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Abstract

Algebra and randomness come together rather nicely in computation. A central ex-
ample of this relationship in action is the Schwartz-Zippel lemma and its application
to the fast randomized checking of polynomial identities. In this thesis, we further this
relationship in two ways: (1) by compiling new algebraic techniques that are of poten-
tial computational interest, and (2) demonstrating the relevance of these techniques
by making progress on several questions in randommness and pseudorandomness.

The technical ingredients we introduce include:

e Multiplicity-enhanced versions of the Schwartz-Zippel lemma and the “polyno-
mial method”, extending their applicability to “higher-degree” polynomials.

e Conditions for polynomials to have an unusually small number of roots.

e Conditions for polynomials to have an unusually structured set of roots, e.g.,
containing a large linear space.

Our applications include:

e Explicit constructions of randomness extractors with logarithmic seed and van-
ishing “entropy loss”.

e Limit laws for first-order logic augmented with the parity quantifier on random
graphs (extending the classical 0-1 law).

e Explicit dispersers for affine sources of imperfect randomness with sublinear
entropy.
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Chapter 1

Introduction

1.1 Randomness in computing

The introduction of randomness to computation led to a revolution in the field of al-
gorithm design. Algorithm designers assumed that their algorithms were given access
to a stream of independent, unbiased, random bits, and they found that these algo-
rithms could efficiently solve problems that seemed out of reach of their deterministic
counterparts.

The ubiquity of randomness begs the philosophical question: is randomness nec-
essary? Do we really need to use randommess to efficiently solve some problems, or
can all efficient randomized computation be replaced by equally efficient deterministic
algorithms? A central question of this type is the P vs. BPP question.

Pscudorandomness is the theory of coping with the fictitions nature of pure ran-

dommess; of reconciling the idealized resource of truly random bits, with ground
realities such as the lack of sources of such randomness, and the need for guaran-
tees. There are several aspects to this theory: extracting pure random bits from
weak sources of randomness, such as those produced in nature or by physical devices;
derandomizing randomized algorithms, or more generally, generically derandomizing
entire randomized complexity classes through pscudorandom generators.

Another topic at the confluence of randomness and computation is average-case

complezity. Here we consider the behavior of algorithms on randornly chosen inputs.

13



For a given computational problem, is there an algorithin that solves it on almost
all inputs? Such questions are important from a practical viewpoint (because real-
life instances are not chosen adversarially) and also from a theoretical viewpoint (a
theoretical justification for all of cryptography awaits answers to these questions).

Yet another way that randomness interacts with computer science is via the proba-
bilistic method. In many combinatorial and computational problems, the probabilistic
method shows us that certain desirable structures exist; however, it gives us no clue
as to how to deterministically construct such structures. Here too, some downright
basic questions remain unanswered. For example, we know that a random subset of
{0,1}™ is a “good” error-correcting code. Yet we do not know how to efficiently and
deterministically produce a single error-correcting code which is as good!

Traditionally, algebra has played a prominent role in many aspects of randomness
in computation. In this thesis, we further this relationship in two ways: (1) by
compiling new algebraic techniques that are of potential computational interest, and
(2) demonstrating the relevance of these techniques by making progress on several
questions in randomness and pscudorandomness.

We now give a few examples of the kinds of algebraic tools that we will bring to

bear on problems of interest in randomness and pseudorandomness.

1.2 Some Algebraic Tools

One of the most fruitful aspects of the interaction between algebra and randomness
in computation comes from the relationship between a polynomial and the set of
its roots. Let us recall the most famous such example. It is a classical theorem
that a nonzero n-variate polynomial of degree d over the field F, (the finite field of
q elements) can evaluate to zero on at most d/g-fraction of the points in F ¢ Lhis
leads to the fundamental Schwartz-Zippel randomized “identity testing” algorithimn:
to check if a black-box B which computes a polynomial of degree d over a field F, is

identically 0 (where d < ¢), simply pick a random point = € Fy, and check it B(x)

14



equals 0.

Following up on this theme, the algebraic tools that we describe below give finer
information about the relationship between a polynomial and the set of its zeroes.
Later in this chapter we give more detailed introductions to some of their applications

in the theory of randomness and pseudorandomness.

1.2.1 Variation 1: Counting roots with multiplicities

Let P be an n-variate polynomial of degree d over the field Fy, with d > ¢. A
priori, there is nothing whatsoever that we can say about the set of roots of P in Fg.
However, we can say something if we slightly expand our definition of root; namely

we consider points where P vanishes with high multiplicity.

Lemma A Let P(X1,...,X,) € F,[X1,...,X,] be anonzero polynomial
of degree d. Then

: . o d
Pr [P vanishes at z with multiplicity at least m] < —.
:EE]FZ mq

In Chapter 5, we show how this multiplicity-enhanced version of the “Schwartz-
Zippel lemma” can be applied to interesting situations in pseudorandonmmess and
combinatorics. As an application, we use this lemma, combined with a multiplicity-
enthanced version of the “polynomial method”, to give the first explicit constructions
of sceded randommness extractors which simultancously have vanishingly small “en-
tropy loss” and seed-length optimal upto constant factors. We also show how to use
such multiplicity-enhanced arguments to derive near-optimal lower bounds on the size
of certain extremal geometric configurations in finite fields called Kakeya sets.

The proof of Lemma A itself appears in Chapter 2, along with other useful tools

for dealing with polynomials and multiplicities.

1Because of its application in the Schwartz-Zippel randomized identity test, the lemma bounding
the number of zeroes of a polynomial is often called the “Schwartz-Zippel lemma”.



1.2.2  Variation 2: Counting roots of certain polynomials

If we have a polynomial about which we know some more information than simply
its degree (for example, we may know something about its cocfficients), then we can
sometimes deduce more about the mumber of, and the location of, its roots. The next
lemma (which generalizes a lemma of Babai, Nisan and Szegedy for the case p = 1 /2),

demonstrates such a phenomenon.

Lemma B Let p € (0,1). Let P(Xy,...,X,) € Fao[Xy,..., X, be a
polynomial of the form "7 X5, X311 X3:42 + R(X), where R(X) is a
polynomial of degree at most 2. Pick x € F2, where each coordinate of
independently equals 1 with probability p and 0 with probability 1 — p.
Then,

PrP(x) =0] < 1/2 + 227%™

where ¢, > 0 depends only on p.

In contrast, an arbitrary multilinear polynomial of degree 3 over Fy could evaluate to
0 on as many as a 7/8-fraction of the points in Fj.

In Chapter 3, we show how algebraic results of this kind can be used to give limit
laws for the average-case behavior of certain families of algorithins (first-order logic
equipped with the “parity quantifier”) on random graphs, extending the classical
0-1 law for first-order logic on random graphs. This will also enable us to answer
some basic and natural questions about the distribution of subgraph counts mod 2
in random graphs, such as “what is the probability that a random graph has a odd
number of triangles?”, “what is the probability that a random graph has an even
munber of 4-cycles?” and “what is the probability of both these events happening
simultaneously?”.

Algebraic lemmas such as Lemma B formally appear in Chapter 2, where they are

proved using the Gowers norms and their generalizations.
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1.2.3 Variation 3: Structure of the roots of certain polyno-
mials

If we know more information about a polynomial than just its degree, then it may
also be possible to deduce other structural properties about the set of its roots.

To state the next lemma, we first introduce an interesting polynomial. Consider

2 and identify it with the large finite field For via an arbitrary Fo-linear isomorphisin.

Let Tr : Fa — Fy be the trace map. Consider the function f : Fgn — Fy given by

f(z) = Tr(z7). Via the identification of Fo» with F%, this yiclds a function f': F3 —

F,. Now it turns out that this function f” is simply the evaluation of a certain degree-3

polynomial. Call this polynomial Py(X7,...,X,). We can now state the lemma.

Lemma C Let n > 0 be an odd integer. Let P(X7,..., X,) € Fo[ X1, ..., X,]
be a polynomial of the form Py(Xi,...,X,) + R(Xq,...,X,), where Fy
is the polynomial described above, and R is any polynomial of degree at
most 2. Then for every affine subspace A C F} of dimension at least

2n/5 + O(1), there exists z € A such that P(X) # 0.

In Chapter 4, we prove lemmas of the above kind, and use them to give ex-
plicit constructions of randomness dispersers (a weak form of randomness extractor)
from affine sources. The main tool that we use to prove these lemmas is a certain
kind of polynomial known as a subspace polynomial. An introduction to the theory
of subspace polynomials, as well as methods for translating between the world of
multivariate polynomials over FZ and univariate polynomials over Fan, are given in

Chapter 2.

1.3 Main results and the role of algebra

We now give a slightly more detailed introduction to the problems considered in a
thesis, as well as a glimpse to the role that the algebraic tools mentioned above play

in their solution.

17



1.3.1 The parity quantifier on random graphs

The classical 0-1 law for random graphs deals with a striking phenomenon at the
intersection of logic, finite model theory and random graph theory. It describes a
very sharp characterization of the average case behavior of a certain simple family of
algorithms, formulas of first-order logic, on random graphs. A first-order formula on
graphs is simply a grammatically correct formula using (i) V, the for-all quantifier, (ii)
3, the there-exists quantifier, (iii) the adjacency relation E(v,w), (iv) the equality
relation “v = w”, and (v) Boolcan operations. A first-order formula determines a
graph property: a graph G has the property given by formula ¢ if and only if ¢ is
true when interpreted on G (the quantifiers quantify over vertices of G). For example,
the first-order formula

Yo Jw E(v,w),

defines the graph property “there are no isolated vertices”.

The 0-1 law states that for every first-order property ¢ in the theory of graphs
and every p € (0, 1), as n approaches infinity, the probability that the random graph
G(n,p) satisfies ¢ approaches cither 0 or 1! Furthermore, this limiting probability
can be computed given .

Since its discovery, 0-1 laws have been discovered for a diverse collection of logics
which can express more graph properties than first order logic. The frequently en-
countered nemesis to all generalizations is the PARITY barrier: any logic that can
express the property “there are an odd number of vertices” cannot obey a 0-1 law.

In joint work with Phokion Kolaitis, we study a natural logic equipped with count-
ing (which hence faces the PARITY barrier), and search for phenomena analogous to
the 0-1 law for this logic. Specifically, we study FO[g], first order logic augmented
with the parity quantifier. The parity quantifier & is a quantifier which counts mod
2; @yp(y) is true if there are an odd number of y such that ¢(y) is true. It is well
known that FO[@] fails to have a 0-1 law: for some properties the limiting probability
may not exist, while for others the limit may exist, but need not equal 0 or 1. Eluding

these two hurdles, we establish the following “modular convergence law”:

18



For every FO[&] sentence ¢, there are two explicitly computable rational
numbers ag, a1, such that for ¢ € {0,1}, as n approaches infinity, the

probability that the random graph G(2n + i, p) satisties ¢ approaches a;.

Our results also extend appropriately to FO equipped with Mod, quantifiers for prime
q.

At the heart of our approach is an algebraic explanation of FO[$] properties.
We show that for every FO[$] property ¢, and for every n, there is a polynomial

Q(X,,.... X ( )) € Fy[Xy,... ;JX(T),,)] whose degree depends only on ¢, such that for

™
2

most graphs G (under the G(n, p) measure), @ evaluates to 1 on the adjacency matrix
of G if and only G has the property . This “algebraic explanation” implies that the
probability that G(n,p) satisties ¢ is essentially the probability that the polynomial
@ is nonzero on a random input. The kinds of polynomials Q that show up here turn
out to be very structured, and lemimas such as Lemma B above play a key role in
understanding their zeroes. Curiously, such lemmas also turn out to be instrumental
even in the proof that FO[&] properties possess algebraic explanations.

Details appear in Chapter 3.

1.3.2 Randomness extraction and dispersion from affine sources

Randomuness extraction is the process of obtaining random bits from sources of im-
perfect randomness. Randomness extraction has typically been studied in two kinds
of settings: deterministically extracting randomness from structured (but unknown)
sources of randomness, and extracting randomenss from general unstructured sources
of randomness using a few bits of pure random seed.

A determinstic randomness extractor for a family F of subsets of {0, 1} is an
efficiently computable function E : {0,1}" — {0, 1}™, which for every subset X € F
(the “source™), the distribution of E(x) when z is picked uniformly from X is nearly-
uniformly distributed. The relevance of such an object comes from the following
observatiow: if we are given a random sample from a set X, and all we know about. X

is that it is from F (“X is a structured source”), then by applying E to that sample we
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obtain nearly-uniform random bits. For various particular families F of “structured”
subsets, a question of interest has been to explicitly construct randomness extractors
for 7. The focus of the result described next is the case where F is the collection of
Fy-affine subspaces of a certain dimension.

In purely combinatorial terns, this has a very simple description. We seck a
polynomial-time computable function £ : F§ — {0,1}™ such that for cvery affine
space A C Fy of dimension at least &, if z is picked uniformly at random from A,
then the distribution of E(z) is close to the uniformly distributed over {0, 1}™. The
parameter k measures the amount of entropy needed in the affine random source for
the extractor to produce uniform random bits. The probabilistic method guarantees
that there exist such functions £ (but not necessarily polynomial-time computable)
with k as small as O(logn).

Randomness dispersion is a weakened form of randomness extraction, where one
asks only for the support of the random variable E(z) to equal to {0,1}™. For affine
sources, a 1-bit-output disperser turns out to be exactly equivalent to the following
neat Ramsey-like object: a 2-coloring of I} such that no k-dimensional affine subspace
is monochromatic. Again, the probabilistic method guarantees that such colorings
exist for k even as small as O(logn); the problem of interest is to construct these
colorings explicitly.

The explicit construction of randomness extractors and dispersers from affine
sources has recently received much attention. It turns out that any function f: F§ —
{0,1} with small Fourier coefficients is a 1-bit-output affine extractor: this leads to
affine extractors for affine spaces of dimension > n/2. The first breakthrough came
in the work of Barak, Kindler, Shaltiel, Sudakov and Wigderson [BKS*05], who gave
explicit constructions of affine dispersers from dimension dn for arbitrary § > 0. Sub-
sequently Bourgain [Bou07] gave explicit constructions of affine extractors from the
same dimension. These papers relied on the sum-product theorem for finite fields and
other recent results from additive combinatorics.

In joint work with Eli Ben-Sasson, we developed an alternate, algebraic approach

to constructing and analyzing affine dispersion phenomena. Via this approach, we
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give an efficient deterministic construction of affine dispersers for sublinear dimension
k = Q(n'"¢) for some positive € > 0 (one can take € = 1/5).

Our constructions revolve around viewing F3 as Fa. (as in Lemma C). The method
of proof makes use of certain simple-but-powerful objects known as subspace polyno-
mials. Subspace polynomials are the enigmatic nexus between the multivariate linear
geometry of F? and the univariate algebra of Fa. Via subspace polynomials, es-
tablishing that certain functions are affine dispersers reduces to understanding the
coefficients of certain univariate polynomials. We then achieve such an understand-
ing, and iu the course of our proofs, we develop some basic structural results about
the zero/nonzero pattern of the coefficients of subspace polynomials.

Details appear in Chapter 4.

1.3.3 Randomness extraction from general sources with neg-

ligible entropy loss

The third topic of this thesis addresses seeded randomness extraction from general
sources of weak randomness.

A seeded randomness extractor for sources of entropy k is a function E : {0,1}" x
{0,134 — {0,1}™ such that for every set X C {0,1}" (the “weak source”) with
|X| > 2%, the distribution of E(x,u) is nearly-uniformly distributed, where z is picked
uniformly at random from X and u (the “seed”) is picked uniformly at random from
{0,1}4. The probabilistic method shows that there exist seeded randomness extrac-
tors for sources of entropy k with d = O(log n), while m (the amount of randomness
extracted) is almost as large as k + d (the amount of randomness fed into E). The
quantity m/(k + d) is referred to as the fraction of entropy extracted.

In joint work with Zeev Dvir, Shubhangi Saraf and Madhu Sudan, we show how
to construct randomness extractors that use seeds of length O(log n) while extracting
1 —o0(1) fraction of the min-entropy of the source. Previous results could extract only
a constant a-fraction (with o < 1) of the entropy while maintaining logarithmic seed

length.
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The crux of our improvement is an algebraic technique which we call the extended
method of multiplicitics. The “method of multiplicities”, as used in prior work,
analyzed subsets of vector spaces over finite fields by constructing somewhat low
degree interpolating polynomials that vanish on every point in the subset. with high
multiplicity. The typical use of this method involved showing that the interpolating
polynomial also vanished on some points outside the subset, and then used simple
bounds on the number of zeroes to complete the analysis. Our augmentation to
this technique is that we prove, under appropriate conditions, that the interpolating
polynomial vanishes with high multiplicity outside the set. We then invoke Lemma
A, which gives a bound on the number of high multiplicity zeroes, to complete the

analysis. This novelty leads to significantly tighter analyses.

We use the extended method of multiplicities in the analysis of our improved ran-
domness extractors as follows. For a certain candidate extractor function E (whose
definition involves certain geometric objects over finite fields), we suppose that E is
not a randomness extractor, and from this “non-extractorness” deduce that certain
extremal configurations in vector spaces over finite fields exist. We then rule out the
existence of such an extremal configuration using the extended method of multiplici-
ties. Using this method, we also get near-optimal lower bounds on the size of Kakeya

sets over finite fields, a topic of much interest in recent years.

Details appear in Chapter 5.

1.3.4  Explicit functions with small correlation with low-

degree polynomials

The final topic addressed in this thesis deals with average-case complexity. One
of the challenges in computational complexity is to find explicit functions that are
hard to compute on average for a “simple” complexity class. A standard measure of

the average-case computability of one Boolean function f by another one g is their
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correlation defined by
Corrgz(f, g) = |]Ereﬁg[(_1)f(m)+g(x)”_

Let us informally say that a function f is “exponentially-hard” for a complexity class if
it has exponentially small correlation with all functions computed by the class. Given
the important role that hard functions play in the study of computational complexity,
coming up with explicit constructions of hard functions for natural complexity classes

is a well-mnotivated problem.

One such complexity class for which we would like to find explicit hard functions
is the class of functions that can be computed by low-degree polynomials. In addition
to being interesting in its own right, this problem is related to important questions
in complexity theory because of the result of [Raz87al, who showed that constructing
a function that cannot be approximated well by polynomials of degree as high as
poly log n implies strong average-case lower bounds for the class of bounded-depth
circuits with parity gates. Today this problem is wide open.

For the class of polynomials of degree < logn, there are two kinds of construc-
tions of exponentially-hard functions known. The first is derived from the multiparty
communication lower bounds of [BNS89] and the second is the recent construction of
[VWO07] that is derived from a XOR-lemma, for low-degree polynomials.

In joint work with Eli Ben-Sasson, we find a rich family of expliait functions that
are exponentially uncorrelated with polynowmials of degree < logn, matching results
of [BNS8Y, VWO07]. A typical function f : F§ — Fy in this family is given as follows:
identify F2 with Fo. via an arbitrary Fp-linear isomorphism (as in Lemma C), and
for a certain polynomial Q(X) € Fan[X] of small degree, we set f(z) = Tr(Q(z)).

I coding theory terminology, this gives a kind of threshold phenomenon between
some classical algebraic codes. If € is a dual-BCH code and Cy is a Reed-Muller
code (with suitable parameters), both of block-length 27, any codeword ¢ € Ch s
either (1) a codeword of Cy, or (2) 1/2 — 279 far from all the codewords of Cs.

This result may be viewed as a generalization of the Weil bound for character sums,
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which yields this dichotomy in the case where C, is the Reed-Muller code of degree
1 polynomials.

Details appear in Chapter 6.

1.3.5 Organization of this Thesis

In Chapter 2, we introduce some basic tools and results on polynomial and their
zeroes, upon which the remaining chapters will build. In Chapter 3, we study FO[=] on
random graphs. In Chapter 4, we give explicit constructions of randomness dispersers
for affine sources, which we analyze using subspace polynomials. In Chapter 5, we
introduce the extended method of multiplicities, and use it to construct randomness
extractors with negligible entropy loss and near-tight lower bounds on the size of
Kakeya sets over finite fields. In Chapter 6, we describe explicit functions which have
exponentially small correlation with low-degree polynomials. Appendix A contains
a short exposition of the elementary proof of the Weil bound, which gets used in

Chapter 6.
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Chapter 2

Polynomials and their zeroes

We now introduce some of the basic tools and results related to polynomials and their

zeroes, upon which the remaining chapters will build.

2.1 Derivatives and Multiplicities

In this section we formally define the notion of “mutliplicity of zeroes™ along with the
companion notion of the “Hasse derivative”. We also describe basic properties of these
notions, concluding with the “multiplicity-enhanced version” of the Schwartz-Zippel

lemma.

2.1.1 Basic definitions

We start with some notation. We use [n] to denote the set {1,...,n}. For a vector
i= (i in) of non-negative integers, its weight, denoted wt(i), equals ", 4;
1s+--5ln 2gat 2 Ccgers, 16 2LgliL, > € ! , €q b j=11%-
Let F be any field. For X = (X1, ..., X,,), let F[X] be the ring of polynomials in
X,..., X, with coefficients in F. For a polynomial P(X), we let H p(X) denote the
homogeneous part of P(X) of highest total degree.
For a vector of non-negative integers i = (i1,...,4,), let X' denote the monomial

H?:l X;’ e F[X]. Note that the (total) degree of this monomial equals wt(i). For
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n-tuples of non-negative integers i and j, we use the notation

()-11C)

Observe that the coefficient of Z'W™ ¥ in the expansion of (Z + W) equals (3)-

Definition 2.1.1 ((Hasse) Derivative) For P(X) € F[X] and non-negative vector
i, the ith (Hasse) derivative of P, denoted PY(X), is the coefficient of Z3 in the
polynomial P(X, Z)é—gP(X +27Z) € FIX,Z].
Thus,
P(X +2) =Y PY(X)zZ'. (2.1)

i
We are now ready to define the notion of the (zero-)multiplicity of a polynomial

at any given point.

Definition 2.1.2 (Multiplicity) For P(X) € F[X] and a € F?, the multiplicity of
P at a € F*, denoted nult(P,a), is the largest integer M such that for cvery non-
negative vector i with wt(i) < M, we have P9(a) = 0 (if M may be taken arbitrarily

large, we set mult(P, a) = 00).

Note that mult(P,a) > 0 for every a. Also, P(a) = 0if and only if mult(P,a) > 1.
The above notations and definitions also extend naturally to a tuple P(X) =
(PI(X), ., Pn(X)) of polynomials with P® € F[X]™ denoting the vector (P)® ... (P,,)®).
In particular, we define mult(P, a) = minjep, {mult(P;,a)}.
The definition of multiplicity above is similar to the standard (analytic) definition
of multiplicity with the difference that the standard partial derivative has been re-
placed by the Hasse derivative. The Hasse derivative is also a reasonably well-studied
quantity (see, for example, [HKTOS, pages 144-155]) and seems to have first appeared
in the C8 literature (without being explicitly referred to by this name) in the work
of Guruswami and Sudan [GS99]. It typically behaves like the standard derivative,

but with some key differences that make it more useful /informative over finite fields.
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For completeness we review basic properties of the Hasse derivative and multiplicity

in the following subsections.

2.1.2 Properties of Hasse Derivatives

The following proposition lists basic properties of the Hasse derivatives. Parts (1)-
(3) below are the same as for the analytic derivative, while Part (4) is not! Part
(4) considers the derivatives of the derivatives of a polynomial and shows a different
relationship than is standard for the analytic derivative. However crucial for our
purposes is that it shows that the jth derivative of the ith derivative is zero if (though

not necessarily only if) the (i 4 j)-th derivative is zero.

Proposition 2.1.3 (Basic Properties of Derivatives) Let P(X),Q(X) € F[X]™

and let i, j be vectors of nonnegative integers. Then:

(Y

L PO(X) +QU(X) = (P +Q)(X).

2. If P(X) is homogenecous of degree d. then cither PO(X) is homogeneous of
degree d — wt(i), or PD(X) = 0.
3. Either (Hp)V(X) = Hpw(X), or (Hp)V(X) = 0.

4. (p(i))(j) (X) = (1?) P(i+j)(X).

Proof
Items 1 and 2 are easy to check, and item 3 follows immediately from them. For

item 4, we expand P(X + Z + W) in two ways. First expand
PX+(Z+W)) = Y PRX)Z+W)H-

p
- Z; > PR(X) (l:) ZIW!

i+j=k

= Z pl+d) (X) (1 T J) ZIW1.

i
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On the other hand, we may write

P(X +Z)+ W)= ZP(‘)(XJrZ ZZ PN (x)zZiw?,

Comparing coefficients of ZZ?W* on hoth sides, we get the result. M

2.1.3 Properties of Multiplicities

We now translate some of the properties of the Hasse derivative into properties of the

multiplicities.

Lemma 2.1.4 (Basic Properties of multiplicities) If P(X) € F[X] and a € F?

are such that mult(P,a) = m, then mult(P® a) > m — wt(i).

Proof By assumption, for any k with wt(k) < m, we have P®(a) = 0. Now take
any j such that wt(j) < m — wt(i). By item 4 of Proposition 2.1.3, (P1))(a) =
(i“iLj) Pt (a). Since wt(i+j) = wt(i) + wt(j) < m, we deduce that (PM)d(a) = 0.
Thus mult(PY a) > m — wt(i). m

We now discuss the behavior of multiplicities under composition of polynomial
tuples. Let X = (Xy,...,X,) and Y = (Y7,...,Y,) be formal variables. Let

P(X) = (P(X),..., Pp(X)) € FX]™ and Q(Y) = (Q:1(Y),...,Q,(Y)) € F[Y]".
We define the composition polynomial P o Q(Y) € F[Y]™ to be the polynomial
P(Q:(Y),...,@Q,(Y)). In this situation we have the following proposition.

Proposition 2.1.5 Let P(X),Q(Y) be as above. Then for any a € F¢,

mult(P o @Q,a) > mult(P,Q(a)) - mult(Q — Q(a), a).

In particular, since mult(Q — Q(a),a) > 1, we have mult(P o Q,a) > mult(P, Q(a)).
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Proof Let my = mult(P,Q(a)) and my, = mult(Q — Q(a),a). Clearly mo > 0. If

my = 0 the result is obvious. Now assume m; > 0 (so that P(Q(a)) = 0).

P(Qa+1Z))=P (Q )+ > QW a)Z‘)

i#0

=P (Q Z QY (a) since mult(Q — Q(a),a) = my >0
wt(i)>ma

= P(Q(a where h(Z) = Y i iyzm. @V (2)Z1

= P(Q(a)) + Z P (Q(a))h(Z)
J#0

= Z PY(Q(a))h(Z) since mult(P, Q(a)) = my > 0

wt(j)2mi

Thus, since each monomial Z' appearing in h has wt(i) > ms, and each occurrence
of h(Z) in P(Q(a + 7)) is raised to the power j, with wt(j) > 7, we conclude that
P(Q(a+2Z)) is of the form Y7 10 5m, m, k2. This shows that (Po Q) (a) = 0 for

each k with wt(k) < mjy - mg, and the result follows. B

Applying the above to P(X) and Q(T) = a+ Tb € F[T|", we get the following

corollary.

Corollary 2.1.6 Let P(X) € F[X] where X = (Xy,...,X,). Let a,b € F*. Let
Pan(T) be the polynomial P(a+T -b) € F[T]. Then for anyt € F,

mult(Pap,t) > mult(P,a+t-b).

2.1.4 Counting roots with multiplicities

We are now ready to state and prove a bound on the number of high multiplicity
zeroes that a polynomial can have, strengthening the Schwartz-Zippel lemma. In
the standard form this lemma states that the probability that P(a) = 0 when a is
drawn uniformly at random from S™ is at most d/|S], where P is a non-zero degree

d polynomial and S CF is a finite set.
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Lemma 2.1.7 (The Schwartz-Zippel Lemma) Let P € F,[X] be a polynomial of
total degree at most d, and let S C Fy. If Pracs.[P(a) = 0] > |—OSI'| then P(X) = 0.

Using min{1, mult(P,a)} as the indicator variable that is 1 if P(a) = 0, this lemma
can be restated as saying Y g, min{1, mult(P,a)} < d- [S|*"1. The multiplicity-
enhanced version below strengthens this lemma by replacing min{1, mult(P, a)} with

mult(P, a) in this inequality.

Lemma 2.1.8 Let P € F[X] be a nonzero polynomial of total degree at most d. Then
for any finite S C F,

Z mult(P.a) < d-|S|" 1.

aesSr
Proof We prove it by induction on n.

For the base case when n = 1, we first show that if mult(P,a) = m then (X — a)™
divides P(X). To sec this, note that by definition of multiplicity, we have that
Pla+Z) =Y, P9 (a)Z" and PP (a) = 0 for all i < m. We conclude that Z™ divides
P(a + Z), and thus (X — a)™ divides P(X). It follows that D ues MUlt( P, a) is at
most the degree of P.

Now suppose n > 1. Let
P(Xy,. . Xn) = Y Pi(Xy,. o X)X,

where 0 <t < d, P(Xy,...,Xn-1) # 0 and deg(P;) < d — .

Foray,...,a,1 € S, let my, o , =mult(P, (a1,...,a,_1)). We will show that

> mult(P (a1, ,a)) St + My, - |5 (2.2)

an€S

Given this, we may then bound

Z mult(P, (a1,...,a,)) < [S|"7 -t + Z Mooy

A yeensr, €S Aoyl —1 €S
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By the induction hypothesis applied to F;, we know that

> Mayan, < deg(P) - |SIP2 < (d—1) - |S]M2

Qlgeens@y—1 €S

This implies the result.

