G). Assume that µ is a positive,
finite measure supported on G − G and satisfying 1G ∗ µ > 1 a.e. with respect to the
(d− 2)-dimensional volume measure on G. Then for any η > 0 we have

m{x ∈ Qδ : (1A ∗ µ)(x) < 1− η} = o(m(Qδ)), δ → 0.

Proof. Let Pδ = A ∩ (aff(G) + Sδ) be the set of all points of A whose distance from
aff(G) is not greater than δ. The assumption that supp(µ) ⊂ G − G implies that we
have (A+ t) ∩ (aff(G) + Sδ) = Pδ + t for every t ∈ supp(µ), and hence 1A ∗ µ = 1Pδ

∗ µ
a.e. on aff(G) + Sδ. In particular,

1A ∗ µ = 1Pδ
∗ µ a.e. on Qδ. (5.6)
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We have also assumed that 1G ∗ µ > 1 a.e. with respect to the (d − 2)-dimensional
volume measure on G. Using Fubini’s theorem this implies that

1Qδ
∗ µ > 1 a.e. on Qδ. (5.7)

Denote by Dδ,η the set of all points x ∈ Qδ such that (1Pδ△Qδ
∗ µ)(x) < η. Then

1A ∗ µ = 1Pδ
∗ µ > 1Qδ

∗ µ− 1Pδ△Qδ
∗ µ > 1− η a.e. on Dδ,η,

which follows from (5.6) and (5.7). Hence to prove the assertion of the lemma, it is
enough to show that m(Qδ \ Dδ,η) = o(m(Qδ)) as δ → 0. We observe that m(Qδ) =
md−2(G) · 1

2
θδ2, where θ is the dihedral angle of A at its subfacet G. Let ε > 0, then by

Lemma 5.6 there is δ0 = δ0(A,G, η, ε) > 0 such that for any δ < δ0 we have

m(Pδ△Qδ)µ(G−G) < ε ηm(Qδ).

It follows that ∫

Rd

(1Pδ△Qδ
∗ µ) dm = m(Pδ△Qδ)

∫

Rd

dµ < ε ηm(Qδ),

which in turn implies

m(Qδ \Dδ,η) 6 η−1

∫

Rd

(1Pδ△Qδ
∗ µ) dm < εm(Qδ).

This confirms that indeed we have m(Qδ \Dδ,η) = o(m(Qδ)) as δ → 0. �

6. Spectral convex polytopes can tile by translations, II

In this section we prove the following theorem, which is the final result needed for
the proof of Fuglede’s conjecture for convex bodies:

Theorem 6.1. Let A ⊂ R
d be a convex polytope, which is centrally symmetric and has

centrally symmetric facets. Assume that the complement A∁ of A admits a weak tiling
by translates of A, that is, there exists a positive, locally finite measure µ such that
1A ∗ µ = 1A∁ a.e. Then each belt of A consists of either 4 or 6 facets.

Theorem 1.3 is then obtained as a consequence of Theorem 1.5 and Theorem 6.1.

The rest of the section is devoted to the proof of Theorem 6.1.

6.1. Let G be any one of the subfacets of A, and suppose that the belt of A generated
by G has 2m facets. Let F0, F1, F2, . . . , F2m−1, F2m = F0 be an enumeration of the
facets of the belt, such that Fi−1 and Fi are adjacent facets for each 1 6 i 6 2m. The
intersection Fi−1 ∩ Fi of any pair of consecutive facets in the belt is then a translate of
either G or −G. We shall suppose that G itself is given by G = F1 ∩ F2.

Our goal is to show that under the assumptions in Theorem 6.1, the belt can have
only 4 or 6 facets, that is, we must have m 6 3.

The belt generated by G consists of m pairs of opposite facets {Fi, Fi+m} (0 6 i 6
m − 1). We can assume, with no loss of generality, that A is symmetric with respect
to the origin, that is, A = −A. Then for each facet Fi in the belt, its opposite facet is
given by −Fi. Since the facets of A are centrally symmetric, −Fi is a translate of Fi,
so there is a translation vector τi which carries −Fi onto Fi, that is, Fi = −Fi + τi.
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6.2. Recall that we have assumed that the complement A∁ of A admits a weak tiling
by translates of A. This means that there exists a positive, locally finite measure µ such
that 1A ∗ µ = 1A∁ a.e. For each 0 6 i 6 2m we define

Ti := relint(Fi − Fi) + τi, µ′
i := µ · 1Ti

, ν ′
i := µ′

i ∗ δ−τi . (6.1)

We observe that supp(µ′
i) is contained in the hyperplane passing through the point

τi and which is parallel to the facet Fi, while supp(ν ′
i) is contained in the hyperplane

through the origin which is parallel to Fi.

