21 research outputs found

    Prescribing the binary digits of squarefree numbers and quadratic residues

    Full text link
    We study the equidistribution of multiplicatively defined sets, such as the squarefree integers, quadratic non-residues or primitive roots, in sets which are described in an additive way, such as sumsets or Hilbert cubes. In particular, we show that if one fixes any proportion less than 40%40\% of the digits of all numbers of a given binary bit length, then the remaining set still has the asymptotically expected number of squarefree integers. Next, we investigate the distribution of primitive roots modulo a large prime pp, establishing a new upper bound on the largest dimension of a Hilbert cube in the set of primitive roots, improving on a previous result of the authors. Finally, we study sumsets in finite fields and asymptotically find the expected number of quadratic residues and non-residues in such sumsets, given their cardinalities are big enough. This significantly improves on a recent result by Dartyge, Mauduit and S\'ark\"ozy. Our approach introduces several new ideas, combining a variety of methods, such as bounds of exponential and character sums, geometry of numbers and additive combinatorics

    Artin's primitive root conjecture -a survey -

    Get PDF
    This is an expanded version of a write-up of a talk given in the fall of 2000 in Oberwolfach. A large part of it is intended to be understandable by non-number theorists with a mathematical background. The talk covered some of the history, results and ideas connected with Artin's celebrated primitive root conjecture dating from 1927. In the update several new results established after 2000 are also discussed.Comment: 87 pages, 512 references, to appear in Integer

    Part I:

    Get PDF

    Algebraic methods in randomness and pseudorandomness

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 183-188).Algebra and randomness come together rather nicely in computation. A central example of this relationship in action is the Schwartz-Zippel lemma and its application to the fast randomized checking of polynomial identities. In this thesis, we further this relationship in two ways: (1) by compiling new algebraic techniques that are of potential computational interest, and (2) demonstrating the relevance of these techniques by making progress on several questions in randomness and pseudorandomness. The technical ingredients we introduce include: " Multiplicity-enhanced versions of the Schwartz-Zippel lenina and the "polynomial method", extending their applicability to "higher-degree" polynomials. " Conditions for polynomials to have an unusually small number of roots. " Conditions for polynomials to have an unusually structured set of roots, e.g., containing a large linear space. Our applications include: * Explicit constructions of randomness extractors with logarithmic seed and vanishing "entropy loss". " Limit laws for first-order logic augmented with the parity quantifier on random graphs (extending the classical 0-1 law). " Explicit dispersers for affine sources of imperfect randomness with sublinear entropy.by Swastik Kopparty.Ph.D

    Q(sqrt(-3))-Integral Points on a Mordell Curve

    Get PDF
    We use an extension of quadratic Chabauty to number fields,recently developed by the author with Balakrishnan, Besser and M ̈uller,combined with a sieving technique, to determine the integral points overQ(√−3) on the Mordell curve y2 = x3 − 4

    Restriction and kakeya problems of fourier analysis in vector spaces over finite fields

    Get PDF

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 24th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2021, which was held during March 27 until April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The 28 regular papers presented in this volume were carefully reviewed and selected from 88 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems
    corecore