We now prove Equation (2.2). Fix ay,...,a,-1 € S and let i = (i1,...,i,_1) be

.....

vector (4y,...,4,-1,0), we note that
PEO(Xy, . X =Y P (X0 X)) X,

and hence PR is a nonzero polynomial.

Now by Lemma 2.1.4 and Corollary 2.1.6, we know that

mult(P(X1,.. ., Xp), (a1, ..., ) < wt(i,0) + mult(PEO (X, .. X,), (aq, . ... an))

< Moy b (PO (ay, o an 1, X)), an).

Sumiming this up over all a, € S, and applying the n = 1 case of this lemma to the
nonzero univariate degree-t polynomial P49 (aq, ... an_1, X,,), we get Equation (2.2).

This completes the proof of the lemma. B

The following corollary simply states the above lemina in contrapositive form,

with S = F,.

Corollary 2.1.9 Let P € F,[X] be a polynomial of total degree at most d. If
Y s Mt (P a) > d - ¢* !, then P(X) = 0.

2.2 The bias of polynomials and the ;~-Gowers norm

In this section, we work with polynomials over “small” fields. We will study the

probability that a polynomial can evaluate to zero at a random point, where the
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point may be picked from a non-uniform distribution. We then show that if the
polynomial is of a certain form, then one can get significantly better bounds on this
probability. The centerpiece of this result is a measure of pseudorandomness of a
function that we call the “u-Gowers norm”.

For contrast, we begin by stating and proving a basic bound on the zeroes of
arbitrary nonzero multilinear polynomials. The case p = 1/2 of this lemma is the

standard bound on the number of zeroes of a multilinear polynomial.

Lemma 2.2.1 (Basic bound on zeroes of multilinear polynomials) Let P(X;,...,X,) €
Fo[ X1, ..., X5] be a multilinear polynomial of degree at most d. Let p € 0,1]. Pick

x € F3 where each coordinate of x is picked independently, and Prlx; = 1] = p. Then
Pr[P(x) # 0] > min{p?, (1 — p)*}.
T

Proof The proof is by induction on n and d.

Let P(X1,...,X,) = P(X1,..., Xn1) - Xp + P'(Xq,. .., Xn-1), where P’ is of

degree at most d — 1 and P” is of degree at most d.
For ¢ € {0,1}, let Py(Xy,..., Xn-1) be the polynomial P(Xy,..., X, 1,7). Ob-

serve that Py + P' = P,.

e Case 1: P' = 0. In this case, P(Xy,...,X,) = P"(X;,...,X,_1), and in
this case, Prp[P(x) # 0] = Pr,[P"(x) # 0] > min{p?, (1 — p)*} (by induction

hypothesis).

e Case 2: P’ # 0 and deg(P”) < d — 1. In this case, both the polynomials
P(X1,..., Xp1,0) and P(Xy,..., X, 1,1) are of degree at most d — 1. Since

they differ by P’ # 0, at most one of them can be identically 0. Thus Pr,[P(z) #
0] = min{p, (I — p)} - min{p®*, (1 — p)?~1} = min{p?, (1 — p)9}, as desired.

e Case 3: In this case, P” has degrec exactly d, and thus both Py and P, are
nonzero polynomials of degree at most d. Thus Pr,[P(x) # 0] > min{Pr,[P(z) =
0]z, = 0],Prg[P(z) =0z, = 1]} > min{p?, (1 — p)¢}.
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An interesting corollary of this lemma is that low-degree polynomials over Fo
cannot vauish on a large fraction of Hamming balls of radius €(n). This does not
follow from just a bound on the number of zeroes of such polynomials.

Below we denote by B(z,d) the Hamming ball of radius dn centered at .

Corollary 2.2.2 Let P(X,,..., X,) € Fy[ X4, ..., X,] be a nonzero multilinear poly-

nomial of degree d. Then for every 0 < p <9 <1/2 and every x € F,

yeg({_;’é)[P(y) # 0] > p? — 0,(1).

The aim of the rest of this section is to prove a substantially strengthened bound
on the probability that a nonzero polynomial of degree d evaluates to 0 at a random
point, when the highest degree monomials of the polynomial take a certain special
form. We state this lemma below. This lemma is a strengthening of a lemma of
Babai, Nisan, Szegedy (which deals with the case p = 1/2,9 = 2) and of Grolinusz

(which deals with the case p = 1/2 and general g).

Lemma 2.2.3 Let ¢ > 1 be an integer and let p € (0,1). Let By, ..., E,. be pairunse
disjoint subsets of [m] each of cardinality d. Let Q(Zy,. .., Zyn) € LglZv, ..., Zm] be
a polynomial of the form
,
> o [ %) + k@),
j=1 i€E;

where each a; # 0 and deg(R(Z)) < d. Let z = (z1,...,2m) € Z7* be the random
variable where, independently for each i, we have Pr(z; = 1] = p and Pr[z; = 0] = 1—p.
Then,

iE [wQ(z')} ) < 9=y p,alr)

In particular, if q is prime, then
Pr[Q(z) # 0] > 1 —1/q — 2 %aral®),
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2.2.1 The u-Gowers norm

The proof of Lemma 2.2.3 will use a variant of the Gowers norms. Let Q : Ly — Zy
be any function, and define f : Zyj — Chby flx) = w?@. The Gowers norm of f is
an analytic quantity that measures how well @ correlates with degree d polynomials:
the correlation of  with polynomials of degree d — 1 under the uniform distribution
is bounded from above by the d*-Gowers norm of f. Thus to show that a certain Q
is uncorrelated with all degree d — 1 polynomials under the uniform distribution, it
suffices to bound the d*-Gowers norm of f. In Lemma 2.2.3, we wish to show that
a certain @ is uncorrelated with all degree d — 1 polynomials under a distribution p
that need not be uniform. To this end, we define a variant of the Gowers norm, which
we call the y-Gowers norm, and show that if the (d, u)™-Gowers norm of f is small,
then @ is uncorrelated with all degree d — 1 polynomials under . We then complete

the proof of Lemma 2.2.3 by bounding the (d, 1)"-Gowers norm of the relevant f.
We first define the p-Gowers norm and develop some of its basic properties.

Let H be an abelian group and let o be a probability distribution on H. For each
d > 0, define a probability distribution x(¥ on H¥*! inductively by u© = 4, and, for

d>1,let gD (x,t1,...,tq) equal

pD (@ by, tgy) (@ gty tg)
ZEGH /"L(dal)(’?’{? tla R atd-l)

Equivalently, to sample (z,t1,...,t4) from pl@| first take a sample (@, ty,. .. ta1)
from p@=V then take a sample (y,#}, . .. , 1) from p@=Y conditioned on t; = t; for
each 7 € [d — 1], and finally set t; = y —  (our sample is then (x,t;,...,t4_1,t4)).
Notice that the distribution of a sample (z,¢,,...,t3) from p'@ is such that for each

S C [d], the distribution of the point = 4+ Y, o ¢; is precisely p.

For a function f : H — C and t € HY, we define its d®-discrete-derivative in

directions t to be the function Dyf : H — C given by

Def@) = [[ fla+ 3t

5Cld) ieS
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where a® equals the complex conjugate a if |S| is odd, and a®® equals a other-
wise. From the definition it immediately follows that D f(z) = Dy f(2) Do f(x + u)

(where (t,u) denotes the vector (t, ... ta,u) € H).

We now define the p-Gowers norm.

Definition 2.2.4 (u-Gowers Norm) If p is a distribution on H, and f:H—C,

we define its (d, u)-Gowers norm by

1l = (B oo (DN @]

When p is the uniform distribution over H, we recover the usual Gowers norm,

denoted by || fllya-

When H is of the form Z7*, then the (d, 1)-Gowers norm of a function is supposed to
estimate the correlation, under u, of that function with polynomials of degree d — 1.
Intuitively, this happens because the Gowers norm of f measures how often the dth

discrete derivative of f vanishes.

The next few lemmas enumerate some of the useful properties that p-Gowers

NOTINS e1joy.

Lemma 2.2.5 Let f: H— C. Then,

ey [f(@)]] < 1 Fllpa e

Proof We prove that for every d, ||fllye, < |[fllyaii,. The lemma follows by
noting that || fllpo . = [Ee~p [f(@)]].

The proof proceeds (following Gowers [Gow01] and Green-Tao [GTO08]) via the
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Cauchy-Schwarz inequality,

If 121;,1 = IIE(J:,t)Ny(d) [th(l“)“2
< By [|E, [Dyf (a:)]|2] by Cauchy-Schwarz
= EE,, {Dt f (x)m] where y is an independent sample of z given t .
=E;¢u [Dt f (x)mJ where u =y —

= Bz 4y ) [Dt f(x)Dyf(x + u)] by definition of p(4+0

=Bttt [Diga ()]

= | flIE e

This proves the lemma. B

Definition 2.2.6 For cachi € [r], let g; : H — C. We define (Q;_, g;) : H — C
by

(@%) (21, @) = ng(’ﬂz)

For each v € [r], let u; be a probability measure on H. We define the probability

measure @Q;_, p; on H" by
T T
((X) ﬂi) (T1,.. ., 2p) = Hm(:cz-).
i=1 i=1

Lemma 2.2.7 | @i gillve@r . = [Tict lgillva .

Proof  Follows by expanding both sides and using the fact that (®7_, 1)@ =

®::1 (Ngd)) :

Lemma 2.2.8 Let ¢ > 1 be an integer and let w € C be a primitive ¢™-root of

unity. For all f 1 Z7 — C, all probability measures u on Zy, and all polynomials
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h € Z,Y1....,Y,] of degree < d,

1 fe e = 1 o

The above lemma follows from the fact that (Def) = (Di(f - wh)).

Lemma 2.2.9 Let a € Z, \ {0} and let g : Z2 — C be given by g(y) = w* 0w, Let
w be a probability distribution on Z¢ with supp(p) 2 {0,134, Then [|gllpe, <1 —¢,

where € > 0 depends only on q,d and p.

Proof As {0,1} C supp(u), the distribution w@ give some positive probability
d > 0 to the point (xg,e) = (zo,e€1,...,€q), Where o = 0 € Zg, and e; € Zg is the
vector with 1 in the ith coordinate and 0 in all other coordinates (and ¢ depends only
on q,d and p). Then (Deg)(xo) = [Tociy 9(D s ) = w™ # 1 (since whenever
S # [d], we have g(3°,.g€;) = 1). On the other hand, whenever t € (Z4)4 has some
coordinate equal to 0, which also happens with positive probability depending only

on d,p and g, we have (Dyg(z)) = 1. Thus in the expression

gl = |Eq gy [(Def) (@]

since every term in the expectation has absolute value at most 1, and we just found
two terms with positive probability with values 1 and w®® # 1, we conclude that
lgllera,. < 1 — € for some € depending only on ¢, i and d. B

We now put together the above ingredients.

Theorem 2.2.10 Let f : (Zﬁll)r — C be given by
far,ap) = WS T,

where a; € Zy \ {0} for all j € [r]. Let p be a probability distribution on Z2 with
supp(r) 2 {0,1}. Then for all polynomials h € Zy[(Yij)icia).jeir], with deg(h) < d,
we have

[Epnpr [f@)oP]| < €,
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where ¢ < 1 depends only on q,d and p.

Proof Let g;: Zg — C be given by g,(y) = w% M v (as in in Lemma 2.2.9), and
take ¢ = 1 — € from that Lemma. Notice that f = ®7_19;. Therefore by Lemma 2.2.7,

we have

”f”U*’,M‘“' = H llg;

j=1

v
Ud S C .

As the degree of h is at most d — 1, Lemuma 2.2.8 implies that

1fe" g = 11 f

v < &
Lemma 2.2.5 now implies that
By [[@)®@]| < &,

as desired. |

We can now complete the proof of Lemma 2.2.3.

Proof of Lemma 2.2.3: By fixing the variables Z; for ¢ ¢ U;E;, and then averaging

over all such fixings, it suffices to consider the case [m] = U;E;. Then the polynomial

Q2. Zy) = (Z;zl a; [ [ B, Zi) + R(Z) can be rewritten in the form (after
renaming the variables):

T d

> a; [T X+ h(X),

j=1 =1

where deg(h) < d. Let p be the p-biased probability measure on {0,1}¢ C Zg'.

Theorem 2.2.10 now implies that
o [wQ(z)” < 2 Uupalr)

as desired. |
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2.3 [, versus Fy

In this section, we build up some machinery for trauslating between the worlds of F

and Fpn.

2.3.1 [F-Degree

Let F be a finite field. Let f : F™ — F be any function, and let g(Xi,...,Xm) €
F[X1,..., X} be the unique polynomial with individual degrees bounded by |F| —1
such that for all x € F™, g(z) = f(z). We define the F-degree of f, denoted degg(f),
to be the total degree of g(X1,...,Xy).

We proceed to define F-degree (also denoted degg) for more general functions. Let
f=0(f,. ... fa) : F™ — F" be any function. We define degr(f) to be max;ep, degp(fi).

If V,W are F-vector-spaces of dimension m, n respectively, and f : V. — W is
any function, we define degg(f) to be degg(yp,' o f 0 ¢p), where o : F™ — V and
¢n : ™ — W are arbitrary linear isomorphisms. This definition is independent of the
choice of ¢, @n-

Note that for functions f : V — W and g : W — W', degp(go f) < degp(g) -
degg(f)-

A case of special importance for us is when V' and W are also K-vector-spaces,
where K is a ficld containing F (and hence the K-vector-space structure of V, W
is compatible with their F-vector-space structure). In this case, we may think of
functions f : V. — W with degy < d as tuples of degree-d multivariate polynomials
over F. The following formula computes the F-degree of a function from K to K. The
formula is in terms of the base-p sumn-of-digits function wt,(z), which equals the sum

of the digits of the base-p representation of the integer 4.

Lemma 2.3.1 (The degz(f) Formula) Let F C K be finite fields. Let f: K — K

be given by

fz) = Zaixi,

€S

where a; # O for alli € S. Then degg(f) = maxzes Wy (7).
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Proof This can be seen in many ways. We give a quick proof based on dimension
counting. For an “explicit” proof, sce [KaS].
We first prove

degp(f) < max wtyp (7). (2.3)
t:a; #0

Let 0 <7 < |K| — 1 with i = Z;E};F]'l bi|FlP and 0 < b; < [F|. We first consider the

case f(r) = at = HEEE -1 HZLO 2. We express [ : K — K as a composition of two
maps [ K — I, K% and f”: K2:% — K, where fi(x);. = 2V (for r € 1b;]), and
"y, ... Yy, b;) = th::ibj ye- We see that deg(f’) =1 (by the F-linearity of the map
z — V) and deg(f") < ;b = whyp(i). Therefore degg(f) < wtpm(é). For general
f =72 a, the above case implies that degg(f) < max;.,, o xw’fllpl(i).

Let Syg be the F-linear space {g : K — K | degp(g) < d}. We see that its

F-dimension equals

dimm ({ : F¥¥ 5 F | degg(h) < d}) - [K : F| = ([K : 11;] + d) K.

Let Ty be the K-linear space

{9 :K—K|g(z) is of the form Z o’ for all © € K}.

0<i<|K|-1
W‘tﬂﬂfl)gd

We see that its K-dimension is [{0 < 7 < |K| — 1 : wt(z) < d}|, which equals
([K:H;]“Ld). Hence its F-dimension equals ([K:EJM) - [K : F.
Equation (2.3) implies that T; C .S;. But we just saw that dimg(Sy) = dimg(7},).

Thus Sy = Ty, and the lemma follows. B

The basic bound on the number of zeroes of a function expressible as the trace
of a low-degree polynomial from a big field K to its prime subfield F is given by the

Weil bound.

Theorem 2.3.2 (The Weil Bound) Let K be a finite field of characteristic p. Let
F(X) € K[X] with degg (f) = €. Suppose [ is not of the form g(X)P —g(X)+c. where
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g(X) € K[X] and ¢ € K. Let w € C be a primitive p™ root of unity. Let Tr : K — F,

denote the finite field trace map. Then

In Appendix A, we give a exposition of an elementary proof of this theorem for

fields of characteristic 2, following Bombieri and Stepanov.

2.3.2 Discrete Directional Derivatives

We now revisit the notion of discrete directional derivative, earlier discussed in Sec-

tion 2.2.1, and study the relationship between the F-degree, the K-degree and the

operation of taking derivatives for functions f : K — K, where F is a subficld of K.
Let f:V — W be a function between F vector spaces V,W. For a € V, we define

the discrete directional derivative of [ in direction a, D,f : V' — W by the equation
(D.f)(x) = f(x+a) — flz).

For a = (ay,...,a;) € V¥, we define (inductively) Daf : V. — W to be the

function Dy (Digs,...an)f)- It can be seen that for vectors a € VE and b e V2,

Da(Dbf) = Db(Daf) - Dcfv

where ¢ = (aq,...,ax,,b1,...,bx,) € V¥R Explicitly, we have

Daf(z) =Y (1) Wy (z + Zaz-) : (2.4)

ICIR] iel

In particular, it can be seen that D, is a linear operator on functions from V to W. It
h: W — W’ is an F-linear map of F-vector-spaces, then we have the commutativity
relation

Dya(ho f) =ho(Daf).
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We now summarize some facts describing the interplay between taking derivatives

of functions and their degree.

Fact 2.3.3 Let F be a field and let V and W be F-vector-spaces. Let f:V — W.
Let h: V x VK - W be given by h(z,a) = Dof(x).

1. Ifk < d, then for alla € V¥, degp(Daf) < degp(f) — k.
2. If k < d, then degg(h) < degg(f).

3. If k> d, then for allac V¥, D,f = 0.

Proof It suffices to show the result for k = 1, V = F* and W = F (as we
may then induct on k). We first consider the case when f(x) = [, 2, where
0 <e; <|F[—1 for each i. Then d = Y7 e, We may now compute D, f(x) =
[T (2 + ag)* — [T2, ()%, which has total F-degree at most 37, e; — 1 = d — 1,
Similarly, the F-degree of h is at most 37 e; = d.

The case of general f which is a sum of monomials now follows from the above

case and linearity of D,. B

The following fact (which may be proved by induction on &) gives finer information
about the function D,f. Note that the multinomial coefficients below may equal 0

over the field F.

Fact 2.3.4 If f : F — F is given by f(x) = x°, and a € F*, then

k
Daf(ac) = Z <r’ . e rk) x" H a:’

74+ri+rat.rp=e oo

and hence Daf(x) may be written as Y, _ x"h.(a1,...,ax), where h(Ay,... Ag) €

r<e

FlA1,..., Ay] is a homogeneous polynomial of degree e — r

In particular, this fact implies that if IF is of characteristic 2, wty(e) > k and 2 fe, then

there is an r < e/2 such that h,.(A4,,..., Ay) is a nonzero homogeneous polynomial of

] . d S
degree e — r, and 2 fe — 7. To see this, if e = Zj:I 2% with 0 = e1 < ey < ... < ey,

d—k+1 e ; P 4
then we may take r = > j:2+ 2%, Then for ry = 2°' and r; = 2%-+1i for 2 < i < k,

it can be checked that that the coefficient of " Hi;l

i

a;’ is nonzero modulo 2.
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2.4 Subspace polynomials

In this section, we give a brief introduction to the theory of subspace polynomials. A
detailed study of subspace polynomials was first carried out in the work of [Ore33,
Ore34]. We refer the reader interested in a more thorough introduction to the subject
to [LN97, Chapter 4] and to [Ber68, Chapter 11].

A polynomial P € F,[X] is said to be Fy-linearized if it is of the form:
n—1 )
P(X)=> ;X" a; € Fpr
=0

(when p is clear from context, we will simply refer to them as linearized polynomials).
P being linearized is equivalent to having P(3b+~¢) = SP(b)+~P(c) for all b, ¢ € Fpn
and 3,7 € F,. By extension, a polynomial is said to be affine linearized it P(X) =
P(X ) + a where P is linearized and a € F,.. The affine linearized polynomials over
F,» are precisely the polynomials of Fy-degree at most 1.

The next lemma, which follows from Lemma 2.3.1, shows that every affine trans-

formation corresponds to an affine linearized polynomial.

Lemma 2.4.1 Let ¢ : ¥ — Fpn be an F,,-linear isomorphism. There is a one-to-one
correspondence between affine transformations from ¥y to Fy and affine linearized
polynomials in Fyu|X], i.e., for every offine transformation T : Fj — F, there exists

a unique affine linearized polynomial Pr satisfying Pr(¢(b)) = T(o(b)) for allb € Fy.

We shall take particular interest in a special class of linearized polynomials that

split completely in Fpe to a set of roots that forins a Fp-affine subspace of Fpn.

Definition 2.4.2 (Kernel-subspace polynomial) Let L C Fyn be an affine sub-
space of dimension d. Define Pr(X) € Fyn[X], the kernel-subspace polynomial of L,
to be

P(X) = [[(X ~a).

a€Ll

We have the following interesting fact.
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Lemma 2.4.3 (Kernel-subspace polynomials are affine) IfL C Fyn is an affine
subspace of dimension d then Pp(X) is a monic affine linearized polynomial of degree

p®. Furthermore, Py, is linearized iff L is a linear space.

Every kernel-subspace polynomial Pp corresponds to an affine transformation
whose kernel is L, so by linearity P(F,.) is an affine subspace of F,» of dimension
n—dim(L). Surprisingly, every F-subspace of Fp» arises as the image of F,» under Pp
for some F-subspace L. These image-subspace polynomials will be the starting point
of our analysis of affine dispersers.

The next lemma shows the existence of an image-subspace polynomial for every

subspace. We include the beautiful proof of this lemma from [Ber68].

Lemma 2.4.4 (Existence of an image-subspace polynomial) If L C Fpn is an
affine subspace of dimension d then there exists a monic affine linearized polynomial

Qr(X) with deg(Qr) = p*~¢, called the image-subspace polynomial of L, such that

L =Qr(Fp) = {Qrlc)|ce Fpn}.

Moreover, if Pp(X) is the subspace polynomial of L then
PL(QL(X)) = Qr(Pr(X)) = X" — X. (2.5)

Thus the kernel of Qp : Fyn — Fpn is the image of Pp : Fon — Fon. In particular
. P P ge o, p P
QL(X) has p"% roots in Fyn. and is thus also a kernel subspace polynomial of some

(n — d)-dimensional subspace.

Proof Let L' = Pp(Fy) be the image of Pr(X). Define Qr(X) to be Py (X), the
kernel-subspace polynomial of L.

Notice that Qr(Pr(X)) is a monic polynomial of degree p” that vanishes on
Fpr, hence QL(P(X)) = X" — X. Thus P(QL(P(X)))) = Pu(X?" — X) =
PL(X?") = P(X) = PL(X)"" — PL(X). Letting g(Y) be the polynomial P ( QL(Y))—
(Y —Y), we have just proved that g(Pr(X)) = 0. This implies g(Y) = 0, since

deg(g(PL(X))) = (degg(Y)) - (deg(PL(X))).
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So Pr(Qr(y)) = 0 for each y € Fpn. In particular, we see that the image of Qp is

contained in L, and by dimension counting, the image of Qr equals L. &

Let us pause to appreciate the strength of this theorem. This theorem says that
for any linear space L C F,, there is a polynomial Qp of degree ¢/|L| which maps F,
onto L. This is the smallest possible degree that a polynomial mapping F, to L can
have: any such polynomial @ must have some point x € L with |[{y € F, | Q(y) =
x}| > ¢/|L]. Such polynomials of degree g/|L| do not exist for arbitrary subsets

LCF,
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Chapter 3

Random Graphs and the Parity
Quantifier

3.1 Introduction

For uite a long time, combinatorialists have studied the asymptotic probabilities of
properties on classes of finite structures, such as graphs and partial orders. Assume
that C is a class of finite structures and let Pry,, n > 1, be a sequence of probability
measures on all structures in C with n elements in their domain. It @ is a property of
some structures in C (that is, a decision problem on C), then the asymptotic probability
Pr(Q) of Q on C is defined as Pr(Q) = lim, P1,(Q), provided this limit exists.
In this chapter, we will be focusing on the case when C is the class G of all finite
graphs, and Pr, = G(n,p) for constant p; this is the probability distribution on n-
vertex undirected graphs where between each pair of nodes an edge appears with
probability p, independently of other pairs of nodes. For example, for this case, the
asymptotic probabilities Pr(CONNECTIVITY) = 1 and Pr(HAMILTONICITY) = 1; in
contrast, if Pr, = G(n,p(n)) with p(n) = 1/n, then Pr(CONNECTIVITY) = 0 and
Pr(HAMILTONICITY) = ().

Instead of studying separately one property at a time, it is natural to consider
formalisms for specifying properties of finite structures and to investigate the connec-

tion between the expressibility of a property in a certain formalism and its asymptotic
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probability. The first and most celebrated such connection was established by Gleb-
skii et al. [GKLT69] and, independently, by Fagin [Fag76], who showed that a 0-1 law
holds for first-order logic* FO on the random graph G(n, p) with p a constant in (0, 1);
this means that if Q is a property of graphs expressible in FO and Pr,, = & (n,p) with
p a constant in (0, 1), then Pr(Q) exists and is either 0 or 1. This result became
the catalyst for a series of investigations in several different directions. Specifically,
one line of investigation [SS87, SS88] investigated the existence of 0-1 laws for first-
order logic FO on the random graph G(n,p(n)) with p(n) = n=, 0 < o < 1. Since
first-order logic on finite graphs has limited expressive power (for example, FO can-
not express CONNECTIVITY and 2-COLORABILITY), a different line of investigation
pursued 0-1 laws for extensions of first-order logic on the random graph G(n, p) with
p a constant in (0,1). In this vein, it was shown in [BGK85, KV87] that the 0-1
law holds for extensions of FO with fixed-point operators, such as least fixed-point
logic LFP, which can express CONNECTIVITY and 2-COLORABILITY. As regards to
higher-order logics, it is clear that the 0-1 law fails even for existential second-order
logic ESQ, since it is well known that ESO = NP on finite graphs [Fag74]. In fact,
even the convergence law fails for ESO, that is, there are ESO-expressible properties
Q of finite graphs such that Pr(Q) does not exist. For this reason, a separate line of
investigation pursued 0-1 laws for syntactically-defined subclasses of NP. Eventually,
this investigation produced a complete classification of the quantifier prefixes of ESO
for which the 0-1 law holds [KV87, KV90, PS89], and provided a unifying account
for the asymptotic probabilities of such NP-complete problems as k-COLORABILITY,
k> 3.

Let L be a logic for which the 0-1 law (or even just the convergence law) holds
on the random graph G(n, p) with p a constant in (0,1). An immediate consequence
of this is that L cannot express any counting properties, such as EVEN CARDINAL-

ITY (“there is an even number of nodes”), since Pry,(EVEN CARDINALITY) = 1

"Recall that the formulas of first-order logic on graphs are obtained from atomic formulas E (z,v)
(interpreted as the adjacency relation) and equality formulas r = y using Boolean combinations,
existential quantification, and universal quantification: the quantifiers are interpreted as ranging
over the set of vertices of the graph (and not over sets of vertices or sets of edges, ete.).
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and Prony1(EVEN CARDINALITY) = 0. In this chapter, we turn the tables around
and systematically investigate the asymptotic probabilities of properties expressible
in extensions of FO with counting quantifiers Modz, where ¢ is a prime number.
The most prominent such extension is FO[&], which is the extension of FO with the
parity quantifier Mod;. The syntax of FO[®] augments the syntax of FO with the
following formation rule: if ¢(y) is a FO[®]-fornmla, then Syp(y) is also a FO[®]-
formula: this formula is true if the number of y’s that satisty ¢(y) is odd (anal-
ogously, I\/lodfl-ycp(y) is true if the number of y’s that satisfy ¢(y) is congruent to
i mod ¢). A typical property on graphs expressible in FO[®] (but not in FO) is
P = {G : every vertex of G has odd degree}, since a graph is in P if and only if it
satisfies the FO[®]-sentence Vo & yE(z,y).

There are two notable “reasons” to which one can attribute the failure of the
0-1 law for FO[®] on the random graph G(n,p), with p a constant. The first, most
glaring, reason is that FO[&] can express the property EVEN CARDINALITY, whose
asymptotic probability does not converge. The other, more subtle, reason comes from
properties that express “subgraph counting” mod 2. For a fixed graph H, FO[4] can
express the property Py: “the number of induced copies of H is even”. It turns out
that as n — oo, for a typical connected graph H, the probability that G(n, p) has Py
tends to 1/2 (we shall prove this later in the chapter). Thus in this case, asymptotic
probability converges, but does not equal 0 or 1. The above two phenomena must be
accounted for in any law describing the asymptotic probabilities of FO[@] sentences
on G(n,p).

The main result of this chapter (see Theorem 3.2.1) is a modular convergence law
for FO[&] on G(n, p) with p a constant in (0, 1). This law asserts that if ¢ is a FO[#]-
sentence, then there are two explicitly computable rational numbers ao, a1, such that,
as m — 00, the probability that the random graph G(2n + 14, p) satisfies ¢ approaches
a;, for i = 0,1. Moreover, ag and a; are of the form r/2°, where r and s are non-
negative integers. We also establish that an analogous modular convergence law holds
for every extension FO[Mod,] of FO with the counting quantifiers {Mod} : i € [g—1},

where g is a prime. It should be noted that results in [HKL96] imply that the modular
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convergence law for FO[$] does not generalize to extensions of FO[$] with fixed-point
operators. This is in sharp contrast to the aforementioned 0-1 law for FO which carries

over to extensions of FO with fixed-point operators.