We also notice that we have −Fi = Fi − τi and hence Ti = 2 relint(Fi). This implies
that the sets Ti (0 6 i 6 2m− 1) are pairwise disjoint, because any two distinct facets
of A have disjoint relative interiors.

Lemma 6.2. For each 0 6 i 6 2m we have 1Fi
∗ ν ′

i > 1 a.e. with respect to the
(d− 1)-dimensional volume measure on the facet Fi.

Proof. Let A′ := A + τi and B′ := A. Then A′ and B′ are two convex polytopes in R
d

with nonempty, disjoint interiors, and they share Fi as a common facet. Let ρ := µ∗δ−τi ,
then we have 1A′ ∗ρ = 1A∁ a.e., and in particular, 1A′ ∗ρ > 1 a.e. on A′, and 1A′ ∗ρ = 0
a.e. on B′. Since ν ′

i is the restriction of the measure ρ to relint(Fi − Fi), we can apply
Lemma 5.8 and conclude that 1Fi

∗ ν ′
i > 1 a.e. with respect to the (d− 1)-dimensional

volume measure on the facet Fi, as we had to show. �

6.3. Let Ci := conv{Fi, Fi−τi} be the prism contained in A with bases Fi and Fi−τi =
−Fi. We also define the prism Di := Ci + τi = conv{Fi, Fi + τi}.

Lemma 6.3. For each 0 6 i 6 2m we have 1Ci
∗ µ′

i > 1 a.e. on Di.

Proof. By Lemma 6.2 the facet Fi has a subset Ei of full (d − 1)-dimensional volume
measure, such that we have (1Fi

∗ ν ′
i)(y) > 1 for every y ∈ Ei. By Fubini’s theorem, the

set of all points x of the form x = y+ λτi, y ∈ Ei, 0 6 λ 6 1, constitutes a subset D′
i of

Di of full d-dimensional volume measure. Since supp(ν ′
i) is contained in the hyperplane

through the origin parallel to Fi, it follows that for any point x of the above form we
have (1Di

∗ ν ′
i)(x) = (1Fi

∗ ν ′
i)(y) > 1. We obtain that 1Di

∗ ν ′
i > 1 a.e. on Di. But this

is equivalent to the assertion of the lemma. �

In order to better understand the assertion of Lemma 6.3, observe that the prism Di

is contained (up to measure zero) in the complement A∁ of A, and hence we trivially
have the “weak covering” property 1A ∗ µ > 1 a.e. on Di. However the point of the
lemma is that only the part of A which lies in the prism Ci, and only the part of the
measure µ which lies in Ti, can in fact contribute to this covering (see Figure 6.1).

6.4. Let us recall that F0, F1, F2, . . . , F2m−1, F2m = F0 is an enumeration of the facets
of the belt generated by the subfacet G of the convex polytope A, and we have assumed
that the subfacet G is given by G = F1 ∩ F2.

For i ∈ {1, 2} (and only for these two values of i) we denote

Si := relint(G−G) + τi, µ′′
i := µ′

i · 1Si
, ν ′′

i := µ′′
i ∗ δ−τi . (6.2)

We notice that Si is a subset of the set Ti defined in (6.1). This follows from Lemma 5.2
applied relative to the affine hull of the facet Fi. In particular, this shows that S1 and
S2 are disjoint sets, because the sets T1 and T2 are disjoint.



24 NIR LEV AND MÁTÉ MATOLCSI

τi

Ci

Di

T
i

F
i

F
i − τ

i

Figure 6.1. According to Lemma 6.3, the prism Di is “weakly covered”
by the translates of the prism Ci with respect to the measure µ′

i.

It also follows that we have µ′′
i = µ · 1Si

, that is, in the definition of the measure µ′′
i

it does not matter whether we restrict µ′
i or µ to the set Si.