3.1.1 Methods

Earlier 0-1 laws have been established by a combination of standard methods and tech-
niques from mathematical logic and random graph theory. In particular, on the side
of mathematical logic, the tools used include the compactness theorem, Ehrenfeucht-
Fraissé games, and quantifier elimination. Here, we establish the modular conver-
gence law by combining quantifier elimination with, interestingly, algebraic methods
related to multivariate polynomials over finite fields. In what follows in this section,

we present an overview of the methods and techniques that we will use.

The distribution of subgraph frequencies mod ¢, polynomials and Gowers

norms

Let us briefly indicate the relevance of polynomials to the study of FO[€] on random
graphs. A natural example of a statement in FO[@] is a formula ¢ such that G satisfies
@ if and only if the number of copies of H in G is odd, for some graph H (where by
copy we mean an induced subgraph, for now). Thus understanding the asymptotic
probability of ¢ on G(n,p) amounts to understanding the distribution of the number
of copies (mod 2) of H in G(n,p).

In this spirit, we ask: what is the probability that in G(n,1/2) there is an odd
number of triangles (where we count. unordered triplets of vertices {a,b,c} such that
a,b, ¢ are all pairwise adjacent?)?

We reformulate this question in terms of the following “triangle polynomial”, that

takes the adjacency matrix of a graph as input and returns the parity of the number

*Counting the number of unordered triples is not expressible in FO[®], we ask this question only
for expository purposes (nevertheless, we do give an answer to this question in Section 3.3).
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of triangles in the graph; Pa : {0, 1}(3) — {0,1}, where

PA((l'e)ee({;)) = Z Loy LesLeys

{e1.e2,es} forming a A

where the arithmeticis mod 2. Note that for the random graph G(n, 1/2), each entry
of the adjacency matrix is chosen independently and uniformly from {0,1}. Thus the
probability that a random graph G € G(n,1/2) has an odd number of triangles is
precisely equal to Pryezn [Pa(2) = 1]. Thus we have reduced our problem to studying
the distribution of the evaluation of a certain polynomial at a random point, a topic
of much study in pseudorandomness and algebraic coding theory, and we may now
appeal to tools from these areas.

In Section 3.3, via the above approach, we show that the probability that G(n, 1/2)
has an odd number of triangles equals 1/ 242-Xn) - Qimilarly, for any connected graph
F +# K, (the graph consisting of one vertex), the probability that G(n, 1/ 2) has an
odd number of copies® of Fis also 1 /2+ 9~ Un) (when F' = Kj, there is no randomness
in the number of copies of F in G(n,1/2)!). In fact, we show that for any collection
of distinct connected graphs Fi, ..., Fy (# Ki), the joint distribution of the number
of copies mod 2 of F,..., Fyin G(n,1/2) is 2" _cloge to the uniform distribution
on Z&, i.c., the events that there are an odd munber of F; are essentially independent
of one another.

Generalizing the above to G(n, p) and counting mod g for arbitrary p € (0,1) and
arbitrary integers ¢ motivates the study of new kinds of questions about polynormials,
that we believe are interesting in their own right. For G(n,p) with arbitrary p, we
need to study the distribution of P(z), for certain polynomials P, when x € Z7' is
distributed according to the p-biased measure. Even more interestingly, for the study
of FO[Mod,], where we are interested in the distribution of the mumber of triangles
mod ¢, one needs to understand the distribution of P(z) (P is now a polynomial
over Z,) where x is chosen uniformly from {0,1}™ C Z7 (as opposed to z being

chosen uniformly from all of Z™, which is traditionally studied). In Section 3.4, we

3with a certain precise definition of “copy”.
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develop all the relevant polynomial machinery in order to answer these questions.
This involves generalizing some classical results of Babai, Nisan and Szegedy [BNS89]
on correlations of polynomials. The key technical innovation here is our definition of
a p-Gowers norm (where g is a measure on Z7) that measures the correlation, under
t, of a given function with low-degree polynomials (letting g be the uniform measure,
we recover the standard Gowers norim). After generalizing several results about the
standard Gowers norm to the y-Gowers norm case, we can then use a technique of

Viola and Wigderson [VWO07] to establish the generalization of [BNS89] that we need.

Quantifier elimination

Although we studied the distribution of subgraph frequencies mod g as an attempt
to determine the limiting behavior of only a special family of FO[Mod,| properties,
it turns out that this case, along with the techniques developed to handle it, play a
central role in the proof of the full modular convergence law. In fact, we reduce the
modular convergence law for general FO[Mod,] properties to the above case. We show
that for any FO[Mod,| sentence ¢, with high probability over G € G(n,p), the truth
of ¢ on G is determined by the number of copies in G, mod g, of each small subgraph.
Then by the results described earlier on the equidistribution of these numbers (except
for the number of Ky, which depends only on n mod ¢), the full modular convergence
law for FO[Mod,] follows.

In Section 3.6, we establish such a reduction using the method of elimination of
quantifiers. To execute this, we need to analyze FO[Mod,] formulas which may contain
free variables (i.c., not every variable used is quantified). Specifically, we show that
for every FO[Mod,] formula ¢(ay,. .., ax), with high probability over G € G(n,p),
it holds that for all vertices wy, ..., wy of G, the truth of p(wy,. .., wy) is entirely
determined by the following data: (a) which of the w;, w; pairs are adjacent, (b) which
of the w;, w; pairs are equal to one another, and (¢) the number of copies “rooted”
at wy, ..., wg, mod g, of each small labelled graph. This statement is a generalization
of what we needed to prove, but lends itself to inductive proof (this is quantifier

elimination). This leads us to studying the distribution (via the polynomial approach
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described earlier) of the number of copies of labelled graphs in G; questions of the
form, given two specified vertices v, w (the “roots”), what is the probability that there
are an odd number of paths of length 4 in G € G(n,p) from v to w? After developing
the necessary results on the distribution of labelled subgraph frequencies, combined
with some elementary combinatorics, we can eliminate quantifiers and thus complete

the proof of the modular convergence law.

3.1.2 Comparison with AC[®)]

Every FO[@] property naturally defines a family of boolean functions f,, : {0, 1}(3) —
{0,1}, such that a graph G satisfies ¢ if and only if fo(Ag) = 1, where Ag is the
adjacency matrix of G. This family of functions is easily seen to be contained in
ACO[@], which is AC® with parity gates (each V becomes an AND gate, 3 becomes
a OR gate and & becomes a parity gate). This may be summarized by saying that
FO[] is a highly uniform version of AC°[#].

Currently, all our understanding of the power of AC®[&] comes from the Razborov-
Smolensky [Raz87h, Smo87] approach to proving circuit lower bounds on ACO[®). At
the heart of this approach is the result that for every AC(0 [¢] function f, there is a
low-degree polynomial P such that for 1 — e(n) fraction of inputs, the evaluations
of f and P are equal. Note that this result automatically holds for FO[&] (since
FO[#] C ACO[]).

We show that for the special case when f 1 {0, 1}(72) — {0, 1} comes from an FO[&]
property 0, a significantly improved approximation may be obtained: (i) We show
that the degree of P may be chosen to be a coustant depending only on ¢, whereas
the Razborov-Smolensky approximation required P to be of polylog(n) degree, (ii)
The error parameter €(n) may be chosen to be exponentially small in n, whereas
the Razborov-Smolensky method only yields e(n) = 27 log”®n (i) Finally, the
polynomial P can be chosen to be symmetric under the action of S, on the (’;)
coordinates, while in general, the polynomial produced by the Razborov-Smolensky
approach need not be symmetric (due to the randomness involved in the choices).

These strengthened approximation results allow us, using known results about



pseudorandomness against low-degree polynomials, to show that (i) there exist ex-
plicit pseudorandom generators that fool FO[#] sentences, and (4) there exist explicit
functions f such that for any FO[®] formula ¢, the probability over G € G(n,p)
that f(G) = @(G) is at most £ + 27 The first result follows from the pseudo-
random generators against low-degree polynomials due to Bogdanov-Viola [BV07],
Lovett [Lov08] and Viola [Vio08]. The second result follows from the result of Babai,
Nisan and Szegedy [BNS89], and our generalization of it, giving explicit functions
that are uncorrclated with low degree polynomials.

Obtaining similar results for AC[9] is one of the primary goals of modern day

“low-level” complexity theory.

Organization of this chapter: In the next section, we formally state our main
results and some of its corollaries. In Section 3.3, we determine the distribution of
subgraph frequencies mod ¢. In Section 3.4, we prove a theorem, which is needed for
the previous section, which gives a simple criterion for a polynomial to be unbiased.
In Section 3.5, we state the theorem which implements the quantifier elimination and
describe the plan for its proof. This plan is then executed in Sections 3.6, 3.7 and

3.8. We conclude with some open questions.

3.2 The Main Result and its Corollaries

We now state our main theorem.

Theorem 3.2.1 Let g be a prime. Then for every FO[Mod,]-sentence @, there exist

rationals ag, . .., aq-1 such that for cvery p € (0,1) and every i € {0,1,...,q— 1},

lim Pr (G satisfies ¢] = a;.

n—oc e
n=t mod qGEG(n.,p)

Remark The proof of Theorem 3.2.1 also yields:

e Given the formula ¢, the numbers ao, ..., .1 can be computed.
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e Each q; is of the form r/¢®, where r, s are nonnegative integers.

e For cvery sequence of numbers b, ..., b,—1 € [0, 1], each of the form r/¢°, there

is a FO[Mod,|-sentence ¢ such that for each i, the number a; given by the

theorem equals b;.

Before we describe the main steps in the proof of Theorem 3.2.1, we make a few
definitions.

For graphs F' = (Vp, Er) and G = (Vg, Eq), an (injective) homomorphism from
F to G is an (injective) map y : Ve — V5 that maps edges to edges, i.e., for any
(u,v) € Ep, we have (x(u), x(v)) € Eq. Note that we do not require that y maps non-
edges to non-edges. We denote by [F](G) the munber of injective homomorphisins
from F to G, and we denote by [F|,(G) this number mod g. We let aut(F') .= [F](F)
be the munber of automorphisms of F.

The following lemma (which follows from Lemma 3.6.5 in Section 3.6), shows that

for some graphs F, as G varies, the number [F](G) cannot be arbitrary.

Lemma 3.2.2 Let F be a connected graph and G be any graph. Then aut(F) |
[FI(G).

For the rest of this section, let ¢ be a fixed prime. Let Conn® be the set of connected
graphs on at most a vertices. For any graph G, let the subgraph frequency vector
freqr, € Zgo""“ be the vector such that its value in coordinate F (F € Conn®) equals
[F],(G), the number of injective homomorphisims from F to G mod q. Let FFreq(a),
the set of feasible frequency vectors, be the subset of Zg”“"a consisting ot all f such
that for all F € Conn®, fp € aut(F) - Z,; := {aut(F) -z | € Z,}. By Lemma 3.2.2,
for every G and a, freql, € FFreq(a), i.e., the subgraph frequency vector is always a
feasible frequency vector.

We can now state the two main technical results that underlie Theorem 3.2.1.

The first states that on almost all graphs G, every FO[Mod,| formula can be
expressed in terms of the subgraph frequencies, [F,(G), over all small connected

graphs F'.



Theorem 3.2.3 (Subgraph frequencies mod ¢ determine FO[Mod,] formu-
lae) For cvery FO[Mod,|-sentence ¢ of quantifier depth t, there exists an integer
c=c(t.q) and a function o : Z$™ — {0,1} such that for all p € (0,1),

Pr [(G satisfies ¢) < (¢(freql) = 1)] > 1 — exp(—n).
GeGn,p)

This result is complemented by the following result, that shows the distribution
of subgraph frequencies mod ¢ in a random graph G € G(n, p) is essentially uniform
in the space of all feasible frequency vectors, up to the obvious restriction that the

number of vertices (namely the frequency of K; in G) should equal n mod g.

Theorem 3.2.4 (Distribution of subgraph frequencies mod ¢ depends only on n mod ¢)
Let p € (0,1). Let G € G{n,p). Then for any constant a, the distribution of freqg, is

exp(—n)-close to the uniform distribution over the set
{f € FFreq(a) : fx, =n mod ¢}.

Theorem 3.2.4 is proved in Section 3.3 by studying the bias of multivariate poly-
nomials over finite fields via a generalization of the Gowers norm. Theorem 3.2.3 is

proved in Section 3.6 using two main ingredients:

1. A generalization of Theorem 3.2.4 that determines the joint distribution of the

frequencies of “labelled subgraphs” with given roots (see Section 3.8).

2. A variant of quantifier elimination (which may be called quantifier conversion)
designed to handle Mod, quantifiers, that crucially uses the probabilistic input

from the previous ingredient (see Section 3.6).

Proof of Theorem 3.2.1: Follows by combining Theorem 3.2.3 and Theorem 3.2.4.

We quickly give some examples of the finer information about modular convergence

that can be derived from Theorem 3.2.3 and Theorem 3.2.4.



Observe that FFreq(a) C Z5°™ is a product set: indeed, it equals [ reconne (@Ut(F)-
Z,). In particular, we see that |{f € FFreq(a) | fk, = n mod g}| is a power of ¢.
This implies that the numbers a; in Theorem 3.2.1 are all of the form o/ q°.

Next, observe that the property “[F],(G) = ¢ is expressible in FO[Mod,]. This
observation, combined with Theorem 3.2.4, easily implies that for every collection of
numbers by, . . ., by of the form a/ ¢”, there is an FO[Mod,] statement for which each

number a; given by Theorem 3.2.1 equals the corresponding b;.

3.2.1 Pseudorandomness against FO[Mod,]

We now point out three simple corollaries of our study of FO[Mod,] on random graphs.

Corollary 3.2.5 (FO[Mod,] is well approximated by low-degree polynomials)
For every FO[Mod,]-sentence ¢, there is a constant d, such that for each n € N, there
is a degree d polynomial P((Xe)ee(?;)) € Zq[(Xe)ee(fl)],, such that for all p € (0,1),

Pr [(G S(I,t'l'Sﬁ(fS \P) & P(AG) — 1] >1-— 2_(2(.,1))
GGG(n,p) ;

where Ag € {0, 1}(5) is the adjacency matriz of G.

Proof Follows from Theorem 3.2.3 and the observation that for any graph F
of constant size, there is a polynomial Q((Xc),. (>) of constant degree, such that

Q(Ag) = [F],(G) for all graphs G. ®

Corollary 3.2.6 (Pseudorandom generators against FO[Mod,]) For each s €
N and constant € > 0, there is a constant ¢ = 0 such that for cach n, there s a
family F of ©(n°) graphs on n vertices, computable in time poly(n©), such that for
all FO[Mod,]-sentences ¢ of size at most s, and for all p € (0,1),

Pr (G satisfies o] — Pr |G satisfies || < €.
|G61f[ satisfies ¢ GeG(In,,p)[ satisfies || < €
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Proof For g =2andp = 1/2, this follows from the previous corollary and the result
of Viola [Vio08] (building on results of Bogdanov-Viola [BV07] and Lovett [Lov08]) ex-
plicitly constructing a set of points fooling low-degree polynomials under the uniform
distribution. For g = 2 and general p, note that the same family F from the p = 1/2
case works, since the distribution of subgraph frequencies given in Theorem 3.2.4 is
independent of p.

For general g, a slight complication arises because adjacency matrices of graphs
have entries from {0, 1}, while the result of Viola for polynomials over Z, constructs
points the uniform distribution over Z7*. Nevertheless, we get by with a trick!. Let
P(Xy, ..., Xm) be a polynomial over Zg and let P'(Yy,...,Y,,) = P(Y{"',. ., Ya 1),
Then the distribution of the evaluation of P’ at a uniformly random point from Zy
is identical to the distribution of the evaluation of P at a point x chosen p-biasedly
from {0,1}™, (where p = (¢ —1)/gq). Thus for general g and p = (¢ —1)/q, taking the
set of points given by Viola [Vio08] fooling low degree polynomials over Z4 under the
uniform distribution over Z7*, and then raising each coordinate to the power g — 1,
yields the desired family of graphs F. Then for general ¢ and general p the same

tamily of graphs works, arguing just as in the ¢ = 2 case. &

The analogue of the previous corollary for FO was proved in [GS71, BEH31] (sce
also [BRO5, NNT05)).
The next corollary gives explicit functions which are hard on average for FO[®].

At present, we do not know how to extend it to FO[Mod,] for general g.

Corollary 3.2.7 (Explicit functions exponentially hard for FO[®]) There is an

explicit function f : {0, 1}(3) — {0, 1} such that for every FO[E]-sentence o,

1 ,
P G satisfies @) & (f(Ag) = 1)] < = 4+ 27,
JPr (G satisfes )  (F(4g) = D] < 5 +

Proof Follows from Corollary 3.2.5, and the result of Babai, Nisan, Szegedy [BNS89)

(for p = 1/2) and its generalization, Lemuma 2.2.3 (for general p), constructing func-

4We are grateful to Salil Vadhan for pointing this out to us.



tions exponentially uncorrelated with low degree polynomials under the p-biased mea-
sure. It actually follows from our proofs that, one may even choose a function f that

is a graph property (namely, invariant under the action of S, on the coordinates). &

3.3 The Distribution of Subgraph Frequencies mod

q

In this section, we prove Theorem 3.2.4 on the distribution of subgraph frequencies
in G(n,p).

We first make a few definitions. If F'is a connected graph and G is any graph, a
copy of Fin G is a set E C Eg such that there exists an injective homomorphism x
from F to G such that E = x(Er) := {(x(v), x(w)) | (v,w) € Er}. We denote the
set of copies of F' in G by Cop(F, ), the cardinality of Cop(F,G) by (F)(G), and
this number mod ¢ by (F),(G). We have the following basic relation (which follows

from Lemma 3.6.5 in Section 3.6).

Lemma 3.3.1 If F is a connected graph with |Er| > 1, then
[FI(G) = aut(F) - (F)(G).

For notational convenience, we view G(n, p) as a graph whose vertex set is [n} and
whose edge set is a subset of ([g]).

We can now state the general equidistribution theorem from which Theorem 3.2.4
will follow easily (We use the notation €2, 4(n) to denote the expression Q(n), where
the implied constant depends only on ¢, p and d). Note that this theorem holds for

arbitrary integers g, not necessarily prime.

Theorem 3.3.2 (Equidistribution of graph copies) Let q > 1 be an integer and
let pe (0,1). Let Fy, ..., Fe e Conn® be distinct graphs with 1 < |Er | < d.
Let G € G(n,p). Then the distribution of ((F1)4(G),..., (Fo)4(G)) on Z is

2~ ap I _close to uniform in statistical distance.
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Using this theorem, we complete the proof of Theorem 3.2.4.
Proof of Theorem 3.2.4: Let F,. .., Fy be an enumeration of the elements of Conn®

except for Ky. By Theorem 3.3.2, the distribution of g = ((F}),(G)%_, is 274 close

to uniform over Zfl'. Given the vector g, we may compute the vector freq? by:
o (freqt)x, = n mod gq.
e For I' € Conn® \ {K;}, (freql.)r = gr - aut(F) (by Lemma 3.3.1).

This implies that the distribution of freq? is 274" -close to uniformly distributed over

{f € FFreq(a) : fx, =n mod ¢}. m

The rest of this section is devoted to a proof of Theorem 3.3.2

Consider the special case £ = 1, F; = Kj (the triangle), ¢ = 2, p = 1/2 of
Theorem 3.3.2. The theorem asserts that the distribution of (Fy)y(G) (for G =
G(n,1/2)) is 27%™close to the uniform distribution over Zs. As described in the
introduction, this reduces to showing that the polynomial Pa is unbiased on uniformly

random inputs, where

Pa((Xe)e () = > Xei Xey Xey,

2
{e1.e2.e3} forming a A

(recall that we view G(n,1/2) as having vertex sct [n]).

We now sketch the proof in this special case. Let r = |n/3]. Pick disjoint scts
Vis...,Vp C[n] with |V;| = 3 for cach i. Let E; = (g), E; is the set of edges involved
in the triangle formed by the vertices in V;. Now for every e € ([g']) \ (U, Ei). let us
fix X to an arbitrary value in Z,. After this fixing, the polynomial P becomes a
polynomial only in the variables {X, | e € |J; E;}. Closer inspection reveals that this

polynomial is of the form:
,
Z X3i2 X531 X3 + R(X),
i=1

where R is a polynomial of degree at most 2. At this point we invoke an elegant

result of Babai-Nisan-Szegedy [BNS89], originally discovered in the context of com-
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munication complexity, which asserts that polynomials of the above kind (where R is
an arbitrary polynomial of degree at most 2), take the values 0,1 with roughly equal
probability (/2 1/2). Finally, since this unbiasedness occurs for an arbitrary fixing of
the variables {X, | e € ([_TZ’]) \ (U, Ey)}, it follows that this unbiasedness also holds for
the original polynomial Pa.

A virtually identical argument shows the unbiasedness of the number of copies
mod 2 of any other connected graph. Another very similar argument shows the unbi-
asedness of > (F;)2(G) for any collection of distinct connected graphs F;. Combining
these unbiasedness results yields the full joint equidistribution result of Theorem 3.3.2.

We now proceed with the details.

3.3.1 Preliminary lemmas

The following lemma, which is used in the proof of Theorem 3.3.2 (and again in
Section 3.8 to study the distribution of labelled subgraph frequencies), gives a simple
sufficient criterion for the distribution of values of a polynomial to be “unbiased”.

The proot appears in Section 3.4.

Lemma 3.3.3 Let ¢ > 1 be an integer and let p € (0,1). Let® F C 2. Let d > 0

be an integer. Let Q(Zy, ..., Zm) € ZylZy, ..., Zy) be a polynomial of the form
Z as H Z; +Q'(7),
SeF  i€S

where deg(Q') < d. Suppose there exist € = {Fy,...,E.} CF such that:
e |E;|=d for each j,
o ag, # 0 for each j.
o E;0Ey =0 foreach 3,5,

o Forecach S € F\E, SN (U;E))| <d.

By . . g .
°If S is a set, we use the notation 2° to denote its power set.
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Letz = (z1,...,2m) € Z7* be the random variable where, independently for each i, we

have Pr(z; = 1] = p and Prlz; = 0] = 1 — p. Then,
|E [WQ(Z):H S Q_Qq,p,d(r)?

where w € C is a primitive ¢M-root of unity.

The lemma below is a useful tool for showing that a distribution on ZS is close to

uniform.

Lemma 3.3.4 (Vazirani XOR lemma) Let ¢ > 1 be an integer and let w € C be
a primitive ¢ -root of unity. Let X = (X1,...,X,) be a random variable over Zt.

Suppose that for every nonzero ¢ € Zf],
‘E l:wZieM] C-iX»;}‘ <e.

Then X is ¢ - e-close to uniformly distributed over Zfl.

3.3.2 Proof of the equidistribution theorem

Proof of Theorem 3.3.2: By the Vazirani XOR Lemma (Lemma 3.3.4), it suffices
to show that for each nonzero ¢ € Zfl, we have |1E [wRH < 27%wal?) where R =
> iciy Gi{Fi)q(G), and w € Cis a primitive g™-root of unity.

We will show this by appealing to Lemma 3.3.3. Let m = (7). Let z € {0, 1}([‘3])
be the random variable where, for each e € ([g]), z. = 1 if and only if e is present in
G. Thus, independently for each e, Pr[z, = 1] = p.

We may now express R in terms of the z.. Let K,, denote the complete graph on
the vertex set [n]. Thus Cop(F;,K,) is the set of E that could potentially arise as

copies of F; in G. Then we may write,

R=) a(F)(G)=) ca > IT =
]

i€le i€lf] EeCop(F; K,)ecE

= § CEHzey

EeF ecE
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where F C 2(3) is the set Ui, 40 Cop(F}, K,,), and for E € F, cg = ¢; for the unique
i satisfying E € Cop(F;, K,,) (note that since the F; are nonisomorphic connected
graphs, the Cop(F;, K,) are pairwise disjoint).

Let Q(Z) € Z,|Z), where Z = (Z.), () be the polynomial Y por e [locr Ze-
Then R = Q(z). We wish to show that

E [WQ(Z)H < 9 el (3.1)

We do this by demonstrating that the polynomial Q(Z) satisfies the hypotheses
of Lemma 3.3.3.

Let d* = maxgez0|Er|. Let o € [€] be such that ¢;, # 0 and |Ep | = d".
Let X1, X2, . ... X» € Inj(F,, K,) be a collection of homomorphisms such that for all
distinct 7. 3" € [r], we have x;(Vp, ) 0 x;(VE,) = 0. Such a collection can be chosen
greedily so that r = Q(2). Let E; € Cop(Fj,, K,) be given by x;(Er, ). Let € be the
family of sets {E1,...,E,} C F. We observe the following properties of the Ej:

1. For each j € [r], |E;] = d* (since x; is injective).

[N

. For cach j € [r], cg, = ¢, # 0.
3. For distinet j, ' € [r], E; N Ey = 0 (by choice of the x;).

4. For every S € F\ &, |S N (U;E;)| < d*. To see this, take any S € F \ € and
suppose |SN(U;E;)| > d*. Let ¢ € [€] be such that ¢y # 0 and S € Cop(Fy, K,,).
Let x € Inj(Fy,K,) with x(EFp,) = S. By choice of d*, we know that |S] < d".
Therefore, the only way that |SN (U;E;)| can be > d* is if (1) |S| = d*, and (2)

SN(U;E;) = S, or in other words, S C (U;E;). However, since the x;(Vp, ) are
B =191,

all pairwise disjoint, this implies that S C E; for some j. But since
we have S = Ej;, contradicting our choice of S. Therefore, SN (U;E;)| < d* for
any S € F\E.
It now follows that Q(Z), F and & satisfy the hypothesis of Lemma 3.3.3. Con-
sequently, (recalling that r = Q(n/d) and d* < d) Equation (3.1) follows, completing

the proof of the theorem. W
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Remark We just determined the joint distribution of the munber of injective ho-
momorphisms, mod g, from all small connected graphs to G(n, p). This information
can be used in conjunction with Lemma 3.6.2 to determine the joint distribution of

the number of injective homomorphisins, mod g, from all small graphs to G(n, p).

Many intriguing basic questions about the distribution of subgraph frequencies
mod g remain. For example, it would be interesting to determine whether the statis-

=Un) in Theorem 3.3.2 can be replaced by 27 Tt would also be

tical distance 2
interesting to know what happens in the graph G(n,n~%), where some constant size

graphs may not appear as subgraphs even once.

3.4 A criterion for unbiasedness

Our main goal in this section is to give a full proof of Lemma 3.3.3, which gives a
criterion for a polynomial to be unbiased.

Our proof of Lemma 3.3.3 will go through Lemma 2.2.3, (which was proved in
Section 2.2.1).
Lemma 2.2.3 (restated) Letq > 1 be an integer and let p € (0,1). Let Ey,... E,
be pairwise disjoint subsets of [m] cach of cardinality d. Let Q(Zy, ..., Zn) € Zy(Z, . ..,

be a polynomial of the form

S [12) + R

j=1 i€k,
where each a; # 0 and deg(R(Z)) < d. Letz = (21,...,2m) € Z7* be the random
variable where, independently for cach i, we have Pr(z; = 1] = p and Pr[z; = 0] = 1—p.
Then,

|IE [wQ(Z)] | < 2~ 8.p.alr)

Given Lemma 2.2.3, we may now prove Lemma 3.3.3.

Proof of Lemma 3.3.3: Let U = U’_, E;. Fix any z € {0, 1}[™\V and les Q,(Y) €
1=1"
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Z4[(Y:)icrr| be the polynomial

das| ] (H}>+Qa~Y)

SeF jeSﬁ([m]\U) i€SNU

so that Q.(y) = Q(x,y) for each y € ZY'. Notice that the degree (in Y) of the term
corresponding to S € F is |[SN U|. By assumption, unless S = E; for some j, we

must have |SNU| < d.

Therefore the polynomial @Q,(Y) is of the form:

ZaE 1Y+ RY).

icE;

where deg(R(Y)) < d. By Lemma 2.2.3,
|E [w@ ]| < 2~ Qmel),
where y € {0,1}Y with each 3 = 1 independently with probability p.
As Q:{y) = Qz,y), we get
B @] | < 2l

where 2% € Zy is the random variable z conditioned on the event z; = x; for every
j € [m]\ U. Now, the distribution of z is a convex combination of the distributions

of z% as a varies over {0, 1}™\V This allows us to deduce that
lIE [wQ(z):H S 24(2<;,[>,11(7‘)7

as desired. |



3.5 Outline of the Proof

Now that we have understood the distribution of subgraph frequencies mod g, we now
approach the main part of the proof of the modular convergence law, Theorem 3.2.3,
which relates FO[Mod,] sentences to subgraph frequencies mod g.

The proot of Theorem 3.2.3, will be via a more general theorem amenable to
inductive proof, Theorem 3.5.8. Just as Theorem 3.2.3 states that for almost all
G € G(n,p), the truth of any FO[Mod,] sentence on G is determined by subgraph
frequencies, freqg, Theorem 3.5.8 states that for almost all graphs G € G(n, p), for any
wy, . .., Wk € Vg the truth of any FO[Mod,] formula ¢(w, ..., wy) on G is determined
by (1) the internal adjacency and equality information about wy, ..., wg (which we
will call the type), and (2) the subgraph frequencies of labelled graphs rooted ot w. In

the next subsection, we formalize these notions.

3.5.1 Labelled graphs and labelled subgraph frequencies

Let I be a finite set. We begin with some preliminaries on I-labelled graphs.