Lemma 6.4. Assume that the belt of A generated by the subfacet G has 6 or more facets.
Then for each i ∈ {1, 2} we have 1G ∗ν ′′

i > 1 a.e. with respect to the (d−2)-dimensional
volume measure on the subfacet G.

Proof. We suppose that i is an element of the set {1, 2} and we let j be the other
element, so that (i, j) = (1, 2) or (2, 1). The proof is divided into several steps.

Step 1 : We first claim that if t ∈ supp(ν ′
i), then Fi + t cannot intersect the interior

of the prism Dj. For suppose that (Fi + t) ∩ int(Dj) is nonempty. Let s := t + τi,
then s ∈ supp(µ′

i) and we have (Fi − τi + s) ∩ int(Dj) is nonempty. Since Fi − τi + s
is a facet of the prism Ci + s, it follows that (Ci + s) ∩Dj has nonempty interior, and
in particular we have m((Ci + s) ∩ Dj) > 0. By Lemma 2.5 this implies that 1Ci

∗ µ′
i

cannot vanish a.e. on Dj, and hence there exist η > 0 and a set E ⊂ Dj, m(E) > 0,
such that 1Ci

∗ µ′
i > η a.e. on E. On the other hand we have 1Cj

∗ µ′
j > 1Dj

a.e. by
Lemma 6.3. Using the fact that Ci and Cj are both subsets of A, and that µ′

i and µ′
j

are the restrictions of µ to the two disjoint sets Ti and Tj respectively, we conclude that

1A ∗ µ > 1Ci
∗ µ′

i + 1Cj
∗ µ′

j > η 1E + 1Dj
> (1 + η)1E a.e.

However this contradicts the weak tiling assumption 1A ∗ µ = 1A∁ a.e. This establishes
our claim that Fi + t cannot intersect the interior of the prism Dj.

Step 2 : Let Hi be the hyperplane containing the facet Fi, and define

Bi := Hi ∩Dj .

We claim that Bi is a (d − 1)-dimensional convex polytope, that relint(Bi) ⊂ int(Dj),
and that G is a (d− 2)-dimensional face of Bi.
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First, it is clear that Bi is a convex polytope, being the intersection of a convex
polytope and a hyperplane.

Next, recall that we have assumed the belt of A generated by the subfacet G to have
6 or more facets. This implies that the facet Lj := conv{G,G − τj} of the prism Cj

divides the dihedral angle of A at its subfacet G into two (strictly positive) angles θ
and ϕ, where θ is the dihedral angle between Lj and Fi, and ϕ is the dihedral angle
between Lj and Fj. Hence the hyperplane Hi divides the dihedral angle of the prism
Dj at its subfacet G into two strictly positive angles θ and π− θ−ϕ. It follows that Hi

must intersect the interior of the prism Dj and so Bi is a (d − 1)-dimensional convex
polytope (see Figure 6.2).

G
Hj

H
i

Cj

Dj

Fj F
i

B
i

Figure 6.2. If the belt generated by the subfacet G has 6 or more facets,
then the hyperplane Hi containing the facet Fi intersects the interior of
the prism Dj , and Bi = Hi∩Dj is a (d−1)-dimensional convex polytope.

Let Hj be the hyperplane containing the facet Fj , and H+
j be the closed halfspace

bounded by Hj which contains the prism Dj . Then Bi is contained in H+
j and we have

Bi ∩ Hj = G. This shows that Hj is a support hyperplane of Bi and G is a face (of
dimension d− 2) of Bi.

Finally, we show that relint(Bi) ⊂ int(Dj). Indeed, let x ∈ relint(Bi). Since Hi is the
affine hull of Bi, this means that there is an open set V such that x ∈ V ∩ Hi ⊂ Bi.
In particular this implies that x ∈ Dj, so it is enough to prove that x cannot lie on
bd(Dj). Indeed, since x ∈ V ∩Hi ⊂ Dj, the point x can lie on bd(Dj) only if Hi is a
support hyperplane of Dj . But this is not the case, since Hi intersects int(Dj), so we
must have x ∈ int(Dj).