Definition 3.5.1 (I-labelled graphs) An I-labelled graph is a graph F = (Vr, EF)
where some vertices are labelled by elements of I, such that (a) for each i € 1, there
is exactly one vertex labelled <. We denote this vertex F(i), and (b) the graph induced
on the set of labelled vertices is an independent set. We denote the set of labelled

vertices of F by L(F).

Definition 3.5.2 (Homomorphisms and Copies) A homomorphism from an I-
labelled graph F to a pair (G, w), where G is a graph and w € V£, is a homomorphism
x € Hom(F, G) such that for each i € I, x maps F(i) to w;. A homomorphism from
F to (G, w) is called injective if for any distinct v,w € Vg, such that {v,w} € L(F),
we have x(v) # x(w). A copy of F in (G,w) is a set E C Eg such that there exists an
injective homomorphism x from F to (G, w) such that E = x(Er) = {(x(v), x(w)) |
(v,w) € Ep}. An automorphism of F is an injective homomorphism from F to

(F,w), where w; = F(i) for each i€ I.
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Definition 3.5.3 (Hom, Inj, Cop, Aut for labelled graphs) Let F' be an I-labelled
graph, and G be any graph. Let w € VEA. We define Hom(F, (G, w)) to be the
set of homomorphisms from F to (G,w). We define Inj(F,(G,w)) to be the set of
injective homomorphisms from F to (G,w). We define Cop(F, (G, w)) to be the set
of copies of F in (G,w). We define Aut(F) to be the sct of automorphisms of F.
We let [F(G,w) (respectively (F)(G,w), aut(F)) be the cardinality of nj(F, (G, w))
(respectively Cop(F, (G, w)), Aut(F)).

Finally, let [Fl,(G,w) = [F|(G,w) mod q and (F),(G,w) = (F)(G,w) mod g.

Definition 3.5.4 (Label-connected) For F' an I-labelled graph, we say F' is label-
connected if F\ L(F) is connected. Define Conn'y to be the set of all I-labelled
label-connected — graphs with at most t unlabelled vertices. For i € I, we say an

I-labelled graph F is dependent on label i if F(i) is not an isolated verter.

Definition 3.5.5 (Partitions) If I is a set. an I-partition is a set of subsets of I
that are pairwise disjoint, and whose union is I. If 1L is an I partition, then fori € I
we denote the unique element of I containing @ by 11(3). If V is any set and w € Vi

we say w respects ILif for all 1,7 € I, w; = wy iff TI(1) = II(3").

The collection of all partitions of I is denoted Partitions([).
If I C J, I € Partitions(I) and IT' € Partitions(.J), we say II' extends II if for all
i1,19 € I, Tl(2y) = I(42) if and only if II'(4;) = 1I'(22).

Definition 3.5.6 (Types) An [-type 7 is a pair (IL., E;) where II. € Partitions(I)
and E, C (HQ’) For a graph G and w € VX, we define the type of w in G,

denoted typeg(w), to be the I-type 7, where w respects 1, and for all i, e I,
{1, (:), I1.() } € E, if and only if w; and wy arve adjacent in G.

The collection of all I-types is denoted Types(!).

If 7 C J,and 7 € Types(I) and 7’ € Types(J), we say 7" extends 7 if I, extends
I1, and for cach 41,4 € I, {T1.(41), 11, (32) } € E; if and only if {I1./(é1), 11+ (é2)} € Er.
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Definition 3.5.7 (Labelled subgraph frequency vector) Let G be a graph and
I be any sct. Let w € V&, We define the labelled subgraph frequency vector at w,

a
Conng

freqe(w) € Zq ', to be the vector such that for each F € Conn?.
(freqd,(W))r = [Fl (G, w).

Remark We will often deal with [k]-labelled graphs. By abuse of notation we will
refer to them as k-labelled graphs. If w € V¥ and v € V, when we refer to the
tuple (w,v), we mean the [k + 1]-tuple whose first £ coordinates are given by w and
whose k + 1st coordinate is v. Abusing notation even further, when we deal with
a [k + 1]-labelled graph F, then by [F](G,w,v), we mean [F](G,(w,v)). Similarly

Conn, denotes Connfk].

3.5.2 The quantifier eliminating theorem

We now state Theorem 3.5.8, from which Theorem 3.2.3 follows easily. Informally,
it says that an FO[Mod,|-formula ¢(w) is essentially determined by the type of w,

typeg(w), and the labelled subgraph frequencies at w, freqs,(w).

Theorem 3.5.8 For all primes q and integers k,t > 0, there is a constant ¢ =
clk,t,q) such that for every FO[Mod,| formula o(au, ..., ax) with quantifier depth t,
there is a function ¢ : Types(k) x Zg"“"?@ — {0,1} such that for oll p € (0,1), the

quantity
- Ywy, ... ,wy € Vg, > 1 9-9n)
GeG(np) (G satisfies p(wy, ..., wy)) < (Y(typeg(w), freq(w)) = 1) -

Putting k£ = 0, we recover Theorem 3.2.3.
We now give a brief sketch of the proof of Theorem 3.5.8 (the detailed proof ap-
pears in Section 3.6). The proof is by induction on the size of the formula ¢. When the

formula ¢ has no quantifiers, then the truth of ¢(w) on G is completely determined by
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typeg(w). The case where ¢ is of the form ¢q (a1, ..., ap)Apala,. .., o) is casily han-
dled via the induction hypothesis. The case where ¢(o, ..., ax) = -, ..., 0k)
is sirnilar.

The key cases for us to handle are thus (i) ¢(aq, . . ., ax) is of the form Modfzﬁ, o',
and (i) ¢(aq,. .., o) is of the form 33, ¢/ (e, ..., ax, F). We now give a sketch of
how these cases may be handled.

For case (i), let ¢ : Types(k+1) x ZS"““?@“ be the function given by the induction
hypothesis for the formula ¢'. Thus for most graphs G € G (n,p) (namely the ones for
which ¢ is good for ¢'), @(wy, . . . ,wy) is true if and only the number of vertices v € Va
such that ¢/ (typeq(w, v),freq%(w, v)) = 1 is congruent to ¢ mod g. In Theorem 3.6.1
(whose proof appears in Section 3.7), we show that the number of such vertices v can
be determined solely as a function of typeg(w) and freqg(w) for suitable a. This fact
allows us to define 9 in a natural way, and this completes case (i).

Case (ii) is the most technically involved case. As before, we get a function i
corresponding to ¢ by the induction hypothesis. We show that one can define
essentially as follows: define ¥(r, f) = 1 if there exists some (7, f') € Types(k +
1) x ij"""sf"“ that “extends” (7, f) for which ¢/(7/, f') = 1; otherwise 3(, f) = 0.
Informally, we show that if it is conceivable that there is a vertex v such that o (w,v)
is true, then ¢(w) is almost surely true. Proving this statement requires us to get
a characterization of the distribution of labelled subgraph frequencies, significantly
generalizing Theorem 3.2.4. This is done in Theorem 3.6.12 (whose proof appears in

Section 3.8).

3.6 Quantifier Elimination

In this section, we give a full proof of Theorem 3.5.8. Before doing so, we state
the main technical theorems: Theorem 3.6.1 (which is needed for eliminating Mod,
quantifiers). and Theorem 3.6.12 (which is needed for eliminating 3 quantifiers). We

do this in the following two subsections.
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3.6.1 Counting extensions

The next theorem plays a crucial role in the elimination of the Mod, quantifiers. This
is the only step where the assumption that ¢ is a prime plays a role in the modular

convergence law.

Theorem 3.6.1 Let g be a prime, let kb > 0 be integers and let a > (g —1) - b-

Conn? | + 1. There is a function
k+1 ;

Conn

b
A Types(k + 1) x Zy "' x Types(k) x Zgo""z — Zyq

b
Conng

such that for all 7 € Types(k + 1), f' € Z, . 7 € Types(k), [ € zzg"""z, it
holds that for every graph G, and every wy,...,wgx € Vg with typeg(w) = 7 and

freqt(w) = f. the cardinality of the set
{v e Vi : typeg(w,v) = 7' Afreqe(w,v) = f'}

is congruent to X(7', f', 7, f) mod g¢.

The proof appears in Section 3.7. The principal ingredient in its proof is the
following lemma, which states that the numbers [F|(G,w), as F varies over small

label-connected graphs, determine the number [F'[(G,w) for all small graphs F”.

Lemma 3.6.2 (Label-connected subgraph frequencies determine all sub-

graph frequencies) For every k-labelled graph F' with |V \ L(F")| < t. there is a

polynomial 0pr € Z[(Xp)peconn: | such that for all graphs G and w € Ve,

[F(G, w) = 0p(2),

where x € ZE™% is given by xp = [F](G,w).
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3.6.2 The distribution of labelled subgraph frequencies mod

a

In this subsection, we state the theorem that will help us eliminate 3 quantifiers. Let
us first give an informal description of the theorem. We are given a tuple w € [n]*,
and distinet ug,...,us € [n]\ {w1,...,wi}. Let G be sampled from G(n,p) (recall
that we think of G(n,p) as a random graph whose vertex set is [n]: thus the w;
and u; are vertices of G). The theorem completely describes the joint distribution
of the labelled subgraph frequency vectors at all the tuples w, (W, u1),. .., (W, us);
namely it pins down the distribution of (freq‘c‘;(w),freql(’;(w,ul), . freqt (w, u)).
We first give a suitable definition of the set of feasible frequency vectors, and then
claim that (a) the freq(w) is essentially uniformly distributed over the set of its
feasible frequency vectors, and (b) conditioned on freqg(w), the distributions of
freq%(w, U,y freq%(w, u,) are all essentially independent and uniformly distributed

over the set of those feasible frequency vectors that are “consistent” with freqg.

To define the set of feasible frequency vectors (which will equal the set of all
possible values that freql(w) may assume), there are two factors that come into
play. The first factor, one that we already encountered while dealing with unlabelled
graphs, is a divisibility constraint: the number [F|(G,w) is always divisible by a
certain integer depending on F', and hence for some F, it cannot assume arbitrary
values mod g. The second factor is a bit subtler: when wy, . .., wy are not all distinct,
for certain pairs F, F' of label-connected k-labelled graphs, [F](G,w) is forced to
equal [F')(G,w). Let us see a simple example of such a phenomenon. Let k = 2 and
let wy, = wo. Let the 2-labelled graph F be a path of length 2 with ends labelled 1
and 2. Let the 2-labelled graph ' be the disjoint union of an edge, one of whose ends
is labelled 1, and an isolated vertex labelled 2. Then in any graph G, [F](G,w) =

[F')(G,w) = the degree of w;.

In the rest of this subsection, we will build up some notation and results leading
up to a definition of feasible frequency vectors and the statement of the main technical

theorem describing the distribution of labelled subgraph frequency vectors.
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Definition 3.6.3 (Quotient of a labelled graph by a paritition) Let F be o I-
labelled graph and let 11 € Partitions(/). We define F/II to be the Il-labelled graph
obtained from F by (a) for each J € 11, identifying all the vertices with labels in J and
labelling this new vertex J, and (b) deleting duplicate edges. If F and F' are [-labelled
graphs and I € Partitions(I), we say F and F' are M-equivalent if F/I1 == /11,

Let w € V. Let IT € Partitions(]) be such that w respects IT. Define (w/II) € V!
by: for each J € II, (w/II); = w;, where j is any element of J (this definition is
independent of the choice of j € J). Observe that as J varies over I1, the vertices
(w/IT) ; are all distinct.

The next two lemmas show that the numbers [F](G, w) must satisfy certain con-
straints. These constraints will eventually motivate our definition of feasible frequency

vectors.

Lemma 3.6.4 If G is a graph and w € V&, with w respecting I1 € Partitions(I), then
for any I-labelled F,

[FIG, w) = [F/T)(G, (w/II)). (3.2)

Proof  We define a bijection « : Inj(F/II, (G, w/Il)) — Inj(F,(G,w)). Let 7 €
Hom(F, F'//II) be the natural homomorphism sending each unlabelled vertex in Vi to
its corresponding vertex in Vg, and, for each ¢ € I sending F(¢) to (F/II)(I1(3)).
We define a(x) to be x o .

Take distinct x, x" € Inj(F/TL, (G, w/II)). Let u € Vp/ with x(u) # x'(u). Note
that u cannot be an element of L(F/IT), for if u = (F/II)(I1(¢)), then x(u) = x/(u) =
w;. Thus u & L(F/II). Let v € VF be the vertex #~1(u) (which is uniquely specified
since u & L(F/IT)). Thus we have x(7(v)) = x(u) # x'(u) = ¥ (x(v)). Thus
a(x) # a(x’), and « is one-to-one.

To show that a is onto, take any x € Inj(F, (G, w)). Define x’ € Inj(F/I1, (G, w/II))
by:

LoX/(u) = x (v~ (u)) if w & L(F/IT).

72



2. x'(u) = wj for any j € J, if w = (F/I)(J) with J € IL

Then a(x') = x. W

Lemma 3.6.5 Let G be a graph and w € V&. Suppose all the (w;)ier are distinct.
Let F be an I-labelled label-connected graph with |Eg| > 1. Then

[F](G,w) = aut(F) - (F)(G,w).

Proof We give a bijection a : Aut(F) x Cop(F, (G, w)) — Inj(F, (G, w)).

For cach E € Cop(F, (G, w)), we fix a xg € Inj(F, (G, w)) such that xg(Er) = E.
Then we define oo, E) = xgpoo.

First notice that oo, E)(Er) = xg(0(Er)) = xp(Er) = E. Thus if a0, E) =
afo’, E"), then E = E'. But since xg is injective, for any o # o', we have xgoo #
xe o o’. Thus a is one-to-one.

To show that « is onto, take any x € Inj(F,(G,w)). Let E = x(Er). As F'is
label-connected and yg(Er) = X (Er), we have xg(Vr) = x(VF). We may now define
o € Aut(F) by o(u) = xz' (x(u)) for each u € Vp. Clearly, a(o, E) = x, and so o is
onto.

Thus « is a bijection, and the lemma follows. m

Note that Lemma 3.2.2 and Lemma 3.3.1 follow formally from the above lenuna.
Let K{(I) be the I-labelled graph with |I] 4 1 vertices: |I| labelled vertices and
one isolated mnlabelled vertex. The role of Ki(I) in the I-labelled theory is similar

to the role of K; in the unlabelled case.

Definition 3.6.6 (Feasible frequency vectors) We define the sct of feasible fre-

nn¢
! such that

quency vectors, FFreq(7, I, a) to be the set of f € Z§°
(a) for any F € Conn}, we have fr € aut(F/IL;) - Z,.

(b) for any F,F" € Conn{ that are Il -equivalent, we have fp = fr.
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Let FFreq,(7,1,a) be the set {f € FFreq(r,1,a) : fr,) = n — |[II;| mod q}. Note
that if n =n' mod q, then FFreq,(r,1,a) = FFreq,,(7,1,a).

Observe that for any w € V{ with typeg(w) = 7, the vector freq?(w) is an element
of FFreq(7, I,a). This follows from Lemma 3.6.4 and Lemma 3.6.5, which allow us to

deduce (recall that (w/I1.); are all distinct for J € I1,) that for any F' € Conn?,
[F)(G, w) = aut(F/IL,) - (F/IL,)(G, w/IL,). (3.3)

Observe also that if [V

= n, then freqs(w) € FFreq,(7,1,a), since [K{(I)](G,w) =

Ve \ {wr, ..., wi}| = n — [iype(w)|. as required by the definition.

Definition 3.6.7 (Extending) Let I be a set and let J =T U {i*}. Let a > b > 0
be positive integers. We say (7', f') € Types(J) x FFreq(r',J,b) extends (1, f) €
Types(I) x FFreq(r,I,a) if 7' extends 7, and for every F € Connl, we have

where I is the graph obtained from I by introducing an isolated vertex labelled

-k

.

n [) . . P o
2. 4f {¢*} € I, letting 0y : Z§° " — Zy be the function given by Lemma 3.6.2,

fr= f% + Z CuéF,L(f/)r (35)

uEVE\L(F)
where

o F is the graph obtained from F by introducing an isolated vertex labelled

-k

1.

* ¢y equals 1 if for alli € I, if u is adjacent to F(1), then {IL.(i*),11.(3)} €

E.. Otherwise, ¢, = (.

o Fy is the graph obtained from F by labelling the vertex u by i* and deleting

all edges between u and the other labelled vertices of F.
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The crux of the above definition is captured in the following lemma.

Lemma 3.6.8 Let G be a graph. Let a > b > 0 be integers. Let w € VFandveV.
Let T = typeg(w), 7 = typeg(w,v), f = freqg,(w) and f' = freq(w,v). Then (7, f')
extends (7, f).

Proof We keep the notation of the previous definition. First observe that 7' extends
T.

If {k+ 1} ¢ I, then we need to show that [F|o(G,w) = [F (G, w,v) for each
F € Conn?. This is immediate from the definitions.

If {k+ 1} € IL., then we need to show that [Fl(G,w) = [F 1,(G,w,v) +
Y wevpncir) Cul Fulg(Gow,v). We do this by counting the ¥ € Inj(F, (G, w)) based

on its image x(Vr) as follows:

~

1. Category 1: v & x(Vg). There are precisely [F|(G,w,v) such .

2. Category 2: v = x(u) (in this case u is uniquely specified). Note that u ¢ L(F).
Then it must be the case that for any ¢ € [k] such that u is adjacent to F'(z), w;
is adjacent to v. Thus {I1.(i),IL.(k + 1)} € E,, and so ¢, = 1. The number
of such x is [F (G, w,v).

This proves the desired relation. B

We now state and prove two key uniqueness properties enjoyed by the notion of

extension.

Lemma 3.6.9 Let a > b > 0 be integers. Let w € VE. Let u € Vg \ {ws, ..., wi}.
Let 7 = typeq(w) and 7 = typeg(w,u). Let f = freqg(w). Then freql, (w, u) is the

: Conn}
unique ' € Zg *" such that:
e for cach H € Connl,; that is dependent on label k++1, we have f = [H]o(G, w,u).

o (7. f") extends (7, f).



Proof By Lemma 3.6.8, the vector freq%(w, u) is such an f'.

To prove uniqueness, it suffices to show that any f’ satisying these two properties
equals freq?(w,u). Thus it suffices to show that for any H € Connl,, not dependent
on label k + 1, fi = (freq%(w,u))y.

We prove this by induction on |V \ L(H)|. Let H € Connf,; not dependent on
label k + 1. Thus H is of the form F for some graph F € Connz (as in the previous
lemma, for a [k]-labelled graph F, we let F be the [k + 1]-labelled graph obtained by
adjoining an isolated vertex labelled k + 1 to F'). By Equation (3.5), we see that fi,

1s uniquely determined by 7, 7/, fp and the munbers (ff,) wvineani-1 (since each

H’eConn; |
¢y Is determined by 7" and each of the graphs F, have |F,\ L(F,)| < |[Vy\ L(H)|—-1).
By induction hypothesis, all the fi, = (freq%(w,u))g. Thus. since freq.(w,u) also

satisfies Equation (3.5), we have ff; = (freqé(w, u)) g, as required. W

Lemma 3.6.10 Let a > b > 0 be integers. Let (1, f) € Types(k) x FFreq(r, [k],a).
Let 7 € Types(k + 1) extend 7 with {k + 1} & I.. Then there is at most one
J' € FFreq(7', [k 4 1],b) such that (7', f') extends (1, f).

Proof Asin the previous lemma, for a [k]-labelled graph F, we let F be the [k +1]-
labelled graph obtained by adjoining an isolated vertex labelled & + 1 to F. For
any ' € Conn%, we must have f;; = fr. Now we claim that any H & Connz is
M-equivalent to some graph of the form F. To prove this, let j € [k] be such that
I/(j) = T(k 4+ 1). Let H* be the graph obtained from H by adding, for each
neighbor u of H(k + 1), an edge between v and the H(j), and then removing (a) all
edges incident on H(k+1), and (b) any duplicate edges introduced. By construction,
H/IL, = H* /T, and so f = fy. by Equation (3.3). In addition, the H*(k + 1) is
isolated, and hence H* is of the form F for some F € Con nz.

What we have shown is that for every H € Conn!, 11, [ 1s forced to equal fp for

some F' € Conni. This implies that f’ is specified uniquely. ®

Finally, we will need to deal with random graphs G(n,p) with some of the edges

already exposed. The next definition captures this object.
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Definition 3.6.11 (Conditioned Random Graph) Let A = (Va, E4) be a graph
with Vi C [n]. We define the conditioned random graph G(n,p | Va, E 4) to be the
graph G = (Vg, Eg) with Vg = [n] and Eq = Eq4UE’, where each {3,j} € ([gl) \ (24)

is included in E' independently with probability p.

We can now state the main technical theorem that describes the distribution of
labelled subgraph frequencies, and will eventually be useful for eliminating 3 quanti-

fiers.

Theorem 3.6.12 Let a > b be positive integers. Let A be a graph with Vi C [n]

and |Va| < n' < nj2. Let G € Gn,p | Va, Ea). Let w = (wi,...,wg) € vk,
and let uy, ... us € Vi \{wy,...,w} be distinct. Let 7 = typeg(w) and let 7, =
typeq (W, u;) (note that 7,7, ..., 7s are already determined by Ea). Let f denote the

random variable freqt.(w). Let f; denote the random variable freq? (w, u;).
Then, there exists a constant p = p(a,q,p) > 0, such that if s < p-n, then the
distribution of (f, fi, ..., fs) over FFreq, (r, k], a) x [1, FFreq, (7, [k + 1],b) is 27

close to the distribution of (h,ha,. .., hs) generated as follows:
1. h is picked uniformly at random from FFreq, (7, [k], a).

2. For each i, each h; is picked independently and uniformly from the set of all

f" € FFreq, (7, [k + 1],b) such that (7, f') extends (1, h).

3.6.3 Proof of Theorem 3.5.8

We now prove Theorem 3.5.8, where the main quantifier elimination step is carried
out.

Theorem 3.5.8 (restated) For every prime q and integers k,t > 0, there is

quantifier depth t, there is a function v = Types(k) x ZEO""; — {0,1} such that for all
p € (0,1), the quantity

Ywi, ..., w; € Vg,
Pr > 12 %),

GeGlnw) | (G satisfies (s, -, wi)) < (Y{typeg(w), freqy(w)) = 1)
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Proof  The proof is by induction on the size of the formula. If op(wy, . .. , W) 18
an atomic formula, then trivially there exists a + : Types(k) — {0, 1} such that for
every graph G and every w € V4, the statement ¢(wy, . .. ,wy) holds if and only if
Y(typeq(w)) = 1. Thus we may take c(k,0,q) = 0. We will show that one may take
clk,t,q) = (g—1)-clk +1,t —1,q) - 2ck+1t-10% 4 1

Now assume the result holds for all formulae smaller than .

Case A: Suppose ¢(a1,..., ) = ¢1(aq,...,ax) Awa(ar, ..., ar). By induction
hypothesis, we have functions ¥y, and a constant ¢ such that Prg[Vawy, ..., wy €
Vo, (p1(wr, ..., wy) < Y1(typeg(w), freqi(w)) = 1)] > 1-27% and Pre[Vaey, . . ., wy, €
Ve, (palwr, . .., wy) & doltypeq(w), freqh(w)) = 1)] > 1 — 27 Setting (7, f) =

(1, f) - o(r, f), it follows from the union bound that

I;r[‘v’wl, coowg € Ve, (plwr, . wg) & P(typeg(w), freqh(w)) = 1)] > 1 — 27U,
Case —: Suppose (o, ..., o) = ¢’ (aq,...,ax). Let ¥ : Types(k) x ZS"“"Z o
{0,1} be such that Pre[Vuw, ... ,wp € Vg, (¢ (w1, ..., wi) & ¢/ (types(w), freq(w)) =

1)] > 1— 27U Setting ¢(7, f) = 1 — ¢/(7, f), we see that
%I'[V'wl.s Wy € Va, (p(w, - wk) & Y(typeg(w), freq(w)) = 1)) > 1 — 2790,

Case Modflz Suppose @(ayq, ..., a;) = Modéﬂ,«p’(al,_...,ak,ﬁ). Let ¢ = c(k +

1,t —1,q) and let ¢" : Types(k + 1) x ZS"""?“ — {0,1} be given by the induction
hypothesis, so that
PV, ... wi v € Vo, (¢ (wn,. . i) & 9 (typeg(w, o), freals(w, v) = 1)] > 127200,

Call G good if this event occurs, i.e., if
Ywy, ..., wi, v € Vg, (¢ (wy, ... wy, v) & w’(typeg(w,v),frqu(w,v)) =1).

Let y(wy,...,wg) be the number (mod g) of v such that ¢'(wy, ..., wg, ) is true.
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Then for any good G (doing arithmetic mod g),

Yy, we) = 3 W (typeg(w,v), freq§(w, v)).

veVe

Grouping terms, we have

Y(wy, ... wg) = Z Z W ) - v € Vi« typeg(w, v) = 7') Afreqg(w, v) =

v/ €Types(k+1) f’e,‘{,ionnk '
= Zw M7, f typeq(w), freqg(w))
Tl f/

(applying Theorem 3.6.1, and taking ¢ = (¢ — 1)¢ 20 4 1)

which is solely a function of types(w) and freq(w). Thus, there is a function ¢ :
Types(k) x Zg""“? — {0,1} such that for all good G and for all w,...,wx € Ve,

¥(typeq(w), freqh(w)) = 1 if and only if v(w) =i mod ¢. Thus,
Prf¥ans .. i, (Mod, ¢/, 0)) & 6 (typeg(w),freah(w)) = 1)] = 1-27,

as desired.

Case 3: Suppose p(oq, ..., Ozk) =33, ¢ (ay,...,a,B). Let  =c(k+1,t—1,q)
— {0, 1} be such that

Conn,H |

and let ¢’ : Types(k 4+ 1) x Z,

PI Nwy, ... wy, v € Vo, (¢ (wr, ..., wg, v) < ¢ (typeg(w,v), freqg(w,v)) = 1)] > 128,

(3.6)

For this case, we may choose ¢ to be any integer at least ¢. Define 9 Types(k) x

ZCO""" {0,1} by the rule: (7, f) = 1if there is a (7', f') € Types(k + 1) x
FFreq, (7, [k + 1],¢) extending (7, f) such that ¢/(7', f') = 1.

Fix any w € [n]*. We will show that

Pr{(3u. ¢ (typea(w ), freafs(w, ) = 1) & wltypeq(w), freq(w)) = 1] > 1~ 277,

(3.7)
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"Taking a union bound of (3.7) over all w € [n]*, and using Equation (3.6), we conclude

that

G ?(r )[vu”lv Wy € VG7 (clo(fwl: s ,'lUk) < @"'(typeG(W),frqu(w)) = 1)] z 1_2-Q(n)?
FEG(n,p

as desired.

It remains to show Equation (3.7). It will help to expose the edges of the random
graph G in three stages.

In the first stage, we expose all the edges between the vertices in {wy, ..., wi}.

For the second stage, let s = p(c,q,p) - n (where p comes from Theoremn 3.6.12)
and pick distinct vertices ug, ..., u, € [n]\ {wr,...,wi}. In the second stage, we
expose all the unexposed edges between the vertices in {wy, ..., wg, ug, ... L ust (ie.,
the edges between w;s and w;s, as well as the edges between the u;s and u;s). Denote
the resulting graph induced on {wy, ..., wy, uy,. .. ,us} after the second stage by A
(so that Vi = {wy,. .. wg,u,. .., us}).

In the third stage, we expose the rest of the edges in G. Thus G is sampled from
G(‘Tb,p ! V:‘lyEA)

Let 7 denote the random variable types(w). Note that 7 is determined after the
first stage. Let 71,..., 7, denote the random variables types(w, uy), . . . typeq(w, ug).
Note that 71, . .., 7, are all determined after the second stage. Let f denote the random
variable freqg(w). Let fi1, ..., f; denote the random variables freqq(w, uy), . . . freqq(w, uy).
The variables f, fi1,. .., fs are all determined after the third stage. Notice that the con-
tent of Theorem 3.6.12 is precisely a description of the distribution of (f, fy,..., fs)-

We identify two bad events B; and Bs.

By is defined to be the event: there exists o € Types(k + 1) extending 7, with
{k+1} € I, (ie, types o where vertex k + 1 is distinet from the other vertices), such
that

Hiels]:m=0}< %smin{pk, (1-p)*}.

(This can be interpreted as saying that the type o appears abnormally infrequently

amongst the 7). Note that for any ¢ extending 7, the events “r; = o, for i € [],
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are independent conditioned on the outcome of the first stage, since they depend on
disjoint sets of edges of G. Also, for each i and ecach o extending 7 with {k+ 1} € I1,,
the probability that 7; = o is > min{p*, (1 — p)*}. Therefore, applying the Chernoff
bound, and taking a union bound over all ¢ extending 7 with {k + 1} € II,, we see
that

Pr[B;) < 28 exp(—smin{p”, (1 — p)¥}) < 279,

Now let.

S ={(a,g) € Types(k + 1) x FFreq,(o,[k + 1],¢) | {k+ 1} € I,

AND (o, g) extends (7, f) AND ¢/(a,g) = 1}.

Bs is defined to be the event: S # @ and for cach i € [s], (7, f;) € S. We study
the probability of =By A B,. Let U be the set of (d,ds,...,ds) € FFreq,(7,[k].c) x
[1; FFreq, (7, [k + 1], ) such that

1. The set S(d) defined by

S(d) = {(0,9) € Types(k + 1) x FFreq, (o, [k +1],) | {k+ 1} € I1,
AND (o, g) extends (7,d) AND ¢/(c,g) = 1},

is nonempty.
2. For cach i € [s], (1;,d;) € S(d).

By definition, the event By occurs precisely when (f, f1,..., fs) € U.

By Theorem 3.6.12, for any fixing of E4, the probability that (f, fi,..., fs) € U
is at most 271 more than the probability that (h, hy,..., hs) € U. As the event
By is solely a function of E4, we conclude that Pr[=By A (f, f1,...,fs) € U)] <
Pr[=By A (h,hy, ... hy) € U] + 277,

It remains to bound Pr[-=By A (h,hy,..., hs) € U]. If S(h) # 0, take a (0,9) €
S(h). In the absence of By, the nunber of ¢ € [s] with 7; = o is at least 1s min{p*, (1—

p)’”’}. For all these i, it must hold that h; # g in order for (h, hq, ..., hs) to lie in U.
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Therefore,
1

1 ,—Z—smin{pk,(l—l?)k}
N |FFreqn(T,k+1>C')|> .

Pr[=Bi A (h,hy, ... hs) € U] < (1

Notice that this last quantity is of the form 2-%rak.a(s),

Putting everything together,
Pr|=By A By < Pr[By A (b ha,. .. hy) € UJ + 2700 < 276) 9= < 9=0n)

Therefore, with probability at least 1 — 27 the event B, does not occur. The
next claim finishes the proof of Equation (3.7), and with that the proof of Theo-

rem 3.5.8.

Claim 3.6.13 [f By does not occur, then
(30, (typec(w, v), freqs(w, v)) = 1) & ((typeq(w), freqs(w)) = 1).

Proof Let 7= types(w) and f = freqg(w).

If (7, f) = 0, then we know that for all (7', f’) € Types(k+1) x FFreq, (7', k+1,¢)
extending (7, f), we have ¢/(7', f') = 0. Thus by Lemma 3.6.8, for all v € Vg,
Y (typeq(w, 'U),frqu'(w, v)) = 0, as required.

If (7, f) = 1, then we consider two situations.

e The self-fulfilling situation: If thereisa (7', f') € Types(k+1)xFFreq,, (7', k+
1,c) extending (7, f) with {k+ 1} € I, and ¢/(7/, f') = 1. In this case, take
any j € [k] with TL.(j) = Il (k + 1), and let v = w;. Thus types(w,v) = 7".
By Lemma 3.6.10, since (7', f') extends (7, f) with {k+1} & IL., it follows that
freqé(w, v) = f’. Therefore, with this choice of v, we have ¢/ (type(w, v), freqé(w,'v)) =

1, as required.

e The default situation: In this case, there is a (7, f') € Types(k + 1) x
FFreq, (7', k +1,c) extending (7, f) with {k+1} € I, and ¢/(7', f') = 1. This

is precisely the statement that S = (. Therefore, by the absence of the event
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B, there must be an 7 € [r] such that (ry, f;) € S. Taking v = u;, we see that

w’(typeG(w,‘v),freqC(;(w, v)) = 1, as required.

This completes the proof of the claim. HR

3.7 Counting Extensions

In this section we prove Theorem 3.6.1.

3.7.1 Subgraph frequency arithmetic

We begin with a definition. A partial matching between two I-labelled graphs Fi, Fy
is a subset n C (Vi \ L(F1)) x (Vg \ L(F})) that is one-to-one. For two graphs F, Fy,

let PMatch(F}, F3) be the set of all partial matchings between them.

Definition 3.7.1 (Gluing along a partial matching) Let Fy and F, be two I-
labelled graphs, and let n € PMatch(Fy, Fy). Define the gluing of Fy and F5 along 7,
denoted FyV, Fy, to be the graph obtained by first taking the disjoint union of Fy and
E,, identifying pairs of vertices with the same label, and then identifying the vertices

in cach pair of n (and removing duplicate edges). We omit the subscript when n = 0.
We have the following simple identity.

Lemma 3.7.2 For any I-labelled graphs Fy, Fs. any graph G and any w € VZ:

[F)(G,w) - [B)(G,w) = Y[RV, BIG w). (3.8)

-nEPMatch(Fl ,F-_),)

Proof We give a bijection

o Inj(Fy, (Gw)) x Inj(Fy, (G, w)) — 1 Inj(Fy Vv, Fy, (G, w)).

nE€PMatch(Fy,Fy)

Define a(y1, x2) as follows. Let n = {(v1,2v2) € (Ve \L(F1)) X (VR,\L(Fy)) | x1(v1) =
x2(v2)}. Let o1 € Inj(Fy, Fy Vy, F) and oo € Inj(Fy, Fy V,) F3) be the natural inclusions.
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Let x € Inj(F1 V,, F5, (G, w)) be the unique homomorphism such that for all v € Ve,
x o u(v) = x1(v), and for all v € Vg, x 0 12(v) = x2(v). We define a(x1, x2) == X

To see that o is a bijection, we give its inverse 3. Let n € PMatch(Fy, F,) and
X € Inj(F1 v, F5, (G, w)). Let ¢; € Inj(Fy, Fy Vy Fy) and 1 € Inj(Fy, Fy v, I3) be the
natural inclusions. Define 5(x) := (x o ¢1,x 0 t2).

Then # is the inverse of a. ®

We can now prove Lemma 3.6.2.
Lemma 3.6.2 (Label-connected subgraph frequencies determine all sub-
graph frequencies, restated) For cvery k-labelled graph F' with |V \ L(F')| < t,

there is a polynomial 6p € Z[(Xp) Feconny] Such that for all graphs G and w € V&,
[F'N G, w) = ép (),

where T € ZE™x s given by zp = [F)(G, w).
Proof By induction on the number of connected components of F'\ £(F'). If F'
is label-connected |, then we take 0 (X) = Xp.

Now suppose F” is label-disconnected. Write F' = F; V Fy where Fy and £
are both k-labelled graphs, and Fy \ £(F}) and F, \ £(F;) have fewer connected
components.

By equation (3.8), for all G and w,

[Fy v B)(Gw) = [R)(G,w) - [F)(G, w) — > [Fy v, B)(G,w).
P#nePMatch(Fy,F3)

Observe that for any 0, each graph FyV, F, has at least one fewer label-connected
y ? (@) n

component than £V Fy = F’. Thus, by induction hypothesis, we may take

0p(X)=0p(X) 0n(X) - > drvpX).

B#nePMatch(Fy,F)

This completes the proof of the lemma. m
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3.7.2 Proof of Theorem 3.6.1

Theorem 3.6.1 (restated) Let g be a prime, let k,b > 0 be integers and let a >

(g—1)-b-|Connl,,| + 1. There is a function

onn? .
A TYPES(IC + 1) X Z((IZ Bl Types(k.) X Z((]:onnIc S Zq

b
Conny

such that for all 7' € Types(k + 1), f' € Zq4 , 7 € Types(k), f € Zﬁj"““‘i, it
holds that for every graph G, and every ws,...,w, € Vg with typeg(w) = 7 and

freqe,(w) = f. the cardinality of the set
{v € Vg : typeg(w,v) = 7/ Afreq(w,v) = f'}

is congruent to X(7', f', 7, f) mod q.
Proof We describe the function A7/, f/, 7, f) explicitly. If 7/ does not extend T,
then we set X(7/, f', 7, f) = 0.

Now assume 7" extends 7. We take cases on whether k£ + 1 is a singleton in I, or
not.

Case 1: {k+1} € I1.. In this case, thereis an I C [k] such that types(wy, . .., wg,v) =
7 if and only if v € {wy,...,wi} and (v,w;) € Eq < i € I (explicitly, I = {i € [k] |
[k + 11110} € B},

For each u,v € Vg, let 2, € {0,1}, where x,, = 1 if and only if u is adjacent to
vin G.

Then, using the fact that g is prime, the number (inod ¢) of v with typeg(w, v) = 7/

and freqq(w,v) = f' can be compactly expressed as (doing arithmetic mod g):

S e M0 [T (1 (FG w0 - )7

'uEV(; \\ {’LL’],...,'IL’&} 161 )G[k}\[ FECOI’\"Z 1

Expanding, the expression ] il Tow; I1 Jelk\ (1= :rwJ) may be expressed in the form
, s T errirra © X e . 7 3q—-1
Y _scik 05 [Lics Tew;- Using Lemma 3.7.2, the expression HFGCOML'I (1= ([Fl(G,w,v) = fR))

may be expressed in the form > . ci|F;l, (G, w,v), where each F; is a k + 1-labelled
3 ! FRCASFICANSE J
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graph with at most [Conn?,,|-b- (¢ — 1) unlabelled vertices.

Thus we may rewrite the expression for A(7/, f', 7, f) as:

> (%Fﬂ]%J(Z}Mm@wwg

ve[n\wi ..k} icS j

— ZbSCj Z ((HTW) [Fj]q(G;w,v))

ve[n]\{wy,...,wx } €S

=3 b, [Fh )g(G.w),

S.j
where Fg ; 1s the k-labelled graph obtained from F; by

(a) For each i € S, adding an edge between the vertex labelled £+ 1 and the vertex

labelled ¢, and

(b) Removing the label from the vertex labelled k& + 1.

Note that Fg; has at most |Connf ;|- (¢g— 1)+ 1 < a unlabelled vertices. Thus, by
Lemma 3.6.2, [F§ ],(G, w) is determined by freqg(w). This completes the definition
of A in this case.

Case 2: {k+ 1} ¢ II». This case is much easier to handle. Pick any j € [k] such
that IL/(j) = IL/(k + 1). Then there is only one v € Vi such that type,(w,v) = 7’/
(namely, w;).

Then A7/, f/,7,f) = 1 if and only if for all F’ € Connzﬂ, [ = fr, where
Fe Connz is the graph obtained by identifying the vertex labelled & + 1 with the
vertex labelled 7, and labelling this new vertex j. Otherwise A(7/, f', 7, f) = 0.

This completes the definition of our desired function A. B

3.8 The Distribution of Labelled Subgraph Fre-
quencies mod q

In this section, we prove Theorem 3.6.12. As in Section 3.3, the proof will be via an

intermediate theorem (Theorem 3.8.2) that proves the equidistribution of the number
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of copies of labelled subgraphs in G(n, p).

3.8.1 Equidistribution of labelled subgraph copies

First, we gather some simple observations about injective homomorphisins from label-

connected graphs for later use (the proofs are simple and are omitted).

Proposition 3.8.1 (Simple but delicate observations about label-connected graphs)

Let F,F' € Connt. Let G be a graph and let w € V& with all (w;)ier distinct.
1. If E € Cop(F,(G,w)), the |E| = |Ep|.
2. If F % F', we have Cop(F, (G, w)) N Cop(F', (G, w)) = 0.

3. Let y1,...,x» € Inj(F,(G,w)) be such that for any distinct j,j' € il x; (Ve \

L(F)) N xp(Ve \ L(F)) = 0. Let x € Inj(F",(G,w)). Suppose x(Er) C
(U;x;(Er)). Then there is a j € [r] such that x(Ep) C x;(EF)-

We can now state and prove an equidistribution theorem for the number of copies
of labelled subgraphs in a conditioned random graph. Theorem 3.6.12 will follow from

this.

Theorem 3.8.2 Let A be a graph with Vs C [n] and |Va| < n'. Letw = (wy, ..., wg) €

K with wy,. .. wy distinet.  Let uy, ... us € Va\ {w; : ¢ € I} be distinet. Let

B, ..., F, be distinct k-labelled label-connected  graphs, with 1 < |Eg| < d. Let
Hi, ..., Hy be distinct k + 1-labelled label-connected  graphs dependent on label k+1,

with 1 < |Eg,| < d.

Let G € G(n,p | Va, Ea). Then the distribution of

(((F3)g(G, W))z’e[é]» ((Hi)o(G, W, uj’))i/ele'],j’éiﬂ)

TV A = e o e . .. .
on ZEFS® i 27 Bawaln—n )L s)logdq_olose to uniform in statistical distance.
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Proof By the Vazirani XOR lemma (Lemma 3.3.4), it suffices to show that for any

4 o/ !
nonzero (¢,c) € Zg X Zfl *$ we have ’]E [z,uRH < 27%paln=n) “where

R := Zc, Yo(G,w) + ZZC// )G, W, uy)

i€ iell] j'els)

and w € C is a primitive ¢* B_root of unity.

We will show this by appealing to Lemma 3.3.3. Let m = (’2’) - (3) Let z €
{0, 1}([31) be the random variable where, for each e € ([g‘]), 2¢ = 1 if and only if edge e
1s present in G. Thus, independently for each e € ([n]) \ (V/‘) Pr[z, = 1] = p, while for
e e ( ) the value of z is either identically 1 or identically 0 (depending on whether
e € E4 or not).

We may now express R in terms of the z,. We have,

R=> " ci(F) (G, w) + Z > i (Hi)o(G W, uy)

iclf] €] j'els]
— Z G Z H Ze + Z Z Z H Ze
icll] EeCop(F;,(Kn,w))ecE vell] 7 €ls] EECop(HL/,(Kn,w.uj/)) eck
= Z CEHZE+ Z c%,Hze,
EcF, ecE EeF; eck

where F; C 2(%) is the set Uiem:m&O Cop(F;, (K, w)), Fo is the set Ui’€[€'] Jelsld, ,#0 Cop(Hy, (K,,,w
for cach E € Fy, cg = ¢; where ¢ € [£] is such that E € Cop(F;, (K,,w)) (note
that by Proposition 3.8.1 there is exactly one such i), and similarly, for E € F,,
s = Dvele).jels) E<Con( Hy (K 1) - Thus if E is such that there is a unique
(¢',5") € [¢') x [s] for which E € Cop(Hy, (K, w,uj)) and ¢ 5 7 0, then ¢ # 0.

Let Q(Z) € Z,[Z], where Z = (Zﬁ)ee([m)\(“;d); be the polynomial

ZCE H Ze H Ze+Zc}g H Ze H Z..

EcF eeEﬂ(‘%‘\) CGE\(‘;A) EcF, eeErl(‘;A) eeE\(‘;")

~ Y\ (Vs . . . .
Let z € {0, 1}( “N\(%) be the random variable z restricted to the coordinates in-

dexed by ([’;]) \ (‘;) (thus each coordinate of Z independently equals 1 with probability
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p). Then R = Q(z). We wish to show that

IE [0Q®]] < 2 Puratnm), (3.9)

We do this by demonstrating that the polynomial Q(Z) satisfies the hypotheses
of Lemma 3.3.3.

Let dj = maX;.e,0 |Er|. Let dj = MAXy jricl, 0 |En,|. We take cases depending
on whether df < dj or d} > ds.

Case 1: Suppose di < d5. Let i, jy be such that cgﬁ i #0and |E Hif]l = d5. Then
Q(Z) may be written as 3. g7 &g [loep Ze + Q'(Z), where F = {E € F2 : EN (VQ‘) =
P} and deg(Q') < d5.

Let X1, X2, - - Xr € INj(Hy, (K, w,uy)) be a collection of homomorphisms such

that:
1. For all j € [r], we have x;(Va, \ L(Hy)) C [n]\ Va.

2. For all distinct 7,5" € [r], we have x;( fH;{, \ L(Hy)) N le(VHif‘ \ L(Hy)) = 0.

Such a collection can be chosen greedily so that r = S”Z(“—';l”—'). Let E; € Cop(Hy,, (K, w, uj))

be given by x;(Eg, ). Let € be the family of sets {£, ... ,E.} C F. We observe the

following properties of the E;:
1. For each j € [r], |E;| = d5 (since x; is injective and wy, ..., wg, uy;, are distinct).

2. For cach j € [r], g, # 0. This is because there is a unique (7,j') (namely
(il 34)) for which cyj # 0 and E; € Cop(Hy, (Kn, w,uy)). Indeed, if j" # jg,
then cach E* € Cop(Hy, (K., w,u;)) has some element incident on uy (while
E; does not). On the other hand, if j* = j; and ¢ # 4, then Proposition 3.8.1
implies that Cop(Hy, (K, w,uj)) N Cop(Hy, (Kp, w,uy)) = 0.

3. For distinct 5,5 € [r], E; N Ey = 0 (by choice of the x;).

4. Forany S € F\E&, |SN(U,E;)| < d5. To see this, take any S € F\& and suppose
1S M (U;E;)| > ds. Let i € [€],§" € [s] be such that S € Cop(Hy, (Ky, W,uy)).
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Let x € Inj(Hy, (K,, w,uy)) with X(Eg,) = S. By choice of d}, we know that
S| = d3,
and (b) SN (U;E;) = S, or in other words, S C (U;E;). Since Hy is dependent

|S| < d5. Therefore, the only way that |SN(U,E;)| can be > d is if (a)

on label £+ 1, we know that S has some element, incident on vertex uj. and thus
(b) forces j" = jg (otherwise no Ej is incident on uy). Now by Proposition 3.8.1,
S|, we have S = E;,
SN(U;E;)| < djforany S € F\E.

this implies that S C Ej for some j. But since |E;| =

contradicting our choice of S. Therefore,

It now follows that Q(Z), F and & satisty thé hypothesis of Lenuna 3.3.3. Con-
sequently, (noting that d < d) Equation (3.9) follows, completing the proof in Case
1.

Case 2: Suppose dj > dj. Let ip be such that ¢, # 0 and |EF, | = di. Then
Q(Z) may be written as Y pr(cp + ) [[oep Ze + Q'(Z), where F = {E € FiUFE, :
EN () =0} and deg(Q') < di.

Let x1, X2, -+, Xr € Inj(F,, (K., w)) be a collection of homomorphisms such that:
L. For all j € [r], we have x;(Vp, \ L(F},)) C [n] \ Va.

2. For all distinct 7,5 € [r], we have x;(Ve, \ L(F,)) N X (VE, \ L(F,)) = 0.

Such a collection can be chosen greedily so that r = ¢ 2("‘;”/ ). Let E; € Cop(£;,, (K, w))
be given by x;(EF, ). Let € be the family of sets {E1, ..., E,} € F. We observe the

following properties of the E;:
1. For each j € [r], |E;| = df (since x; is injective and wy, . .., wy, are distinct).

2. For cach j € [r], cg, +¢g, # 0. This is because cg, = ¢;, # 0 and for any (7, '),
E; & Cop(Hy, (Ky, w,u;)) (and so g, = 0). To see the latter claim, note that
each E* € Cop(Hy, (Kn, W, uy)) has an element incident on vy (which E; does

not).
3. For distinct 4, 5" € [r], E; N Ey = 0 (by choice of the x;).

4. For any S € F\E, [SN(U;E;)| < df. To see this, take any S € F \ £ and

suppose |S N (U;E;)| > di.
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(a) If S € Fy, then let i € [£] be such that S € Cop(F;, (K. w)). Let x €
Inj(F}, (K,,w)) with x(Er) = S. We know that |S| < dj. Therefore,
the only way that |S N (U;E;)| can be > df is if (1) |S] = d}, and (2) SN
(U;E;) = S, orin other words, S C (U;E;). However, by Proposition 3.8.1,
this implies that S C E; for some j. But since |E;| = | S|, we have S = Ej,

contradicting our choice of S.

(b) It S € Fy, then let ¢/ € [¢], 5" € [s] be such that S € Cop(Hy, (K,, w,u;)).
Let x € Inj(Hy, (K,,, w,uy)) with x(Eg,) = S. We know that |S| < dj <
dj. Now S has an element incident on uy. On the other hand none of the

E; have any edges incident on uj. Therefore |S N (U;E;)| < |S| < d].
Therefore, |S N (U;E;)] < di for any S € F\E.

It now follows that Q(Z), F and & satisty the hypothesis of Lemma 3.3.3. Conse-
quently, (noting that dj < d) Equation (3.9) follows, completing the proof in Case 2.
|

3.8.2 Proof of Theorem 3.6.12

Theorem 3.6.12 (restated) Let a > b be positive integers. Let A be a graph with
VaCln] and |V4] <n' <nj2. Let G € G(n,p| Va,Ea). Let w= (wy,...,wg) € V¥,
and let uy, ..., us € Vi \ {wy,...,wx} be distinct. Let 7 = typeg(w) and let 7, =
typeq(w, u;) (note that 7,7, ..., 7s are already determined by E4). Let f denote the
random variable freqi(w). Let f; denote the random variable freqh(w,u;).

Then, there exists a constant p = p(a,q,p) > 0, such that if s < p-n, then the
distribution of (f, f1,..., fs) over FFreq,(t, [k],a) x [, FFreq,(r;, [k + 1], b) is 2754

close to the distribution of (h, hy, ..., hs) generated as follows:
1. h is picked uniformly at random from FFreq, (7, k], a).

2. For each i, cach h; is picked independently and uniformly from the set of all

f" € FFreq, (7, [k + 1], b) such that (7;, f') extends (1, h).
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Proof Letv =w/Il.. Let F1,..., F; be an enumeration of the elements of Connf .
Let II" € Partitions([k + 1]) equal II, U {{k + 1}}. Notice that for cach i € [s],
I, = II'. Let Hy,...,Hy be an emuneration of those eclements of Con n%, that are
dependent on label *.
By Theorem 3.8.2 and the hypothesis on s for a suitable constant p, the distribu-

tion of

(9,9% .., 9°) = ((F)o(G.V))ietg, ((Hi ) (G, v, uj))veie)jrels))

. _ . 7 .
is 279" close to uniform over Zﬁ*e s, Given the vector (g,g,...,g°), we may compute

the vector (f, f1,..., fs) as follows:

1. For F = K;([k]), we have fp =n —|IL|.

2. For all other F' € Conng, let ¢ € [£] be such that F/IL. = F. Then fr =
gi - aut(Fy).

3. For H € Conn, ; dependent on label k+1, let ¢ € [¢] be such that H/(IT') = H.
Then for each j € [s], (fj)m = gf,l -aut(Hy).

4. For H € Conn?,; not dependent on label k£ + 1 and for any j' € [s], there is a
unique setting of (fy)g (given the settings above) that is consistent with the

fact that (75, f;) extends (7, f). This follows from Lemma 3.6.9.

This implies the desired claim about the distribution of (f, fi,..., f;). ®

3.9 Open problems

We conclude with some open problems:

1. What is the complexity of computing the numbers ag, . . . , ag-11in Theorem 3.2.17
We know that it is PSPACE-hard to compute these numbers (it is already
PSPACE-hard to tell if the asymptotic probability of a FO sentence is 0 or 1).
Our proof shows that they may be computed in time 92" of height proportional

to the quantifier depth of the formula.
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2.

Is there a modular convergence law for FO[Mod,,] for arbitrary m? This encom-
passes the study of logics which include multiple modular-counting quantifiers,
such as FO[Mods, Mod;]. Our methods face the same obstacles that prevent
the Razborov-Smolensky methods for circuit complexity from generalizing to
AC®[Mod,,]. Perhaps an answer to the above question will give some hints for

AC°[Mod,,}?

. In the spirit of the Shelah-Spencer 0-1 law [SS87, SS88], is there a modular

convergence law for FO[&] on G(n,n™?), for irrational a? Even the behavior of

subgraph frequencies mod 2 in this setting secims quite intriguing.

93



94



Chapter 4

Affine Dispersers from Subspace

Polynomials

4.1 Introduction

A one-output-bit scedless disperser (often called a deterministic disperser) for a family
F of subsets of {0,1}™ is a function Disp : {0,1}™ — {0, 1} satisfying the property
that on any subset X € F, X  {0,1}™ (the set X is often called a “source”) the
function Disp takes more than one value, i.e., [{Disp(z) : @ € X}| > 1. An extractor
for F is a function Extr : {0,1}™ — {0,1} satistying the stronger requirement that
for every X € F, if x is picked uniformly from X, then Extr(z) is nearly-uniformly
distributed. We think of dispersers and extractors as behaving pseudorandomly on
sources X € F hecause in typical settings where the size of F is not too large, a
random function is indeed an extractor and hence also a disperser. Extractors and
dispersers have been intensively studied in recent years in the context of extracting
randomness from imperfect sources of randomness. The goal of these studies has
been to obtain extractors and dispersers computable in polynomial time, and today
several constructions of seedless dispersers for various structured families of subsets
are known, including for “bit-fixing” and “samplable” sources [CGH*85, GRS06,
TV00, KZ07). We refer the reader to [BKST05] for more information on seedless

dispersers and extractors.



A particularly interesting family of structured subsets that has been considered in
this context, and is also the focus of owr work, is the family of affine subspaces over a
fixed finite field F, of size p (think of p = 2). Extractors and dispersers for this family
of sources are known as affine extractors and dispersers. Affine extractors for spaces of
dimension greater than m/2 are relatively easy to construct [BHRV01]. However, for
spaces of dimension smaller than m/2 the problem becomes much harder, and to date,
only two explicit pseudorandom constructions are known [BKS*+05, BouO7]!. Both
these works give constructions that are shown to behave pseudorandomly on all affine
spaces of dimension > em, where ¢ > 0 is any fixed constant. The work of [BKS*03)]
constructs affine dispersers and that of [Bou07] constructs affine extractors. Both
constructions use recent sum-product theorems over finite fields [BKT04, BGKOG]
and related results from additive combinatorics, along with several other non-trivial

ideas.

4.1.1 Results

Our main result (Theorem 4.2.2) is the explicit construction of an affine disperser for
spaces of dimension o(m). Specifically, our disperser works for spaces of dimension

45 The structure of our main affine disperser is as follows. The m

at least 6m
coordinates are grouped into r blocks, each with an equal number & of coordinates,
and each block is interpreted as specifying an element of the finite field Fpe. The
7 elements thus obtained in Fyx are now substituted into a certain polynomial over
F,x, and its output, which is an element of F o+ 18 projected onto F,, via a nontrivial
Fp-linear mapping of Fpe to F),.

The techniques we use allow for a host of results with a similar flavor. The
simplest-to-state result is a “univariate” affine extractor below the m/2 barrier. By

“univariate” we mean that the function we use to compute the extractor is naturally

viewed as a univariate polynomial. Let ¢ : Fyt — Fpm be any Fp-linear isomorphism

'A related, though incomparable, result of Gabizon and Raz [GRO5] constructs extractors for
affine sources over “large” finite ficlds, where “large” means p > m?2, see also [DGOY] for recent
improvements along this line of research.
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and 7 : Fy» — F, be any nontrivial Fp-linear map?. We show that the function
[ Fp = F, defined by
fla) = = (6" (41)

is an extractor for dimension at least 2m/5 + O(1), as long as m is odd. Another

pseudorandom univariate construction appearing here is

fla) =7 (@) ") (4.2)

which we prove is an affine disperser for dimension greater than n/3 + 0(1). We
conjecture that this construction is in fact an extractor and that both univariate con-
structions are merely the first two members of a larger family of univariate extractors
(see Conjecture 4.2.6).

We point out that if m is even, then Fp» has a subfield Fu.,» which is also a
m/2-dimensional subspace of Fyn for which the above mentioned constructions will
not be a disperser. Indeed, when x belongs to Fpn2 then so does every power of x,
hence some nontrivial Fy-linear map « will be constant on both {:r”pﬂ’g ‘ T e Fpm/»z}

|
and {x“’p'“’ tp

T € ]Fpm/g}. In the next section we comment on the role that the

oddness of m, and more generally, the absence of subfields, plays in our proofs.

On subspaces and polynomials Our analysis makes use of a class of polynomials
called subspace polynomials. These polynomials were first systematically studied by
Ore in the 1930’s [Ore33, Ore34]. They have munerous applications in the study of
finite fields and in the theory of error correcting codes (See [Ber68, Chapter 11} and
[LN97, Chapter 3, Section 4]). More recently, they have been used within computa-
tional complexity to construct short PCPs [BGH04, BS05, BGH*05] and to study

limitations on the list-decodability of the Reed-Solomon code [BKROG].

The polynomials studied in this last line of works are what we call the kernel-

2Explicitly, ¢ is a bijection between the vector space F)' and the finite field Fym and 7 is a
nonzero lincar map from F,» to F,. Both mappings are F,-linear, i.e., they respect addition and
multiplication by scalars in F,.
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subspace® polynomial associated to a linear subspace L C Fym , which is a polynomial
whose set of roots equals L. In this work we analyze our dispersers using elementary
properties of the image-subspace polynomial of a linear subspace L. These polynomials
have the property that their image, i.e., the set of values they take over Fym ., equals
L. Our proofs begin by first reformulating the property of being an affine disperser in
terms of these polynomials. We then use a simple-to-prove, yet extremely powerful,

structural lemma about these polynomials, to get our main results.

Pseudorandomness from the absence of subfields It was recently realized,
starting with the work of [BIW04] and further developed in [Zuc06, KRVZ06, BRSW06,
Bou07], that finite fields without large subfields are the source of many psendorandom
phenomena, and that this can be put to good use in the construction of extractors
and dispersers. The above mentioned works all harnessed this pseudorandomness via
recent results from additive combinatorics such as the sum-product theorem of Bour-
gain, Katz and Tao [BKT04] and the related multilinear exponential sum estimates
of Bourgain, Glibichuk and Konyagin [BGK06].