Step 3 : It follows that if t ∈ supp(ν ′
i), then Fi+ t cannot intersect relint(Bi). Indeed,

as we have shown above, relint(Bi) is contained in the interior of the prism Dj , while
Fi + t cannot intersect the interior of Dj . Hence Fi + t and relint(Bi) are disjoint sets
for every t ∈ supp(ν ′

i). From this we conclude that 1Fi
∗ ν ′

i = 0 a.e. with respect to the
(d− 1)-dimensional volume measure on Bi.
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Step 4 : The sets Fi and Bi are two (d − 1)-dimensional convex polytopes contained
in the same hyperplane Hi, they have disjoint relative interiors, and they share G as
a common (d − 2)-dimensional face. Recall that by Lemma 6.2 we have 1Fi

∗ ν ′
i > 1

a.e. with respect to the (d − 1)-dimensional volume measure on Fi, while we have just
shown in Step 3 above that 1Fi

∗ ν ′
i = 0 a.e. with respect to the (d − 1)-dimensional

volume measure on Bi. We may therefore apply Lemma 5.8 (relative to the hyperplane
Hi containing Fi and Bi) and conclude that the measure ν ′′

i obtained by restricting
the measure ν ′

i to relint(G − G), satisfies 1G ∗ ν ′′
i > 1 a.e. with respect to the (d − 2)-

dimensional volume measure on G. So we obtain the assertion of the lemma. �

6.5. For i ∈ {1, 2}, we denote by Ni the hyperplane which contains the subfacet G and
which is parallel to the facet F0 if i = 1, or parallel to the facet F3 if i = 2. Let N−

i

be the closed halfspace bounded by Ni that has exterior normal unit vector which is
opposite to the exterior normal vector of A at the facet F0 (if i = 1) or F3 (if i = 2). It
is not difficult to verify that N−

i is the support halfspace of A+τi at its facet F0−τ0+τ1
for i = 1, or F3 − τ3 + τ2 for i = 2.

Lemma 6.5. Assume that the belt of A generated by the subfacet G has 8 or more
facets. Then the set M := (A + τ1) ∩ (A + τ2) is a convex polytope with nonempty
interior, G is a subfacet of M , and N−

1 , N
−
2 are the support halfspaces of M at its two

facets which meet at the subfacet G (see Figure 6.3).

G

A

A + τ1

A + τ2

τ1

τ2

M

F0

F1

F2

F3

Figure 6.3. The shaded region in the illustration represents the convex
polytope M = (A+ τ1) ∩ (A+ τ2) in Lemma 6.5.

Proof. Let α, β and γ denote the dihedral angles of A at the subfacets G, −G+ τ1 and
−G + τ2 respectively. If the belt of A generated by G has 8 or more facets, then we
must have α+ β + γ > 2π (see Figure 6.4). On the other hand, each one of α, β and γ
is strictly smaller than π. Hence the hyperplane N1 divides the dihedral angle of A+ τ2
at the subfacet G into two strictly positive angles 2π−α− β and α+ β + γ− 2π, while
the hyperplane N2 divides the dihedral angle of A + τ1 at G into two strictly positive
angles 2π − α − γ and α + β + γ − 2π. In particular the two hyperplanes N1 and N2

are not parallel, and thus N1 ∩N2 = aff(G).
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It is clear that M := (A+ τ1) ∩ (A+ τ2) is a convex polytope, being the intersection
of two convex polytopes. Since F1 is a facet of A+ τ1 and F2 is a facets of A+ τ2, then
G is a subfacet of both A + τ1 and A + τ2. Let E be a closed (d − 2)-dimensional ball
contained in relint(G). For δ > 0 we denote D(E, δ) := (E + Sδ) ∩ N−

1 ∩ N−
2 , where

Sδ is a closed 2-dimensional ball of radius δ centered at the origin and orthogonal to
aff(G). Using Lemma 5.4 we obtain that if δ = δ(A,G,E) > 0 is small enough, then
D(E, δ) is contained both in A + τ1 and in A+ τ2, and hence D(E, δ) ⊂ M . It follows
that M has nonempty interior, and that N1, N2 are support hyperplanes of M such
that the corresponding support sets M ∩N1 and M ∩N2 are (d− 1)-dimensional, and
hence these support sets are facets of M . We conclude that G is a subfacet of M , being
the intersection of two adjacent facets M ∩N1 and M ∩N2 of M , and that N−

1 , N
−
2 are

the support halfspaces of M at its two facets which meet at the subfacet G. �

α

β

β

γ

γ

A

A + τ1

A + τ2

Figure 6.4. If the belt of A generated by the subfacet G has 8 or more
facets, then the sum of the dihedral angles α, β and γ at the subfacets G,
−G + τ1 and −G + τ2 respectively is strictly greater than 2π.