In our work, we offer a different algebraic incarnation of this phenomenon. Specif-
ically, we show that the absence of large subfields directly affects the structure of the
image-subspace polynomials of the field. Image-subspace polynomials are lincarized,
which means that they are of the form Z;":'_Ol a; X?'. Roughly speaking, our main
structural lemma (Lemma 4.4.3) says that the image-subspace polynomial of a sub-
space A of dimension d cannot have d consecutive coefficients a; that are all zero.
Moreover, and this is the crucial part, if A is not contained in a constant multiple of
a subfield of F,», then the polynomial cannot have even d — 1 consecutive coefficients
that are all zero. This lemma has a short proof (appearing in Section 4.4.1), yet
is extremely powerful. Surprisingly, reducing the maximal length of a sequence of
zero-coefficients by 1 (from d to d — 1) for spaces that are not contained in subfields

is all it takes for the underlying pseudorandomness to get exposed.

3The terms “kernel-" and “image-subspace polynomials” were suggested by Prahladh Harsha and
we thank him for introducing this nomenclature.
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4.1.2 Proof strategy for affine dispersers

We now give a brief description of the basic proof strategy that we use to prove that
a function is an affine disperser. We demonstrate the steps involved in the special
case of the function f defined in (4.1) for the case of p = 2 and 7(y) = Tr(y) (where
Tr : Fom — Fy is the Trace map). We will show in Theorem 4.2.4 that if m is odd (so
that Fum has no proper subfields of size 2™/2), then for any affine space A C Fom of

dimension > 2m/5 + Q(1), we have {Tr(a’) |a € A} = Fa.

1. Reduce to showing that a certain polynomial h is not a constant
polynomial: We first parameterize the affine space A using subspace polyno-
mials. Let Q(X) be the image-subspace of A, so that A = {Q(z) : x € Fom}.
In terms of the polynomial Q(X), we want to show that the composed map
foQ : Fyp. — Fyis non-constant. Let h(X) be the polynomial Tr(Q(X)7)
mod (X?" — X), so that h(z) = f(Q(z)) for each © € Fom (cf. Proposi-
tion 4.3.1). Thus to show that h is a nonconstant map, it suffices to show
that ~(X) is a nonconstant polynomial. We do this in the next two steps of our
proof strategy, by finding a monomial of positive degree that appears in h(X)

with a nonzero coefficient.

2. Express the coefficients of h in terms of the coefficients of the subspace
polynomials: To show that & has a monomial of positive degree with a nonzero
coefficient, it will be convenient to get an explicit expression for the coefficients
themselves. Such an explicit expression can be obtained by direct substitution.
In all the cases we consider, there is a good deal of structure in the resulting
fornmilae. For example, for the polynomial we obtained while studying f(x) =

Tr(z"), we have the following lemma.

Lemma 4.1.1 Let Q(X) = S.70 a;: X Let h(X) = Tr(Q(X)™) mod (X*" —
X). Then for distinet j, k.1, the coefficient of X Y4242y (X)) is given by the
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CTPression:
2
Aj—p Ak—r Ay

m—1
ZPGI‘IU @,y i, at. , (4.3)
=0
where Perm is the matriz permanent, and the subscripts of the a’s are taken

mod m.

3. Argue combinatorially that some coefficient of A must be nonzero:
Finally, we show that some positive degree monomial of A has a nonzero coeffi-
cient. Using the regular form of the coefficients of the polynomial A, for example
as given in Lemma 4.1.1, and the structural results about the coefficients of sub-
space polynomials, this part of the argument reduces to the combinatorics of
cyclic shifts on Z,,. More to the point, we use our main structural lemma
(Lemma 4.4.3) to prove that there is a choice of j, k, I such that (%) the matrix
appearing in the first summand (corresponding to r = 0) in equation (4.3) is
lower triangular with nonzero entries on its diagonal, hence its permanent is
nonzero, whereas (4) the matrices appearing in all other summands in equation
(4.3) (corresponding to r = 1,...,m — 1) contain a zero column, hence have a

7Zero permanent.

4.1.3 From affine dispersers to extractors

We believe that all constructions provided here are affine extractors, not merely dis-
persers. We can prove this only for our simplest. construction, that described in (4.1).
This proof goes via a general theorem saying that every function of F,-degree 3 that
is an affine disperser for dimension d, is also an affine extractor for dimension slightly
higher than d (with the bias decreasing to 0 as the dimension increases). The function
described in (4.1) is of this form (cf. Proposition 4.3.2) whereas that appearing in
(4.2) is already of F-degree 4 and the other dispersers analyzed here have even higher

degree.
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4.2 Main results

In this section, we state our main results. We start by formally defining affine dis-

persers and extractors.

Definition 4.2.1 (F,-affine dispersers and extractors) A function f :F' — T,
is an F,-affine disperser for dimension d if for every affine subspace S C F* of

f(A)] > 1.

dimension at least d, we have
A function f gt — Fp is an F,-affine e-extractor for dimension d if for cvery
affine subspace S C T, if x is picked uniformly at random from S, the statistical

distance of f(x) from the uniform distribution on F, is at most €.

We briefly indicate the relation between this definition and the more general set-
ting. Following the derandomization literature, we will refer to a distribution over a
domain D as a “source”. A function f: D — R is said to be an e-extractor for a
set of sources S if, for every S € S, if x is picked according S, then the statistical
distance of f(zx) from the uniform distribution on R is at most e (¢ is called the
error-parameter of the extractor). The function f is a disperser for § if it is an
e-extractor for some e < 1. (This is equivalent to saying that f is nonconstant on the
support of S for each source S € S).

A d-dimensional affine source in F}! is the uniform distribution over some
d-dimensional affine space. In this language, we sec that a function f : Fp* — F, is
an Fy-affine disperser (e-eaxtractor, respectively) for dimension d if and only if it is a
disperser (e-extractor, respectively) for the set of d-dimensional affine sources in Fy.

A more standard definition of a disperser, as appearing in, say, [Sha02], requires
that for every d-dimensional affine source S, f(supp(S)) equals the full range Fp.
Notice that for the case of p = 2 the two definitions match. All our constructions give
F,-affine dispersers according to Definition 4.2.1. When p is clear from the context,

we simply refer to them as affine dispersers.
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4.2.1 Disperser for affine spaces of sublinear dimension

We begin by describing the function f : Fpt — F, which will prove to be a disperser
over F,, for affine sources of sublinecar dimension. The integers n,r and ¢ are param-
eters of the construction to be specified later. As in [Bou07], we partition the m
coordinates of an input x into r blocks (zy,...,2,) of n coordinates cach (we assume
n divides m by discarding a few ficld-clements, if necessary). We will pick n to be
prime, so that Fy» has no nontrivial subfields. Each block z; is interpreted as an
element of Fp» by using an Fy-linear isomorphism from Iy to Fyn. We then raise cach
x; to a suitable distinct power and let y; denote the result of this powering. Next,

tth

we apply the symmetric polynomial to y,...,y.. and get z € Fyn, where this

polynomial is defined by

Symi(vi,....Y,) = Y []v

IC[) |=t i€l

Finally, we take a nontrivial Fp-lincar map 7 : Fn — F »» and output 7(z). We now

formally state our main result.

Theorem 4.2.2 (Affine dispersers for sublinear dimension) Given integer m
fux parameters n,r.t as follows. Let n be the smallest prime bigger than 2- m35. Let
r=[m/n] and let t = [/r]. (We have n = m3°r = m?® and t ~ m/5.) Let
¢ Fr = (Fpn)" be an injective Fy-linear map, where ¢(y) = (41(y), ..., o (y)) and
$i(y) € Fpr. Let 7w : Fyn — F,, be a nontrivial Fy-lincar map. Then the function

[ Ey = Fp defined by

Fla) = (Sym (1@ (62(a) L (6, @) ) (4

is an affine disperser for dimension greater than 6m*5, i.e., for all affine A C F

with dim(A) > 6m*’® we have |f(A)| > 1.

Notice f can be computed in polynomial time in p and m because Symt can be

computed efficiently in the said time (using the Newton-Girard identities). From a
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computational viewpoint our construction is more efficient than that of [Bou07] which
. e . ) . . C o1/
for spaces of dimension em required a running time of m .

The method by which we prove Theorem 4.2.2 is quite general and in the following
subsections we show that a few natural variants of it can also be shown to be good

affine dispersers and extractors in various settings.

4.2.2 Disperser for independent affine sources

Informally, we say a function f : (Fp)* — F, is a disperser for independent affine

sources if on every set of affine spaces Ay, ..., A, C Fp of sufficiently large dimensions,

we have |f(A; x -+ x Ay)| > 1. The following theorem presents an affine disperser
for independent sources that works as long as the sum of dimensions is greater than
n. The analysis of this independent source affine disperser turns out to play a crucial
role in our proof Theorem 4.2.2.

In what follows, a proper subfield of Fpn is a subfield K of size < p” and an affine
shift of K is a set of the form {a-s+b|s e K} for some fixed a,b € F,n. (Notice
that every one-dimensional Fp-affine subspace of Fy.,n > 1 is an affine shift of the

proper subfield F,.)
Theorem 4.2.3 (Disperser for independent affine sources) Let 7 : Fpn — F,

be a nontrivial Fp-linear map. Consider the function f : IF’f,n — T, given by

flry,...,x) = H:c%“’ : (4.5)

Let Ay, .-+, Ay C Fpn be Fo-affine spaces of dimensions dy, . .., ds respectively, where
' , p p~¢] ) ) Y

> ioi(di = 2) > n. Suppose furthermore that no A; is contained in an affine shift of

a proper subfield of Fpn. Then |f(Ar X - x Ap)| > 1.

Remark The assumption that A; is not contained in an afline shift of a proper
subfield is necessary. Without it we could set A; = K for a proper subfield K, and

select some nontrivial 7 such that the resulting function f is constant on Ay x. .. x A,.
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Remark A result of Hou, Leung and Xiang [HLX02] implies the following state-
ment (cf. [DGO09]). Let Ay,..., A, C Fp be affine spaces of dimensions dy,...,d;

respectively and none are contained in affine shifts of proper subfields. Then

dim | span sz T € A; > min | n, }:(dz - 1)
i i
Soif Y (d; — 1) > n then 7 (Hle ”cz) 1s nonconstant on A; x --- x A;. The proof
technique of [HLX02] differs significantly from ours and it is not clear how to derive

one result from the other.

4.2.3 Univariate dispersers

Our next set of results is a pair of constructions based on univariate polynomials.
We treat our input = € I, as a single element of the field F,» by using any F,-
linear isomorphism between Fy and Fyn. We raise « to a suitable power and map the
result to F,, using any nontrivial Fp-linear map. The first construction will be shown
in the next subsection to be an extractor for dimension greater than 2n/5 and the
second works for lower dimension (n/3) but we cannot show that it is an extractor (cf.
Conjecture 4.2.6). We call the next construction “cubic”, and the one that follows
“quartic”, because the relevant functions f, when viewed as having domain (F o)
are computed by polynomials of degree 3 and 4 respectively (cf. the first bullet of

Proposition 4.3.2).

Theorem 4.2.4 (Univariate cubic affine disperser) Let 7 : Fyn — F, be a non-

trivial Fp-linear map. The function f : Fpn — F, given by

f(”L‘) — <x1+p+p2)

. . + . . - -
is a disperser for the set of affine spaces of dimension greater than = + 10 that are

not contained in an affine shift of a proper subfield of Fpn.

In particular, if n is odd, then f is an affine disperser for dimension %?— + 10.
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Theorem 4.2.5 (Univariate quartic affine disperser) Let 7 : Fpn — Fp be a

nontrivial Fy-linear homomorphism. The function f: Fp — F, given by
. 21,3
flz) =7 (:C1+p+p +p )

is a disperser for the set of affine spaces of dimension greater than % + 10 that are
not contained in an affine shift of a proper subficld of Fpn.

In particular, if n is odd, then f is an affine disperser for dimension % + 10.

We believe that the dimension bound in the above pair of theorems is not tight.
In particular, we think the cubic construction of Theorem 4.2.4 should be a disperser
for dimension > n/3 and the quartic construction of Theorem 4.2.5 should work for

dimension > n/4. In fact, we believe in the stronger conjecture stated next.

Conjecture 4.2.6 (Univariate extractors) For every prime p and integer k there
exists an integer ¢ = c(p, k) and constant € = €(p,k) > 0 such that the following
holds for all sufficiently large n. Let m: Fpn — Fp be a nontrivial Fp-linear map. Let

s = Zf::o p'. The function fy : Fpn — F, given by

filx) = m (x*)

is an exp(—ed)-extractor for the set of affine spaces of dimension greater than (% +c)+

d that are not contained in an affine shift of a proper subfield of F ..
. ) P , IR

4.2.4 A cubic affine disperser is an affine extractor

Our final set of results shows that any cubic function that is a disperser for dimension

d, is an e(d')-extractor for dimension d + d’, where €(d’') goes to 0 as d' increases.

Theorem 4.2.7 (Cubic affine dispersers are affine extractors) There exists a
universal constant € > 0 such that the following holds. Let f : FJ' — Fp, be computed
by a cubic polynomial. If f is an affine disperser for dimension dy then f is an affine

O(d™¢)-extractor for dimension do + d.
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Using the cubic construction from Theorem 4.2.4, the previous theorem implies

the following affine extractor.

Corollary 4.2.8 (Univariate cubic affine extractor) There exists a universal con-
stant € > 0 such that the affine disperser f defined in Theorem 4.2.4 is an affine
O(d=<)-eatractor for dimension (%2 + 10) + d.

The method of proof of Theorem 4.2.7, restated next, is very different from what
we use in the rest of this paper. It relies on an energy-increment argument and Fourier
analysis. Because the methods are unrelated to the main theme of this thesis, we omit
the proof and refer the reader to the paper.

Remark  Recent work of [HS09] gives a better bound on the error-parameter of
[ stated in 4.2.7. They show a bound of exp(—d®) on the error-parameter for some

universal constant € > 0.

Counting arguments show that there exist cubic functions that are dispersers for
affine spaces of dimension as small as O(y/n). Given Theorem 4.2.7, this implies that
one way to get affine extractors for sublinear dimension is to find an explicit cubic
affine disperser that works for the same dimension bound.

Unfortunately, quartic affine dispersers are not necessarily affine extractors for
comparable dimension. So, although we believe the quartic construction of Theo-
rem 4.2.5 is an affine extractor (cf. Conjecture 4.2.6), a proof of this conjecture will

have to rely on the particular algebraic structure of this quartic function.

Organization of this chapter The next section introduces some preliminaries.
In Section 4.4 we establish some results about subspace polynomials that we will
need for the following sections. Of particular importance are (i) the Main Structural
Lemma 4.4.3 which connects the fact that a subspace is not an affine shift of a subfield
to the zero-nonzero pattern of the coefficients of its image-subspace polynomial, and
(i4) Lemma 4.4.6 which is used to show that our constructions, when restricted to a

subspace of sufficiently large dimension, are polynomials of positive degree.
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The proofs of our main results go in increasing order of complexity. In Section 4.5
we discuss our univariate constructions, proving Theorems 4.2.4 and 4.2.5. In Sec-
tion 4.6 we analyze the disperser for independent sources and prove Theorem 4.2.3.
In Section 4.7 we analyze our construction for sublinear dimension and prove Theo-
rem 4.2.2. Together, Sections 2.4, Sections 4.4 4.6, and 4.7 contain a complete proof

of Theorem 4.2.2. We conclude with some open problems.

4.3 Preliminaries

In this section we build up some preliminaries on polynomials, and recall some notions
related to Fp-degree.

We will use capital letters such as X; are used for formal variables, and small
letters such as x; are used for field-elements.

For a polynomial h(Xy,...,X,) € Fpu[X),..., X,], abusing notation we define
X1, X)) mod (XF" — Xi)iep)

to be the unique polynomial congruent to A(Xy,...,X,) mod (X! — X;)ep) of

degree < p™ in each variable. Equivalently, A’ is the polynomial obtained by starting
. . " . . T

with h and repeatedly replacing, for each 7, every occurrence of X hy X;. The

following proposition, stated without proof, will be used repeatedly in our arguments.

Proposition 4.3.1 Let h(Xy,..., X,) € Fpu[ Xy, ..., X,]. Let

3

R(Xy,. ., X)) = h(Xa,.., X)) mod (XP — Xi)iep))-

k3

Then for any x € F. we have h(z) = h'(z).
Consequently, |h(F,.)| > 1 if and only if h'(Xy, ..., X;) is a polynomial of degrec

greater than 0.

We recall some notions from Chapter 2, instantiated in a slightly simpler form for

our purposes. For a nonnegative integer ¢, let wt,,(¢) denote the sum of the digits of
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¢ in the base-p representation. If m(Xy,...,X;) € Fp [X1,..., X, is the monomial
1., X%, we define the Fy-degree of m in the variable X; to be wt,(3;). We define the
Fy-degree of the monomial M to be the sum of the Fy-degrees of M in each variable
X;. We then define the Fp-degree of a polynomial to be the maximum IF,-degree of

any of its monomials.

Proposition 4.3.2 Let P(Xy,..., X,),Q(X1,..., X,) be polynomials in For [ X1, .., XY
with Fp-degrees dy,dy < n respectively. Let ¢ = (¢, ..., ¢) : IF;"t —> IF; be an F-

linear isomorphism. and 7 : Fp — F,, be an Fy-linear map. Then

o Let f = (f1,...,fa) : F}* = F, be given by f(x) = 7 (P(di(x),...,¢(x))).
Then f is computed by a polynomial P' € F,[Y1, ..., Y] of total degree at most
dy.

o The Fy-degree of P(Xy,..., X3) - Q(Xq,...,X;) is at most dy + d.

o The Fp-degree of P(X1,..., X)) mod ((Xf — Xi)iey) equals dy.

We recall one final basic fact about finite field extensions - that F,-linear maps

from Fpn to F,, are computed by trace maps.

Proposition 4.3.3 Let Tr(Y) = 7' VP be the trace map from F,n to F,. For
cvery Fy-linear map T Fpn — T, there exists p = pr € Fypn such that for all x € Fyn
we have

w(x) = Tr(p - x).

Furthermore, 7 is trivial if and only if u = 0.

4.4 Results on subspace polynomials

Preliminary material on subspace polynomials can be found in Section 2.4.
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4.4.1 The main structural lemma

In this section, we prove our main structural lemma on the coefficients of subspace
polynomials.
We begin with some basic facts about finite fields. In what follows, let F, denote

the algebraic closure of I,

Claim 4.4.1 Let k > 1, and suppose a,c € Fpn are such that a?" —ca = 0. Then,

letting b be any (p* — 1)-th root of ¢ in F,, we have a € b Fpe.
Proof 1If a = 0 then the claim is trivial. Otherwise, we have a?* = ca, and hence

a?" =1 = ¢. Thus (a/b)P"! = 1, which implics that a/b € F,.. ®

Claim 4.4.2 For linearized polynomial Q(X) = Z;:(} anpj—{—& € Fyn[X] and integer

t. we have

—

n—

QX)) (mod X*" = X) =3 (a5 mod m)" X* + '

.
Il
)

NS . . . . . it
The proof follows by direct expansion, using the Fy-linearity of the map 7 —— ZF .
We now state and prove our main structural leinma about the zero/nonzero pat-

tern of consecutive coefficients of subspace polynomials.

Lemma 4.4.3 (Main structural lemma for subspace polynomials) Let L be a

. . . . n—1 . .
d-dimensional lincar subspace in Fpo.  Let Qr(X) = 3775 a;XP be the image-
subspace polynomial of L.

1. For any integer v and set J = {(r+37) mod n|j=0,....d =1} of d consec-

utive indices in Zy, there is some j € J with a; # 0. In particular, ag and a,_g

are nonzero.

2. Suppose that L is not contained in any constant multiple of a proper subfield
of Fpn, ice. L & B-Fpe for any B € Fpu and any Fpe C Fpn. Then for any
integerr #n—d+1 and set J={(r+j) mod n|j=0,....,d=2} ofd—1

consecutive indices in Zy,, there is some j € J with a; # 0.

109



Proof  For the first part, suppose a; = 0 for all j € J. Note that by Lemnma 2.4.4,
Qy has p™¢ distinct roots in Fyn. Let Q/(X) := Qp(X P med XY - X Then,

by Claim 4.4.2 we conclude Q/(X) = S g2~ """

P’ for any § € [n—d. n—
i=0 Yjprid-nX" - Now for any j € [n—d,n—1],

we have ajyryq-n = 0 by assumption, and thus Q'(X) is of degree at most p™~4-1. In
addition, by Proposition 4.3.1, Q'(a) = Q. (a)?" """ = 0 for every a € F, satistying
Qr(a) =0, and hence Q' has at least p»~¢ roots. This is a contradiction.

In particular, since by definition a,_g411,...,a,-1 forms a sequence of d — 1 con-
secutive coefficients that are all zero, we conclude both a,_4 and ag must be nonzero.

For the second part, suppose a; = 0 for all 7 € J. Again, by Lemma 2.4.4, Qp
has p*~? distinet roots in Fpu. Let k = n — (r +d) + 1 (note that 0 < k < n).
Then as above the polynomial Q'(X) := Q(X)?* mod XP" — X is nonzero of degree
at most p*~% In addition, Q'(a) = Q L(a)pk = 0 for every a € Fpn for which
Qr(a) = 0. As Q" and Qg are of the same degree p*~¢, there is a constant ¢ € Fpn
such that Q'(X) — cQr(X) is of degree at most p~4~1 and vanishes on the p*=9 roots
of Qr(X). Thus the polynomial Q'(X) — cQr(X) is identically zero. Recalling the
definition of Q'(X), have just showed that Q. (X)P* — cQr(X) = 0 mod X" — X.
Thus for each a € Fpn, we have Q L(a)pk — cQr(®) = 0. Now, since the image of Qp
is L, by Claim 4.4.1 we conclude that . Cb-F o (where b € Fp is a p* — 1-th root of
c). This almost gives the desired contradiction, but for the possibility that b Z Fpn,
and that F,» may not be a subfield of Fp..

Let 5 € L\ {0}. For any a € L, we have o/ € (b-Fue)/(b- Fi), and hence
a/f € Fp. Thus 571 L C Fpr 0V Fpn = Fpum, where (k,n) = ged(k,n). Thus
L C B F,wmn, contradicting the hypothesis on L. ®

4.4.2 Coeflicients of products of subspace polynomials

In our subsequent arguments, we will need time and again to prove that a cer-
tain polynomial P, which is the trace of products of linearized polynomials reduced
mod (X7 — Xi)iep)), Is not a constant. In this subsection we describe a lemma

that will allow us to argue such statements by showing that a well-chosen monomial

110



of P has a nonzero coefficient. We start with a definition.

Definition 4.4.4 (Associated matrix and its zero-one indicator matrix) For
. . . -1 i . . . .
a linearized polynomial Q(X) =Y iy a;.X?" over Fp., we define its associated matrix
{0, —1}x{0,c.n-1} o N ) o )
Mg € Fp. by setting the (i,j)-entry of Mg to be (a;—;)P" . where both
rows and columns are indexed by {0,1,...,n — 1} and index arithmetic, as well as

powers of p are computed modulo n. Explicitly, My is the following matrix

Qg ay as e e Ap-1 \
(an-1)?  (ao)F (@) ... ... (@2)

(an_o)® (an1)? (@) ... ... (ap_3)?

\(al)pn_l (@)™ (ag) ™ L (ao)P"'l/

For a; € Fpn let a) indicate whether a; is zero, i.e., o, = 0 if a; = 0 and otherwise

a; = 1. Similarly, let M" = Mg denote the zero-one indicator matriz of Mg. The

,.

i or, in other words, the (i, j)-entry of M" indicates

(1, 7)-entry of this matriz is a

whether the (4, j)-entry of M is nonzero.

The use of the associated matrix is captured by the following claim. The proof of

the claim (which is omitted) follows immediately from Claim 4.4.2.

Claim 4.4.5 The (i,7)-entry of Mg is the cocfficient of XP' in the linearized poly-
nomial (Q(X) )p" mod XP" — X

To state the main lemima of this subsection we need the following notation. For
A, B nonempty subsets of {0,...,n— 1} let M[A, B] be the minor corresponding to

rows A and columns B. For an integer r, let B+ 7= {s+r mod n|s € B}.

Lemma 4.4.6 Let € Fyu \ {0}, Let Ay,..., A, By,...,B; € {0,...,n— 1} sat-
isfy |A;| = |Bi| > 0 fori = 1,...,t. Let oy = ZjeAipj,/Bi = ZkeBl_‘pk. Let
Q1(X1), ..., Qu(Xy) be linearized polynomials with associated matrices My, . .., My and

zero-one indicator matrices My, . .., M{ respectively.
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b . - t 8 -
The coefficient cas of the monomial M =[] =1 X;‘ n

t

R(Xy,... . X)) =Tr [ p[[(@i(x:)™ mod ((X?" — X,)icp) (4.6)

i=1

is given by the expression

n—1 t n—1 t
cpm = Z/ﬂ’r : HPerm (M;[A; + 7, B]) = Z,u.”r . HPerm (M[Ag, B; — r])P . (4.7)
r=0 =1 r= i=1

Proof Notice

t n—1 t
Te | p[T@x)™ ) =3 w - Tl (@ix
1=1 r=0 1=1
Thus, caq is a sum of n elements, where the rth element, denoted c(\’,t) is the coefficient
of m in the rth summand in the right hand side above. We can break CM further
into 4" times a product of ¢ terms, where the ith term is the coefficient of X7 in
(Q:(X:))™™". So to prove the lemma it suffices to show that the coefficient, of Xf"' in
(Qi(X:))™7" is Perm (M;[A; + 7, Bi)).
Expand (Q;(X;))*?" as

IT @y = ] @ix))”.

jeA; jEA;+r

. . B k ) .
By assumption |[A;| = |B;| and expanding X;" as [],cp XI we see that for every
one-to-one mapping h : B; — A; we get a contribution to the coefficient of Xf"' by

C . ok h(k)+r . .. - B - . .
vicking XP from (Q;(X;))P , 1.e., the coefficient of X% is (using Claim 4.4.5):
1 ’ 2 O

> T @i = Perm(Mil4 + 1, By).

h:B;—A;,h one-to-one k€B;

This completes the proof of the lemma. W

The above lemma gives us an explicit formula for the coefficients of a certain

polynomials. The following remark describes the exact way in which this leinma gets
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used to show that such a polynomial is nonzero.

Remark 4.4.7 Keep the notation of the previous lemma. Suppose that the following

two conditions hold:

1. M{[Ay, By, ..., M[[As, B] are each, up to reovdering of rows and columns, upper

triangular with every diagonal entry nonzero.

2. For everyr € {1,...,n— 1} there exists i, € {1,...,t} such that M} [A; , B;, —

r| contains an all-zero column.

Then the coefficient ey of the monomial M in R(Xy,...,X,) is nonzero.

Indeed, assumption 1 implies that the first summand on the right hand side of (4.7)
18 nonzero, because it is a product of permanents of upper triangular matrices with
nonzero diagonal. Assumption 2 implies that all other summands are zero, because

one matriz in the product has a zero permanent on account of its all-zero column.

4.5 Univariate constructions

In this section we prove our results about univariate dispersers. We start with the
cubic affine disperser (in the next section, we will show that it is even an affine

extractor).

4.5.1 Cubic affine disperser

Theorem 4.2.4 (Univariate cubic affine disperser, restated) Let 7 : F,» — F,

be a nontrivial Fy-lincar map. The function f: Fpn — Fp given by

fa)=n (x1+p+1f")

is a disperser for the set of affine spaces of dimension greater than 2—; + 10 that are

not contained in an affine shift of a proper subfield of Fyn.

In particular, if n is odd, then f is an affine disperser for dimension 35’1 + 10.
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Proof =~ We assume without loss of generality that dim(A) = d = [2] 410 (by
replacing A with an arbitrary subspace of A of this dimension). By Proposition 4.3.3,
we know that 7(x) is of the form Tr(uz) for some u € Fpn \ {0}. Let Q(X) be the

image-subspace polynomial of A, so that A = Q(F,»). Let
R(X) = Tr(p- Q(X)"**") mod (X*" - X),

so that by Proposition 4.3.1, R(z) = f(Q(x)) for each z € F,» and hence R(F,») =
f(A). The same proposition implies that to prove Theorem 4.2.5, it suffices to show
that R(X) has a monomial of positive degree, and this is what we shall do.

To find the desired monomial we start by invoking Lemma 4.4.6. Applying this
lemma to our case we have t = 1 and we get a single linearized polynomial Q(X;) =
Q(X). The set A = A; is {0,1,2}, which corresponds to the exponent o = aq =

p° + p' + p?. Thus, Lemma 4.4.6 reads in our case as follows.

Claim 4.5.1 For B ={i,j,k} C{0,...,n— 1} let 3= p* + p’ + p*. The cocfficient

e of the monomial M = X7 in
T (- QP 7)  (mod X7 — X)

15 given by
n-1

epm = Z;,L"Perm (M[A,B—r])"" . (4.8)

r=0
By Remark 4.4.7, the above claimn implies that in order to show that R(X) is
nonconstant, letting M’ = Mg be the zero-one indicator matrix of Mg as defined in

Definition 4.4.4, it suffices to find a B C {0,...,n — 1} with |B] = 3, such that:

1. The matrix M'[{0,1,2}, B] is, up to reordering of rows and columns, upper
? ? C b

triangular with each diagonal entry nonzero.

2. For every r € {1,...,n — 1} the matrix M'[{0, 1,2}, B —r] contains an all-zero

column.
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We proceed to find such a B. Thus all the action is in the first 3 rows of the matrix
M.

To this end, we state a few useful properties of the coefficients of @ that all follow
immediately from Lemma 4.4.3 and will be used later on in the proof. Notice that
(iv) below follows via the second part of Lemma 4.4.3 from our assumption that A is

not contained in an affine shift of a proper subfield of Fp..

Claim 4.5.2 Let Q(X) = Z?;ol @ XP' + a be the image-subspace polynomial of A.
Letting d = dim(A) we have (i) d > 2 +10, (ii) ao,ap-a # 0, (iti) Gpgy1 = ... =
an—1 = 0 and (iv) for every 0 < j < n —d there is at least one nonzero coefficient

amongst a;, aq1, ..., Qj4d-2-

To further simplify notation, for ry < 7o let [r1, 5] denote the set of integers in
the interval [r1,72). Let Iy = {i € [0,n — 1] : @; = 0} denote the set of indices of the
zero coefficients of @ and let Iy = [0,n — 1]\ Iy be the set of indices of nonzero ones.

We show the existence of a set B satisfying properties 1 and 2 and break the proof

into three cases according to the structure of Iy, I7.

Case I — I1N[n/5—15,2n/5+7]#0: Letj € 1N[n/5—15,2n/5+7]. We claim
the set B = {0,j + 1,n — d + 2} satisfies our pair of properties. Property 1 holds

hecause
ay Ay Gp_gpo ag a0
M'{0.1,2},{0,j+1L,n—d+2} = | o , A dgn | =] 0 @ 0
Ay s a3a1 g 0 aéﬂl Qg

The second equality holds because of Claim 4.5.2 (1), (i) .

We now argue property 2. We have

a
M'[A,B—r]= M'[{0, 1,2} {n—rj+1—-rn—d+2-r}=| o a1,
a/ ‘I. !

1
0
0

x ()
1 0
* 1



For r € [1,d — 3] the first column of M'[A4, B — r] is seen to be zero because the set

of indices appearing there is
{n—=rm—r—1n—-r—-2yCn-d+1,n-1]C I,

(the last inclusion follows from Claim 4.5.2 (i) ). Similarly, for r € [n—(d—3),n —1]

the last column of M'[A, B — r| is zero, since the set of indices appearing there,
{n—d+2—-rmn—d+1—-rn—d-r}Cn—d+1,n—1]CI.

Finally, for the remaining r € [d — 2,n — (d — 2)] C [2n/5 + 8,3n/5 = 8}, using the
fact that j € [n/5 — 15,2n/5+ 7], we see that the middle column of M'[A. B — r] is

zero, since the set of indices appearing there,

n 3n 2n n
[(3—15) - ( : —~8),<—5—+7> 1 <~5—+8H

Fg—&n—l} C I,
9

N

{+1-rj-rj-1-r}

where the last inclusion uses the bound on d which implies 3n/5 —8 > n —d. We

conclude that property 2 also holds and the proof of the first case is complete.

Case Il — 1 N[n/5—15,2n/5+ 7] = 0: Let j; be the largest element in [0,n/5 —
15]NI; and let jp be the minimal element in [2n/547,n—d]NI;. By Claim 4.5.2 (i)
we cannot have both j; = 0 and j» = n — d. Consider the following four intervals:
[0, 71] (whose end points are in I7), [j1 + 1, j2 — 1] (which is contained int Iy), [j2, n —d]
(whose end points are in I;), and [n —d+1,n — 1] (which is contained in /). Denote
the length of these intervals by oy, . . ., a4 respectively. Notice the length of each of the
zero intervals (g, ay) is strictly greater than the length of the other two “nonzero”

intervals. Moreover, by the assumption that A is not contained in an affine shift

of a proper subfield, part 2 of Lemma 4.4.3 implies that oy > as. By assumption
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a1, as < n/5— 10. We summarize this for future reference by

d— 2= ay > as > max{as, oz} + 10. (4.9)

There are two subcases,

Case IL.a — oq # as:  Assume without loss of generality ay > a3. We claim that
B = {0,n —d+ 1,j; + 2} satisfics our pair of properties. (The case of oy < a3 can be
seen to be identical by using the arguinent below to show B = {ja, /1 + 1,n —d + 2}

satisfies the said pair of properties.) Property 1 holds because

ay Qg1 @pp0 1 00
M'[{0,1,2},{0,n—d+ 1L, +2}=| a,_, a,4 dj, |=| 010
a"ln—‘z a‘;z#d—l a;& 0+ 1

Regarding property 2, the key observation is that any nonzero shift will force either
the first or the last column to be all zero. Indeed, the difference between the top
left and bottom right indices of M'/[A,B —r = {n—r,n—d+1—r,j1 +2—7r}is
j1 = oq — 1, and the difference between any other pair of indices chosen one from
each of the first and third columus is between j; and j; + 4. Thus, by (4.9) the only
value of r such that both these columns are not entirely zero is r = (0. We conclude

property 2 holds and the proot of this case is complete.

Case ILLb — a; = a3: In this case we claim that B = {0,j2 + 1,71 + 2} satisfies
our pair of properties. Property 1 can be verified by inspection as in the previous
two cases. Furthermore, since the first and last column in this case are identical to
the first and last column in the previous case, the same argument as there shows that

the only nonzero shift that has both these colummns nonzero must be 7 =n — ja. We
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get the following matrix

@G, Gyj1 Gngyn Lox 0
M'[{0,1,2}+(n—32), B = {0,j2 + 1,53 + 2}] = A1 Gy gy | =0 as;, 0
Ty g Ggjo1  Gyyg 0+ 1

The only way the matrix above can be nonzero is if ay;, # 0. Since jo > 2n/5 the only
way this can happen is to have 75 > n/2. But in this case we get o + oo > as + oy
which contradicts (4.9). We conclude the above matrix has permanent 0 and property

2 holds. This completes the proof for the final case and Theorem 4.2.4 follows. m

4.5.2 Quartic affine disperser

Theorem 4.2.5 (Univariate quartic affine disperser, restated) Let 7 : F,n —

Fy, be a nontrivial Fp-linear homomorphism. The function f Fpn — F, given by
2 3
flz)=n <x1+p+p +p )

is a disperser for the set of affine spaces of dimension greater than 3 + 10 that are
not contained in an affine shift of a proper subfield of Fpn.

In particular, if n is odd, then f is an affine disperser for dimension 2+ 10.
Proof The proof is similar to that of Theorem 4.2.4. Let u be as before. Let Q(X )

be the image-subspace polynomial of A, so that A = Q(F,»). Let
R(X) = Tr(u- Q(X)l+p+p2+p3) mod (X?" — X).
As in the case of the previous proof, it is sufficient to prove the existence of a quadruple

adapting Lemma 4.4.6 to our present situation.

Claim 4.5.3 For B = {iy,..., 14} C{0,...,n— 1} let 3 = p¥ + p? + p** + p. The
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coefficient caq of the monomial M = X? in
5 5 2 3 o
Tr (u QX )PP A ) (mod X" — X)

s given by
n—1

Cpm = Z p? Perm (M[A, B — 7)) . (4.10)
r=0
As in Remark 4.4.7, letting M’ = Mg, (as defined in Definition 4.4.4), we seek
B C{0,...,n— 1} with |B| = 4 such that:

1. The matrix M'[{0,1,2,3}, B] is, up to reordering of rows and columns, upper

triangular with a nonzero diagonal.

2. Forevery r € {1,...,n — 1} the matrix M'[{0, 1, 2,3}, B—r| contains an all-zero

columu.

Having found such a B, the above claim lets us conclude that the polynomial R(X)
defined above is nonconstant.

As in the analysis of the cubic affine disperser, we begin by stating a few useful
properties of the coefficients of @ that all follow immediately from Lemima 4.4.3 and
will be used later on in the proof. Notice that (iv) below follows via the second part
of Lemma 4.4.3 from our assumption that A is not contained in an affine shift of a

proper subfield of F,..

Claim 4.5.4 Let Q(X) = Z;:Ol a; X? + & be the image-subspace polynomial of A.
Letting d = dim(A) we have (i) d > § + 10, (ii) ag,apn—q # 0, (iii) Gp_g11 = ... =
an-1 = 0 and (iv) for every 0 < j < n —d there is at least one nonzero coefficient

amongst a;, a1, ... Qjrd—1-

We use the notation introduced in the proof of Theorem 4.2.4 in the previous
subsection. Recalling the definition of Iy, I, notice that (it) implies {0,n — d} € I,

(iii) implies [n — d+ 1,n — 1] C Iy and (iv) implies [N [j,7 +d — 1] # 0.
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As stated earlier, we show that a set B satistying part 2 of Claim 4.5.3 exists,
thereby proving Theorem 4.2.5. Our proof is divided into three cases according to

the structure of I, I5.

Case I — 1N [n/3—14,n/3 +4] # 0: Let j € 1N [n/3 —14,n/3 + 4]. We claim
B ={0,1,j +2,n — d + 3} satisfies the two propertics. Property 1 holds because

G 4y Ay, a4 I

WA B - Gy G Gy Gpgip [ | 01 %0  wheredl - 0 a=0
Oy Gy @5 G gy 0010 1 a; #0
A 00 % 1

/ / / !
Ay G 1—r Ajro—r Qp_dy3—p

’ ! / !
a. a. a: Q

n-—-1-r n—r j+1-r n—d+2—r

M'[A,B—1] = i

! ’ ’ /
Ap2-p Qp_q1 4 a‘jwr A dp1—r

! ! ! t
Ap-3-r Ap_2_p a‘j—l—r Ay

For r € [1,d — 4], the first column of M'[A, B — 7] is zero, since the set of indices
appearing there

m—=3—-rn—7r]Cln—d+1,n-1]C I,

The last inclusion follows from Claim 4.5.4 (#i) . Similarly, for r € [n—(d—4),n— 1]

the last column of M'[A, B — r| is zero, since
m—d+3—-rn—d-r]Cn—d+1,n-1]C I,

Finally, for the remaining r € [d — 3,n — (d — 3)] C [n/3 4 7,2n/3 — 7] the third
column of M'[A, B — 1] is zero by selection of j € [n/3 — 14,n/3 + 4], since

U=1=r,j+2=1] C [(n/3-15)=(2n/3=7), (n/3+6)—(n/3+7)] C [2n/3—8,n~1] C Iy,
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where the last inclusion uses Claim 4.5.4 (i) . We conclude property 2 also holds and

the proot of the first case is complete.

Case II — I, N [n/3 — 14,n/3 + 4] = 0: As in the proof of Theorem 4.2.4, let
71 be the largest element in [0,n/3 — 15] N I; and let jo be the minimal element in
[n/3+5,n—d NI By Claim 4.5.4 (iv) we cannot have both j; = 0 and j, =
n — d. Consider the following four intervals: [0,7;] (whose end poiuts are in Iy),
[71 + 1, jo — 1] (which is contained int Iy), [j2, n — d] (whose end points are in I;), and
[n —d+ 1,n— 1] (which is contained in Iy). Denote the length of these intervals by

Qq,. .., a4 vespectively. Notice aq = d—2 > a3 + 10, az + 10. There are two subcases.

Case Il.a — oy # a3 Assume without loss of generality an > as. We claim
that the set B = {0,j2 + 1,n —d+ 2,j; + 3} satisfies both properties. (The case
of oy < a3 can be seen to be identical by using the argument below to show that

B = {ja, 1,71 + 2,n — d + 3} satisfies our properties.) Property 1 holds because

ag a’;g 1 Gnpgye @43 1 = 0 0

A fI[A, B] _ a’-/n.~1 a;'g a‘iz—d«l—l a'3‘1+2 _ 01 00
Upog Q41 Qg @5 0010

Uy @h_g QG gq a4 00 % 1

Regarding property 2, the key observation is that any the difference between the top
left and bottom right indices of M'[A, B —r] -~ and this difference is independent of
r - equals 77 = a1 — 1, and similarly the difference between any other pair of indices
chosen one from each of the first and third columns is between j; and j; 4+ 6. Since
ag— 10 > aq > a3 and ay > 20 the only shifts r that make both the first and the last
columns nonzero must satisfy r € [n — j;,n — 10]. This implies that the third column
is zero (since this choice of r puts the indices of its entries in Ip), hence property 2

holds and the proof of this case is complete.
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Case ILb — a; = a3: We claim that B = {0,jo+ 1,n — d + 2, j; + 3} satisfies
both our properties. Indeed, property 1 holds by the reasoning of case Il.a. By the
same reasoning as in that case, the only nonzero shift r for which both the first and

last columns are nonzero is the shift r = n — j, which gives

/ / / !
Gy 25,01 O dyjoye Tjygj 43 1 * *
7 ! / / ! /
a’, as ; a . al, 0 d,. a .
y . 2—1 272 n—d+jaz+1 247142 272 n—d+j2+1
]\'[/[44.8_(”_]2)] — J J2 J2 72T — ¥ at+72
/ ! ! 7 / /
Tjyz Ojy-1 Onodijy  Tjoggil 0 Gzjp1 Gnedis,
7 / ! /
a]2_3 a2]2m2 (ln_d+]2_1 a]2+]] 0 E S *

The last column is calculated using a1 = ag which implies js + j; = n — d. Consider
the middle 2 x 2 matrix on the right hand side above. The difference between the
upper left and bottom right indices is n—d+jo— 275 = n—d—j2 = 7; and that between
the bottom left and upper right is j; + 2. Thus, we conclude aj, ;. 1 = ay;,_; = 0.
Claim 4.5.4 (iv) , which relies on the fact that A is not contained in an affine shift of
a proper subfield, implies that ay < a4. Together with the assumption a; = agz we
conclude a;+ay < az+ay. Thisimplies j, < n/2 which, together with the assumption
Ja > n/3 gives us n — d < 2jo < n. This implies, via part (i) of Claim 4.5.4, that
azj, = 0 and the third column is all zero. This shows property 2.

Summing up, in cach of the three cases above, we have shown the existence of a
set. B that satisfies both propertics of part 2 of Claim 4.5.3. This implies R(X) is

nonzero and Theorem 4.2.5 follows. B

4.6 Disperser for independent affine sources

In this section we prove Theorem 4.2.3, restated below. Although the analysis is sim-
pler than what is involved in the proof of our main disperser for sublinear dimension
(Theorem 4.2.2), the proof of the following theorem lies at the heart of the more

complicated case which is discussed in the next section.
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Theorem 4.2.3 (Disperser for independent affine sources, restated) Let
7 Fpn = I, be a nontrivial Fp-linear map. Consider the function f : ]F:,,, — I, given
by
t
flay,...,x) == Hac;“’ : (4.11)
i=1

Let Ay, ..., Ay C Fp be Fy-affine spaces of dimensions dy, . .., d; respectively, where
cach A; is not contained in an affine shift of a proper subfield of Fyp. If S5 (d;i—2) >
n, then |f( Ay x - x A)| > 1.

Proof We follow the steps outlined in our strategy described in Section 4.1.2. First,
we notice that

FlAL LAY = FQ1(Fp), . Qu(Fy))

where Q;(X;) is the image-subspace polynomial of A;. By Propositions 4.3.1, 4.3.3,
in order to show |f(A; x -+ x A;)| > 1 it suffices to show that for any g € Fp \ {0}

the polynomial

R(X1,.... X) %1y uH(Qi(Xi))a" mod {((X?" — X)ien)

i=1

containg a monomial of positive degree with nonzero coefficient. We use Lemma 4.4.6
to prove the existence of such a monomial and in the proof we rely on the structural
properties of iinage-subspace polynomials given in Lemma 4.4.3.

The key step in our proof is given by the following theorem. We state a somewhat
more general form than needed for the proof of Theorem 4.2.3. The added generality
will be useful in the proof of Theorem 4.2.2. (The general form we refer to deals with

large powers o; whereas for Theorem 4.2.3 setting all a; to 1+ p would be sufficient.)

Theorem 4.6.1 (Disperser for independent affine sources — Algebraic version)
Assume that Ay, ..., Ay C Fp are affine subspaces of dimensions dy,...,dy > 1,
none of which are contained in an affine shift of a proper subfield of Fp.. Let

Qi(X;) € Fpn[Xi] be the image-subspace polynomial of A;. Let p € Fpn \ {0}. Let
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€1, e satisfy 1 <e; <d; — 1 and let a; = Z;‘:Opﬁ Let

t
R(X1, ..., X) %y (ﬂ I1 (Qi(x,.))a;) mod (X" — X )icu) (4.12)

i=1
IF S (di—(e;+1)) > n—maxd; + 1, then R(Xy,...,X;) has a monomial []\_, X7

with wtp(3;) = e; + 1, which has a nonzero coefficient. In particular, |R(F f]) > 1.

Betore giving the proof of Theorem 4.6.1, let us first show how to use it to complete
the proof of Theorem 4.2.3. We may assume without loss of generality that d; > 2 by
fixing nonzero elements of those spaces that have dimension 2. Next, in Theorem 4.6.1
we set 4 = 1l and e; = ... = ¢, = 1, which gives a; = ... = oy = 1 + p. Using
Proposition 4.3.1, the polynomial R defined in (4.12) satisfies R(F.) = f(Ayx - x
Ai). Since Y (d; —2) = >°(d; — (e; + 1)) > n we conclude from Theorem 4.6.1 that
|f(Ai,..., A)| > 1 and this completes the proof of Theorem 4.2.3. m

Proof of Theorem 4.6.1: Let A; = {0,...,e;}. By the first part of Lemuna 4.4.6,
if By,....,By C{0,....,n—=1},|By] = ¢; + 1 and 3; = ZkEBi p*, then the coefficient of

M=T]_, X% in R, which is denoted henceforth by ca, equals

n-1 t
Z”p* . H Perm (M;[As, B; — r)?" | (4.13)
r=0 1=1

where M; is the matrix associated with Q; (cf. Definition 4.4.4). We will find suitable
powers 3; with wt,(3;) = e; + 1 such that cas # 0. We define 3; by specifying B; with
|Bi| = e; + 1 and setting 8; = 3, 5 p".

Assume without loss of generality d; = maxd;. To define B; let ¢; = 0 and for
I1<i<tlet b1 =4;+d;— (e; +1) mod n. In other words, ¢, = Doveildi — (e +
1)) (mod n) where €3 = 0. Let Qi(X;) = Z;:(} a;; X¥ + a;. Our definition of B;
splits into two cases, depending on whether a; g, is nonzero or zero. In the first case
we set B; to be the set {€;,n—d; +1,n—d; +2,...,n —d; + e;}. In the second case
let j; be the smallest index j’ greater than ¢; such that a; ; is nonzero. Similarly, let

N AY a3 I 11 2% /7 P - . ?. @ 9 . —~1a T \ N e A -~
Ji be the largest index j’ smaller than ¢; such that a; 7 is nonzero. Let ¢ = j;—j;— 1
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be the length of the interval of zero-coefficients of @Q; between indices j; and j;. Let

s; = min {g;, e; 1. We set B; to be the set
{ji}U{3i+1,...,3,~+si}U{n—di%msi—k1,...,n—di+e,~}‘

The last set might be empty 1n case s; = e;.

Our proof again employs the strategy of Remark 4.4.7 via the next two claims,
proved below. We point out that the noncontainment of A; in a proper subfield and
the implication this has on the structure of coefficients of @Q; (cf. Lemma 4.4.3) will be
crucially used in the proof of Claim 4.6.3 below. Let M] denote the zero-one indicator

matrix of M; as given in Definition 4.4.4.

Claim 4.6.2 For all i = 1,...,t the matriz M[[A;, By is lower triangular with

nonzero diagonal entries.

Claim 4.6.3 Forallr € {1,...,n— 1} there existsi € {1,...,t} such that M[[A;, B;—

r] contains an all-zero column.

Assuming these two claims, Lemma 4.4.6 and Remnark 4.4.7 imply Theorem 4.6.1. B

Proof of Claim 4.6.2: Notice that, by definition, M/[A;, By] is a (e; +1) x (e; + 1)
matrix constructed by taking the minor corresponding to the first e; + 1 rows of M;
and the columuns indexed by B;. To sce that M][A;, B;] is lower diagonal with nonzero
diagonal entries, consider B;. To simplify notation in this proof let a; = a;; be the
coefficient of X7 in Q(X;) and let a/; be its zero-one indicator (cf. Definition 4.4.4).
There are two cases.

ay = 1: We have B; = {¢;,;n —d;+1,...,n — d; + e;}. Consider the indices j of the
coefficients a; residing in the various entries of M[[A;, B;]. By assumption e; < d; so

the entries above the diagonal of M][A;, B;] have indices belonging to

{‘n—d¢+1,...,n-—di+e¢}§{n—di—i—l,...,n—l}



and this proves M][A4;, Bj] is lower triangular. Regarding the diagonal, at the top-

most left entry we have aj, = 1 and in all subsequent positions we have a,_q., which

is nonzero by Lemma 4.4.3. This completes the proof of this case.

ay, = 0: In this case we have B; = {7,}U{3, +1,... 32 + sz«}u{n —di+si+ 1, n—d;+ e}

where

ji=min{j > €| a;; # 0} and J; = max {7 <bila; #0}

The uppermost left (s; + 1) x (s; + 1) submatrix of M![A;, B;] in this case is

/ 4 /
a a- =~
Ji Ji+1 Jitsi
/ / /
aj’i'l a?i a3i+3i~1
/ 14 /
. = . ak
aJi“Si a(j,-+l)——s,- 7i
which is lower triangular because the a%_H = ... = a3, = 0, and the diagonal

entries of this submatrix are nonzero because a,;-l,,afj. are nonzero. The last e; — s;
) T

columns of the matrix — if they exist — are identical to the same last columns of the

previous case and this shows that M][A;, B;] is lower triangular with nonzero diagonal

entries. This completes the proof of Claim 4.6.2. m

Proof of Claim 4.6.3: In what follows we denote for ¢ < d by [c,d] the set of
integers in the interval [c,d] and by [¢,d] mod n the set {i modn|i € [¢,d]}. We

start by observing that

!
ai,k——r

!
M[A; {k} —r] = ai’k‘.(wrl)

/
a’i,k—~(r+evz)

Thus for any k € B;, if r is such that

k—(r+e),k—rjmodnCn—d;+1,n—1], (4.14)
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then the matrix M[[A;, B; — r] contains a zero column. So we get the following

proposition.

Proposition 4.6.4 Whenever k € B; and
relk+1,k+d;—(e;+ 1) modn

then M[[A;, B; — r] contains an all-zero column.

Thus, to prove the claim it suffices to show

t
(L= 1) €| Uken, [k + 1k + (di —e;) — 1]. (4.15)
=1
(Notice that Claim 4.6.2 implies the containment in the previous equation is in fact
an equality.)
Indeed, since £, = 0 we have By = {0} U [n — dy + 1,n — d;y + e1], which implies

by Proposition 4.6.4 that M;[A4;1, By — r] contains a zero column for r belonging to
[1,(11 - (61 + 1)] U [TL - d] + 2_,71 - 1] = [£1 -+ 1,62] U [n — dl + Q,Tl — 1] (41())

Let ¢ be the minimal ¢ such that Zygi(di’ — (ey + 1)) > n — dy + 1, noticing such
t' exists by assumption. In this case we have Y, ,(dy — (ey + 1)) < n and so

€t’+l = Zi’gt’(di/ - (@7’/ -+ 1))
We claim that for 1 < ¢ < ¢’ we have

U e+ 1k +di — (e + 1)] 2 6 + 1, £i4a). (4.17)
kEB;

which, together with (4.16), proves (4.15) and completes the proof of our claim. There

are two cases to consider when proving (4.17).

ajg, 7 0: In this case ¢, € B; so the claim follows from Proposition 4.6.4 by re-

(:zmlling that €¢+1 = fl + d,’ - (ei + 1)
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a; 4, = 0: There are two subcases to consider.

Case 1: ¢; < e;. In this case
Bi={UGi+1,5i+qlUln—di+q+1,n—d; +e.
Substituting ;z + (g; + 1) for j; and reordering elements of B; we get
Bi=[i+Lji=p+q+1Un—d+qg+1n—d+e)

We conclude €; € B; so by Proposition 4.6.4 our proof is complete, as in the case of

a;e. 7 0 above.

Case 2: g; > e;. In this case we have
By = {5} Ui+ 1,5 + el
Substituting 7; = Z +g; + 1 we get

Bi=[i+ L3+ U{Gi+a+1}

Now we use the fact that A; is not contained in an affine shift of a proper subfield.

We notice that since ¢ < ¢’ we have by maximality of dy that
Ji<ti<n—d <n-—d

which implies (using the maximality of d; again) that Jit1l#n—di+1. As A, is not
contained in an affine shift of a proper subfield and 31 +1 s n—d;+1, our Structural

Lemma 4.4.3 implies that j; — 3\2 <d; — 1, or, equivalently, j; < 31 +d; — 1.
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Taking all but the last element of B; in the previous equation notice

U k+Lk+di—(e+ 1] 2 [i+275+d — 1],

ke[fi+1.7i+e
which contains j;. Now, since j; < £ < j; when we reinsert j; into B; we conclude

Urep, b+ 1k +d; — (e + 1] 2 [ + 2,7 + di — (es + 1))

D[+ 1,444].

This completes the last case and with it the proof of Claim 4.6.3 is complete. B

4.7 Disperser for affine spaces of sublinear dimen-
sion

In this section we prove Theorem 4.2.2. We start by examining what happens to
A C F}" when it is partitioned into 7 blocks of size n. Then we prove the main
theorem, by essentially reducing it to the case of independent affine sources described

in Theorem 4.6.1.

4.7.1 Preparatory lemmata

Our first lemna, already used by Bourgain [Bou07] in his construction of affine ex-

tractors, gives a certain kind of direct sum decomposition of Fy-affine subspaces of
T
FpTL.

Lemma 4.7.1 (Bourgain’s decomposition) Let A C (Fy)" be an Fy-affine sub-
space. Let v € A. Then there exist linear spaces Y1,...,Y, C F) and lincar maps

.V L onyp .
O35 - }] — ]Fp such that:

A= {(ar,...,2.) | Jy; € Y; such that x; = v + y; + Z o (y;)}

j<i
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and dim A =73, dimY;.

i€lr]
This lemma amounts to taking the echelon-form of a matrix whose rows form a basis
for the linear subspace underlying the affine subspace A.

The next lenuna should be thought of as a complement to Theorem 4.6.1. It
expands the class of sources on which the function R given in that theorem is non-

constant. This expanded class is what we will use in the proof of our main theorem.

Lemma 4.7.2 For cach i € [r], let Pi(X;) € Fpu[Xi] be a linearized polynomial. For
each j <1, let Pj(X;) € Fpn [X;] be a linearized polynomial. Let v € Fpn. Let Iy C [r]

with Iy = {i1 < iy < ... <4} Let ey, ..., e; > 1 be integers and let a; = = Y o P
Joriely. Let p € Fpu \ {0}. Let g(X1,.... X,) € Fpu[Xy, ..., X,] be the polynomial

Tr <M H ( )+ Z Pj(X;) + /1) ) mod (X7 — Xi)iep-

€1y j<i

Let ¢(X1,...,X;) € Fpu[ X1, ..., X,] be the polynomial

Tr (u H P,;(Xi)‘“) mod (X7 — X;)iep

il

Then for any (Bs,, ..., B;,) where wt,(5:,) = e;, + 1. the coefficients of the monomial

/85 N P N ! g
[Lic;, Xi* in g and in g’ are equal.

Proof We want to show that the coefficient of [, I f in g(Xi,...,X,) is the
same asin g'( X1, ..., X,). We do this by expanding out the expressions for g(X,..., X r)
and ¢'(X1,...,X,) and keeping track of the monomials.

Let X<; denote the tuple of variables (Xq,..., X;_;). Let R(X <i) be the polyno-
mial 7, Pii(X;) + 7

Expanding ¢(X3, ..., X,) we get

n—1 ) "
g(Xy,.... X,) = (uH (P )+ P(XQ)) ) mod (X7 — X;)iepy) (4.18)
r=0 iclp
i r Z;li 0 pH n
= uP H (P )+ P, (X<Z)> mod (X7 — X;J&pf)
r=0 i€ln
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Ci et

b E ‘.~up
We now expand the term (Pi(Xi) + P(X <i)) l to obtain
€y R p7.+l
11 (Pi()(i) + P(X <¢->) (4.20)
1==0

= H ( (X + f’i(Xa)”m) (4.21)

‘“H DY }(H X)P”') (HPXQ ) (4.22)

{==0) LC{01,...e;} \IgL veL
L#0

Now the first term has Fp-degree in X; equal to e; 4 1, while all the other terms
have Fp-degree in X; strictly less than e;+1. The reason for this is that the polynomial
Pi(X ;) does not mention the variable X;, and each P(X))P" and P(X <2-)p'r+l/ are
linearized polynomials (and hence of Fy-degree 1). Let us summarize this by writing
(4.22) as

(P Z 4 Gi(X <)

and noting that the Fy-degree of G; in X; is at most e;.

Now let us go back to (4.19) and consider the rth summand within the parenthesis.

[T (Pexo+ 2x0)™" = [T (R 4 Guxen)

i€ln i€l

= (P (X)) 4 Go(Xe))

[T (e +oixa)

1€ln,i<1s

— ((B( (Xil,))zl.i"“pv’.” + Git (XSZI)> ) Ht(‘XS’it—l)

The rightmost term above, denoted Hy, does not mention X;,. Furthermore, as stated
above Gy has Fp-degree at most e;, in Xj,. But mg has Fp-degree e;, + 1 in Xj,, so to
1 14

contribute to the coefficient of mg we must select terms only from (B, (Xt))Z’

and multiply themn by the appropriate terms in H;. Next, consider the terms inside
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gy v

Ht(XSiz—l) = <(Bt—-1(Xif——l)) e P + Git—l(XSit—l)) ' Ht~1(XS'ir~2)

where,

Hy (X<, ,) = H ((Pi(Xi))fo,:,,»pr.f,z N Gi(ng')>

1€l04<i
As before, we notice that H,_;(X<;,_,) does not mention X;, |, and H,_; has F,-

degree e;,_, in X;,_,. But mg has Fp-degree €;,_, + 1 in X;,_,, implying that we

T prt

must select terms only from (Pi,_, (X;,_, ))Z’ . Continuing in this manner for

1= 1_9,...,1; we conclude that the only contributions to the coefficient of me come

o NP’ . .
from (Hze I (Py(X;))ZoP ) . Sumining up over all r, the lemma follows. ®

4.7.2 Proof of Theorem 4.2.2

We can now analyze our main affine disperser construction. Theorem 4.2.2 will follow

by setting the proper parameters into the following theorem.