6.6. Now we can finish the proof of Theorem 6.1.

Indeed, suppose to the contrary that the belt of A generated by the subfacet G has
8 or more facets. By Lemma 6.5, the set M := (A+ τ1)∩ (A+ τ2) is a convex polytope
with nonempty interior, G is a subfacet of M , and N−

1 , N
−
2 are the support halfspaces

of M at its two facets which meet at the subfacet G. For each i ∈ {1, 2}, ν ′′
i is a finite

measure supported on G−G, and by Lemma 6.4 we have 1G ∗ ν ′′
i > 1 a.e. with respect

to the (d − 2)-dimensional volume measure on the subfacet G. Then we can apply
Lemma 5.9 to the convex polytope M . It follows from the lemma that if we denote
Qδ = (G+ Sδ) ∩N−

1 ∩N−
2 , where Sδ is a closed 2-dimensional ball of radius δ centered

at the origin and orthogonal to aff(G), then for any η > 0 we have

m{x ∈ Qδ : (1M ∗ ν ′′
i )(x) < 1− η} = o(m(Qδ)), δ → 0, i ∈ {1, 2}. (6.3)

Fix any number 0 < η < 1
2
, and let D(δ, η) denote the set of all points x ∈ Qδ for

which we have (1M ∗ ν ′′
i )(x) > 1− η for both i = 1 and i = 2. The set Qδ has positive
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measure, and therefore it follows from (6.3) that if δ is small enough then also D(δ, η)
has positive measure. On the other hand, we have

1A ∗ µ > 1A ∗ (µ′′
1 + µ′′

2) = 1A+τ1 ∗ ν
′′
1 + 1A+τ2 ∗ ν

′′
2 > 1M ∗ (ν ′′

1 + ν ′′
2 ),

where the first inequality is due to the fact that the measures µ′′
1 and µ′′

2 are obtained
by restricting µ respectively to the disjoint sets S1 and S2 defined in (6.2), while the
second inequality holds since M is a subset of both A+ τ1 and A+ τ2. This implies that
we have 1A ∗ µ > 2(1− η) > 1 a.e. on D(δ, η). However this contradicts the weak tiling
assumption 1A ∗µ = 1A∁ a.e. We conclude that the belt of A generated by the subfacet
G can have only 4 or 6 facets, and this completes the proof of Theorem 6.1. �
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[KL21] M. Kolountzakis, N. Lev, Tiling by translates of a function: results and open problems.

Discrete Anal. 2021, Paper No. 12, 24 pp.
[KM10] M. Kolountzakis, M. Matolcsi, Teselaciones por traslación (Spanish). Gac. R. Soc. Mat.

Esp. 13 (2010), no. 4, 725–746. English version in arXiv:1009.3799.
[KP02] M. Kolountzakis, M. Papadimitrakis, A class of non-convex polytopes that admit no or-

thonormal basis of exponentials. Illinois J. Math. 46 (2002), no. 4, 1227–1232.
[McM80] P. McMullen, Convex bodies which tile space by translation. Mathematika 27 (1980), no.

1, 113–121.
[McM81] P. McMullen, Acknowledgement of priority: “Convex bodies which tile space by transla-

tion”. Mathematika 28 (1981), no. 2, 191.
[Rud91] W. Rudin, Functional analysis, Second edition. McGraw-Hill, New York, 1991.
[Sch14] R. Schneider, Convex bodies: the Brunn-Minkowski theory. Second expanded edition. Cam-

bridge University Press, 2014.
[Tao04] T. Tao, Fuglede’s conjecture is false in 5 and higher dimensions. Math. Res. Lett. 11 (2004),

no. 2–3, 251–258.
[Ven54] B. Venkov, On a class of Euclidean polyhedra (Russian). Vestnik Leningrad. Univ. Ser.

Mat. Fiz. Him. 9 (1954), no. 2, 11–31.



THE FUGLEDE CONJECTURE FOR CONVEX DOMAINS IS TRUE IN ALL DIMENSIONS 29

Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel

Email address : levnir@math.biu.ac.il

Budapest University of Technology and Economics (BME), H-1111, Egry J. u. 1, Bu-
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