Theorem 4.7.3 (Affine disperser — non-parameterized version) Let t < r
be integers. Let nobe prime with n > r(r + 1)/t. For eachi € [r], let e; =1+ 1 — i
and let a; = SooPF. Let pp € Fpu \ {0}. Let f - F7. — T, be given by

flzy,...,z)=Tr | p Z H’cf‘
I, )=t i€l

Let A C Fy be any Fy-affine space with dim(A) > 2 +nt+r(r+1). Then |f(A)| > 1.

Before proving this theorem let us show how it implies Theorem 4.2.2.
Proof of Theorem 4.2.2: For our selection of parameters n,¢,r we notice the

assumptions of Theorem 4.7.3 hold. Indeed, by Bertrand’s postulate we can bound n
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from above by 4m®/3, hence r > m?/®/4. Notice that for our setting of parameters

r(r+ 1)/t <Vr(r+1) <m®® <n

4/5

and if d > 6m?*/° then we have

e _ 4 4 1 4 ;
I'Etl tnt+r(r+ 1) < —=m*® + —m' + m?® 4 o(m??) < d.

V2 V2 4

Thus, the function f in Theoremn 4.7.3 has the property that for any A with dim(.4) >
6m*5, we have |f(A)| > 1. Finally notice that Proposition 4.3.3 implies that f as
defined in Theorem 4.7.3 is identical to f defined in Theorem 4.2.2, up to renaming

of the variables x;. This completes the proof. B

Proof of Theorem 4.7.3: Our proof strategy is again as outlined in the intro-
duction. Our first goal is to find a polynomial mapping H : F7, — Fy» such that
H(F}.) = A. We will then show that the composed function f o H is a non-constant
map, by showing that in its representation as a polynomial, there is a positive degree

monomial with a nonzero coefficient.

To define the mapping H, we first decompose the affine space A using Lemma 4.7.1.
Let v € A. Then by that lemma, we may find a collection of Fy-linear subspaces

Y1,...,Y, € Fpe and linear maps o5 : Fyn — Fp for 4,5 € [r] with i < j such that:

A={(z1,...,2,) | Jy; € Vi such that z; = v; +y; + Z 04 (y;) }

j<i
and dim A =}, dimY;.

Let Q;(X) € Fp[X] be the image-subspace polynomial of ¥;. Let Qs;(X) be
the linearized polynomial (guaranteed to exist by Lemma 2.4.4) such that Q;;(z) =
0:j(Qi(x)) for cach z € Fy. Let Ry(Xy,...,X,) € Fpu[Xy,..., X,] be the polynomial
Qi( X))+ jei Qi;{X;) + ;. Then by the above comments, the image of the function
H mapping = = (21,...,2,) € Fl. to (Ri(z),..., Ry(z)) is precisely A.
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Now let h(X1,...,X;) € Fpu[Xy,..., X,] be the polynomial representing f o H,

namely

WXy X)) = (R0, X)) Re(X e X)) mod (XT — X, e
(4.23)

= Z Tr (/.t H Ri(Xl, PN ,Xr)ai) mod <qu - Xz>1§[r] (424)
1€k, | 1]=t il
By Proposition 4.3.1, we have h(F,.) = f(A).

Therefore, to show that |f(A)| > 1, it suffices to show that |R(F.)| > 1. We do

this by showing that A(Xy, ..., X,) has a monomial of positive degree with a nonzero
coefficient and invoking Proposition 4.3.1.

To find this monomial, we consider the representation (4.24) of the polynomial
h(X1,..., X,). We will first find a set Iy C [r], with [I] = ¢, of “blocks with
high entropy”. Then via Theorem 4.6.1, we will argue that the sununand in (4.24)
corresponding to Iy is a nonzero polynomial, with certain monomial M having a
nonzero coefficient. We will then show that no other summand in the sum (4.24) can
have the monomial M with a nonzero coefficient, thus establishing that M appears
in h with a nonzero coefficient, as desired.

We proceed with implementing this plan. Let d; = dim(Y;) and let d = dim(.A) >

T tnt+r(r+1). Wehave . d; =d. Let S= {i € [r] | d; > r + 1}. Then we get
o [S| >t (since each d; < n and Y d; > nt +r(r + 1)).
® Diesi 2 Y iepy(di—r—1)=d—r(r+1) > nr/t +nt.

Thus there exists Iy € S (and hence each ¢ € I, has d; > r + 1) with |Iy] = ¢ such
that

—(r+t>n+nt?/r—(r+ 1)t >n, (4.25)

N | e

S di—(r 4 1) = (zdi)

i€l €S
where the last inequality used the hypothesis that n > r(r + 1) /t.
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Let us focus on the term

9(X1, .. X)) =T { p[] Re(Xn,. ... X,)® | mod (X{ — Xy)iep

1€l
in the representation (4.24) of the polynomial (X, ..., X,).
Putting ¢'(Xy,..., X,) = T (u [Les, Qi(X:)*) mod (X7 — Xi)iep) and noting

that each e; + 1 < r + 1, Equation (4.25) and Theorem 4.6.1 imply that there is a

monomial M = [, X;* with wt,(5;) = wty(e) = e; + 1, which has a nonzero
coefficient in ¢’. Lemma 4.7.2 now implies that the coefficient of M in g is exactly

the same as the coefficient of M in ¢, and hence nonzero.

We now show that in the representation (4.24) of the polynomial h(X;, ..., X,),
no summand other than g can have a nonzero coefficient for the monomial M. First
notice that each R;(X1,...,X,) is a polynomial only in the variables X;, X5, .... X},
and is a sum of monomials of the form aX,’:b plus possibly a constant term (i.e.,

monomials of total F,-degree at most 1).

Let J € [r| with [J| = ¢, and consider the expression Tr(u [] jes Bi( Xy, X5)%7)
mod ((X?" — Xi)iep))- By definition, it equals:
Te (p[TTT R0 X507 ) mod (XF" — Xiiey)-

jeJ =0

Suppose the monomial M appeared in the above polynomial with a nonzero coeffi-
cient. Then, expanding the trace map, there is some w € [n—1] such that M appears
in
€j
L4w 7
o ol - .
H H R](Xl R ,,X]')p mod <(.X'Z - X@)lé[’r‘]>
jeJ 1=0

L 4w

with a nonzero cocfficient. Letting Ry = R?k , we may rewrite the last polynomial

as
r—j+1

IT I BaXi.... X)) mod (XP" — Xi)iepn),

jeJ 1=0
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where each Ry is a sum of monomials of total Fp-degree at most 1. Each monomial
M’ that appears in this product is obtained by choosing, for cach je€ Jandl e
[0,7 — j + 1], a monomial from Ry(Xq,..., X;), and multiplying all these monomials
out. Since we know that M appears in this product, let us focus on the choices made
in order for M to appear. We set X;(1) = 4 if for (4,1) we chose a monomial from
Rj(X1,...,X;) whose variable is indexed by 4 (i.e., we chose some aX?). Observe
that the F-degree in X; of M is at most the number of (j,1) pairs for which N(l) =1
(which may be compactly written as 5 jer I)\;l(z)l) However, we know that for any
¢ € Iy, the Fp-degree of M in the variable X; is ¢; + 1 (which equals r + 2 — ). The
following combinatorial claim (whose proof appears next) now shows that ./ must be

equal to Io.

Claim 4.7.4 Let Iy C [r] with |Io] = t. Suppose J C [r] with |J| = t. and that there
exist functions A; 1 {0,1,...,r+1—3} = {1,...,5} forj € J, with the property that
for each i € I,

Y@l zr+2-i (4.26)

jed

Then J = I,.

Therefore, we have shown that there is precisely one summand, namely the one
corresponding to Iy, in the representation (4.24) of h(Xy, ..., X,) that has a nonzero
coefficient for the monomial M. Thus M appears in h with a nonzero coefficient,

and thus |h(F7,.)

> 1, as desired. ®

Proof of Claim 4.7.4: Note that for any j € J we have

SN @I <HO L. r 1=} =r+2— ]

ieln

Thus

D rH2=H <Y SN D (r+2- ).

1€l jeJ iely jeJ
As ol = 1), we have iy i > Ty
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Consider now the expression D ; ZH'I (j=X;(1)), which is > 0, because A;(1) <
j. Thus,

r41—73
Se+2-0)52 Y Y 2 Y02
jed jeJ =0 i€lo

The last inequality follows from the assumption (4.26). Rearranging, we get,

Zz —Zg > (r+2)- ZL—Z])>()

1€l ]&J el ]EJ

Thus Y., i* > ZjEJ-jQ‘

1- ' .
For general k, considering the expression ) ; SUA (5% — A (D)), which is non-

negative, we get

szJrl ij+1 7“ + 2 (Z Z]

€1y jedJ el jedJ

which by induction on k is > 0. Thus for all k,

> ik > it (4.27)

1€l jed

This implies that i, := max(ly) > max(J) =: j;. However, ¢; < j;, otherwise

A;1(i1) = 0 for each j. Thus iy = j1. This forces A;, (1) = 4; for each L.

Taking this information back to Equation (4.27), we now see that the second-
largest element iy, of Iy > the second-largest clement j, of J. But we must have

iy < jo, otherwise A7 (ip) = 0 for all j (recall that A; (1) = i3 for cach [, and there is

j
no other j for which iy < 7). Thus iy = js.

Inducting now on s, and argning about the s-th largest element of Iy and J, we

get that Iy = J.
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4.8 Open Problems

We conclude with some open problems.

Construct explicit affine dispersers from dimension n® for arbitrary 4 > 0.
Are our affine dispersers also affine extractors? We conjecture that they are.

Let n be even, and consider the cubic residue symbol x : F3, — {1,w,w?} (where
w is a cube-root of unity). Is x an affine disperser /extractor from ditension on

for every § > 07
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Chapter 5

The Extended Method of
Multiplicities

5.1 Introduction

In this chapter, our main goal is to present an improvement to an algebraic method
that has lately been applied, quite effectively, to analyze combinatorial parameters
of subsets of vector spaces that satisfy some given algebraic/geometric conditions.
This techuique, which we refer to as as the polynomial method (of combinatorics),
proceeds in three steps: Given the subset K satisfying the algebraic conditions, one
first. constructs a non-zero low-degree polynomial that vanishes on K. Next, one uses
the algebraic conditions on K to show that the polynomial vanishes at other points
outside K as well. Finally, one uses the fact that the polynomial is zero too often
for its degree to derive a contradiction to the non-zeroness of the polynomial; this
gives bounds on the combinatorial parameters of interest. In the form of a three word

slogan: Interpolation, Extrapolation, Contradiction.

The polynomial method has seen utility in the computer science literature in
works on “list-decoding” starting with Sudan [Sud97] and subsequent works. Recently
the method has been applied to analyze “extractors” by Guruswami, Umans, and
Vadhan [GUV07]. Most relevant to this work are its applications to lower bound the

cardinality of “Kakeya sets” by Dvir [Dvi08], and the subsequent constructions of
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“mergers” and “extractors” by Dvir and Wigderson [DW 08]. (We will elaborate on
some of these results shortly.)

The method of multiplicities, as we term it, may be considered an extension of
this method. In this extension one constructs polynomials that vanish with high
multiplicity on the subset K. This requirement often forces one to use polynomials of
higher degree than in the polynomial method, but it gains in the second step by using
the high multiplicity of zeroes to conclude “more casily” that the polynomial is zero at
other points. This typically leads to a tighter analysis of the combinatorial parameters
of interest. This method has been applied widely in list-decoding starting with the
work of Guruswami and Sudan [GS99] and continuing through many subsequent
works, most significantly in the works of Parvaresh and Vardy [PV05] and Guruswaini
and Rudra [GRO6] leading to rate-optimal list-decodable codes. Very recently this
method was also applied to improve the lower bounds on the size of “Kakeya sets”

by Saraf and Sudan [SS08].

Our main contribution is an extension to this method, that we call the extended
method of multiplicities, which develops this method (hopefully) fully to derive even
tighter bounds on the combinatorial parameters. In our extension, we start as in the
method of multiplicities to construct a nonzero polynomial that vanishes with high
multiplicity on every point of K. But then we extend the second step where we exploit
the algebraic conditions to show that the polynomial vanishes with high multiplicity
on some points outside K as well. Finally we extend the third step and arrive at a con-
tradiction by showing that our polynomial has more high multiplicity zeroes than its
degree allows it to have; this then gives better bounds on the combinatorial parameters

of interest. In the form of a three word slogan: Interpolation-with-high-nmltiplicity,

Extrapolation-with-high-multiplicity, Contradiction-with-high-multiplicity.

By these extensions we derive nearly optimal lower bounds on the size of Kakeya
sets and qualitatively improved analysis of mergers leading to new extractor con-
structions.  We also rederive algebraically a known bound on the list-size in the
list-decoding of Reed-Solomon codes. We describe these contributions in detail next,

before going on to describe some of the technical observations used to derive the
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extended method of multiplicities (which we belicve are of independent interest).

5.1.1 Kakeya Sets over Finite Fields

Let Fy denote the finite field of cardinality g. A set K C Fy is said to be a Kakeya
set if it “contains a line in every direction”. In other words, for every “direction”
b € F; there should exist an “offset” a € Fy such that the “line” through a in
direction b, i.c., the set {a + tb|t € F,}, is contained in K. A question of interest in
combinatorics/algebra/geometry, posed originally by Wolff [Wol99], is: “What is the
size of the smallest Kakeya set, for a given choice of ¢ and n?”

The trivial upper bound on the size of a Kakeya set is ¢” and this can be improved
to roughly 2—1;Tq” (precisely the bound is 71—,,~q" + O(g™1), see [SS08] for a proof
of this bound due to Dvir). An almost trivial lower bound is ¢*? (every Kakeya

[? lines that intersect K

set “containg” at least ¢" lines, but there are at most |K
at least twice). Till recently even the exponent of ¢ was not known precisely (see
[Dvi08] for details of work prior to 2008). This changed with the beautiful result of
[Dvi08] (combined with an observation of Alon and Tao) who showed that for every
n, |K| > c,¢", for some constant ¢, depending only on n.

Subsequently the work [SS08] explored the growth of the constant ¢, as a function
of n. The result of [Dvi08] shows that ¢, > 1/n!, and [SS08] improve this bound to
show that ¢, > 1/(2.6)"*. This still leaves a gap between the upper bound and the
lower bound and we effectively close this gap.

Theorem 5.1.1 If K is a Kokeya set in F? then |[K| > 5:q™

Note that our bound is tight to within a 2 + o(1) multiplicative factor as long as

g = w(2™) and in particular when n = O(1) and g — oc.

5.1.2 Randomness Mergers and Extractors

A general quest in the computational study of randomness is the search for simple

primitives that manipulate random variables to convert their randomness into more
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useful forms. The exact notion of utility varies with applications. The most common
notion is that of “extractors” that produce an output variable that is distributed
statistically close to uniformly on the range. Other notions of interest include “con-
densers”, “dispersers” etc. One such object of study (partly because it is useful to
construct extractors) is a “randommness merger”. A randomness merger takes as in-
put A, possibly correlated, random variables Ay, ..., Ay, along with a short, uniformly
random seed B, which is independent of Ay,... Ay, and “merges” the randomness
of Ay, ..., As. Specifically the output of the merger should be statistically close to a
high-entropy-rate source of randomness provided at least one of the input variables

Ay, ..., Ay is uniform.

Mergers were first introduced by Ta-Shma [TS96a] in the context of explicit con-
structions of extractors. A general framework was given in [TS96a] that reduces the
problem of constructing good extractors into that of constructing good mergers. Sub-
sequently, in [LRVWO03], mergers were used in a more complicated manner to create
extractors which were optimal to within constant factors. The mergers of [LRVW03]
had a very simple algebraic structure: the output of the merger was a random linear
combination of the blocks over a finite vector space. The [LRVWO3] merger analysis
was improved in [DS07] using the counection to the finite field Kakeya problem and
the (then) state of the art results on Kakeya sets.

The new technique in [Dvi08] inspired Dvir and Wigderson [DWO08] to give a very
simple, algebraic, construction of a merger which can be viewed as a derandomized
version of the [LRVWO03] merger. They associate the domain of each random variable
A; with a vector space F;. With the A-tuple of random variables Aq, ..., Ay, they
associate a curve ¢ : Fy — Fp of degree < A which ‘passes’ through all the points
Ay, ..., Ax (that is, the image of C' contains these points). They then select a random
point u € F, and output C(u) as the “merged” output. They show that if ¢ >
poly(A - n) then the output of the merger is statistically close to a distribution of
entropy-rate arbitrarily close to 1 on F.

While the polynomial (or at least linear) dependence of g on A is essential to the

construction above, the requirement g > poly(n) appears only in the analysis. In our
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work we remove this restriction to show:

Informal Theorem [Merger|: For every A, ¢ the output of the Dvir-Wigderson
merger is close to a source of entropy rate 1 —log, A. In particular there exists an
explicit merger for A sources (of arbitrary length) that outputs a source with entropy
rate 1 — & and has seed length (1/0) -log(A/e) for any error e.

The above theorem (in its more formal form given in Theorem 5.4.3) allows us to
merge A sources using seed length which is only logarithmic in the number of sources
and does not depend entirely on the length of each source. Earlier constructions of
mergers required the seed to depend cither linearly on the number of blocks [LRVWO03,
Zuc07] or to depend also on the length of each block [DWO0g]. *

One consequence of our improved merger construction is an improved construc-
tion of extractors. Recall that a (k,e)-extractor E : {0,1}* x {0,1}¢ — {0,1}™
is a deterministic function that takes any random variable X with min-entropy at
least k over {0,1}" and an independent uniformly distributed sced Y € {0,1}¢ and
converts it to the random variable E(X,Y) that is e-close in statistical distance to a
uniformly distributed random variable over {0, 1}™. Such an extractor is efficient if
E is polynomial time computable.

A diverse collection of efficient extractors are known in the literature (see the
survey [Sha02] and the more recent [GUV07, DWOS] for references) and many ap-
plications have been found for explicit extractor is various research areas spanning
theoretical comnputer science. Yet all previous constructions lost a linear fraction of
the min-entropy of the source (i.c., acheived m = (1 — €)k for some constant € > 0)
or used super-logarithmic seed length (d = w(logn)). We show that our merger con-
struction yields, by combining with several of the prior tools in the arsenal of extractor

constructions, an extractor which extracts a 1 — fraction of the minentropy of

1
polylog(n)
the source, while still using O(log n)-length seeds. We now state our extractor result
in an informal way (see Theorem 5.5.3 for the formal statement).

Informal Theorem [Extractor]: There cvists an explicit (k,€)-extractor for

IThe result we refer to in [Zuc07, Theorem 5.1] is actually a condenser (which is stronger than a
merger).
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all min-entropies k with O(logn) seed, entropy loss O(k/polylog(n)) and error ¢ =

1/polylog(n), where the powers in the polylog(n) can be arbitrarily high constants.

5.1.3 List-Decoding of Reed-Solomon Codes

The Reed-Solomon list-decoding problem is the following: Given a sequence of points

(erﬁgl): R (anaﬁn) < ]Fq X ]Fq:

and parameters k and ¢, find the list of all polynomials py, . .., pr of degree at most k
that agree with the given set of points on ¢ locations, i.c., for every j € {1,...,L} the
set {i|p;(a;) = B;} has at least t elements. (Strictly speaking the problem requires a;’s
to be distinct, but we will consider the more general problem here.) The associated
combinatorial problem is: How large can the list size, L, be for a given choice of
k,t,n,q (when maximized over all possible set of distinct input points)?

A somewhat nonstandard, yet reasonable, interpretation of the list-decoding algo-
rithms of [Sud97, GS99] is that they give algebraic proofs, by the polynomial method
and the method of multiplicities, of known combinatorial upper bounds on the list
size, when ¢ > Vkn. Their proofs happen also to be algorithmic and so lead to
algorithms to find a list of all such polynomials.

However, the bound given on the list size in the above works does not match the
best known combinatorial bound. The best known bound to date seems to be that of
Cassuto and Bruck [CB04] who show that, letting R = k/n and v = t/n, if 42 > R,
then the list size L is bounded by O(;}fﬁ) (in contrast, the Johnson bound and the
analysis of [GS99] gives a list size bound of 0(321—12)? which is asymptotically worse

for, say, v = (1 4+ O(1))V/R and R tending to 0). In Theorem 5.6.2 we recover the

bound of [CB04] using our extended method of multiplicities.

5.1.4 Technique: Extended method of multiplicities

The common insight to all the above improvements is that the extended method

of multiplicities can be applied to each problem to improve the parameters. Here
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we attempt to describe the technical novelties in the development of the extended
method of multiplicities.

For concreteness, let us take the case of the Kakeya set problem. Given a set
K C Fg. the method first finds a non-zero polynomial P € F,[X1,...,X,] that
vanishes with high multiplicity m on each point of K. The next step is to prove
that P vanishes with fairly high multiplicity £ at every point in Fy as well. This
step turns out to be somewhat subtle (and is evidenced by the fact that the exact
relationship between m and € is not simple). Our analysis here crucially uses the
fact that the (Hasse) derivatives of the polynomial P, which are the central to the
notion of multiplicity of roots, are themselves polynomials, and also vanish with high
multiplicity at points in K. This fact does not seem to have been needed/used in
prior works and is central to ours.

A second important technical novelty arises in the final step of the method of
multiplicities, where we need to conclude that if the degree of P is “small”, then P
must be identically zero. Unfortunately in our application the degree of P may be
much larger than g (or ng, or even ¢"*). To prove that it is identically zero we need
to use the fact that P vanishes with high multiplicity at every point in F?, and this
requires some multiplicity-enhanced version of the standard Schwartz-Zippel lemnma.
We prove such a strengthening, showing that the expected multiplicity of zeroes of
a degree d polynomial (even when d > ¢) at a random point in F7 is at most d/q
(see Lemina 2.1.8). Using this lemma, we are able to derive much better benefits
from the “polynomial method”. Indeed this allows us to fully utilize the power of
the polynomial ring F,[X] and are not limited by the power of the function space
mapping Fp to F,.

Putting these ingredients together, the analysis of the Kakeya sets follows easily.
The analysis of the mergers follows a similar path and may be viewed as a “statistical”
extension of the Kakeya set analysis to “curve” based sets, i.e., here we consider sets
S that have the property that for a noticeable fraction points x € F y there exists
a low-degree curve passing through x that has a noticeable fraction of its points

in . We prove such sets must also be large and this leads to the analysis of the
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Dvir-Wigderson merger.
Organization of this chapter: In Section 5.2 we present our lower bounds for

4l

Kakeya sets. In Section 5.3 we extend this analysis for “curves” and for “statistical”
versions of the Kakeya property. This leads to our analysis of the Dvir-Wigderson
merger in Section 5.4. We then show how to use our mergers to construct the novel
extractors in Section 5.5. Finally, in Section 5.6, we include the algebraic proof of

the list-size bounds for the list-decoding of Reed-Solomon codes. We conclude with

some open questions.

5.2 A lower bound on the size of Kakeya sets

We now give a lower bound on the size of Kakeya sets in Fp. Preliminaries on
derivatives and multiplicities appear in Chapter 2.

We implement the plan described in Section 5.1. Specifically, in Proposition 5.2.1
we show that we can find a somewhat low degree non-zero polynomial that vanishes
with high multiplicity on any given Kakeya set, where the degree of the polynomial
grows with the size of the set. Next, in Claim 5.2.3 we show that the homogenous part
of this polynomial vanishes with fairly high multiplicity everywhere in Fy. Using the
strengthened Schwartz-Zippel lemma, we conclude that the homogenous polynomial
is identically zero if the Kakeya set is too small, leading to the desired contradic-
tion. The resulting lower bound (slightly stronger than Theorem 5.1.1) is given in

Theorem 5.2.2.

Proposition 5.2.1 Given a set K C F" and non-negative integers m,d such that

(m+n—1>.lK|< <d+n)’
n n

there exists a non-zero polynomial P = P, g € F[X] of total degree at most d such

that mult(P,a) > m for everya € K.

d+n)

Proof The number of possible monomials in P is (d:"). Hence there are ( M

degrees of freedom in the choice for the coefficients for these monomials. For a given
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point a, the condition that mult(P,a) > m imposes (m+:_1) homogeneous linear
constraints on the coefficients of P. Since the total numnber of (homogeneous) linear
constraints is (m'*“:“l) -|K|, which is strictly less than the number of unknowns, there
is a nontrivial solution.

Theorem 5.2.2 If K CFy is a Kakeya set, then |K| > (5:‘3176)71.
Proof Let £ be a large multiple of ¢ and let
m=20—{/q

d=4{q—1.

These three parameters (€,m and d) will be used as follows: d will be the bound on
the degree of a polynomial P which vanishes on K, m will be the multiplicity of the
zeros of P on K and € will be the multiplicity of the zeros of the homogenous part of
P which we will deduce by restricting P to lines passing through K.
Note that by the choices above we have d < €g and (m — £)g > d — £. We prove
below that
(d+n)
K| >

"

>a”

where o — 5:‘1% as £ — oc.

dtn
Assume for contradiction that |K| < (,—g,’l—:)]—) Then, by Proposition 5.2.1 there
exists a non-zero polynomial P(X) € F[X] ofL total degree exactly d*, where d* < d,
such that mult(P,x) > m for every x € K. Note that d* > £ since d* > m (since P
is nonzero and vanishes to multiplicity > m at some point), and m > £ by choice of
m. Let Hp(X) be the homogencous part of P(X) of degree d*. Note that Hp(X) is
nonzero. The following claim shows that Hp vanishes to multiplicity £ at each point

of IFZ.
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Claim 5.2.3 For each b € ]F;l?

mult(Hp, b) > £.

Proof Fix i with wt(i) = w < £ — 1. Let Q(X) = PO(X). Let d be the degree of
the polynomial Q(X), and note that d < d* — w.

Let a = a(b) be such that {a +tb|t € F,} C K. Then for all t € F,, by
Lemma 2.1.4, mult(Q,a+tb) > m —w. Since w < £—1and (m—£)-q > d* — £, we
get that (m — w) - q > d* — w.

Let Qab(T) be the polynomial Q(a + Th) € F [T]. Then Qap(T) is a univariate
polynomial of degree at most d’, and by Corollary 2.1.6, it vanishes at each point of

F, with multiplicity m — w. Since
(m—w)-g>d —w>deg(Qap(T)),

we conclude that Qap(T) = 0. Hence the coefficient of T% in Qap(T) is 0. Let Hg
be the homogenous component of @ of highest degree. Observe that the coefficient
of T in Qap(T) is Hg(b). Hence Hg(b) = 0.

Now, if (Hp)W(X) = 0, then (Hp)®(b) = 0. Else Ho(X) = (Hp)V(X) (by item
3 of Proposition 2.1.3), and hence as before (Hp)®(b) = Hg(b) = 0. Since this is
true for all i of weight at most £ — 1, we have that mult(Hp,b) > ¢. m

Applying Corollary 2.1.9, and noting that £g™ > d*¢"~!, we conclude that Hp(X) =

0. This contradicts the fact that P(X) is a nonzero polynomial.

Hence, ,
+n
K> g
n
Now, by our choice of d and m,
() () Mg —1+9)
(m+:—1) (2€—£/Z’+n~1) H?:l (2[ . C/q -1+ l)
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Since this is true for all £ such that € is a multiple of g, we get that

; - g—1/l+1/l q "
!AI—}Sgizl (2—1/q—1/l+z'./l 2-1/q

5.3 Statistical Kakeya for curves

Next we extend the results of the previous section to a form conducive to analyze
the mergers of Dvir and Wigderson [DWO08|. The extension changes two aspects of
the consideration in Kakeya sets, that we refer to as “statistical” and “curves”. We
describe these terms below.

In the setting of Kakeya sets we were given a set K such that for every direction,
there was a line in that direction such that every point on the line was contained in
K. In the statistical setting we replace both occurrences of the “every” quantifier
with a weaker “for many” quantifier. So we consider sets that satisty the condition
that for many directions, there exists a line in that direction intersecting K in many
points.

A second change we make is that we now consider curves of higher degree and
not just lines. We also do not consider curves in various directions, but rather curves
passing through a given set of special points. We start with formalizing the terins
“curves”, “degree” and “passing through a given point”.

A curve of degree A in Fy is a tuple of polynomials C(X) = (C1(X),...,Cu(X)) €
Fy[X]* such that max;ep, deg(Ci(X)) = A. A curve C naturally defines a map from
F, to Fy. For x € Fy, we say that a curve C passes through x if there is a t € I such
that C(t) = x.

We now state and prove our statistical version of the Kakeya theorem for curves.

Theorem 5.3.1 (Statistical Kakeya for curves) Let A > 0,7 > 0. Let A > 0 be
an integer such that ng > A. Let S C Ty be such that [S| = A\g". Let K CFy be such
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that for each x € S, there exists a curve Cx of degree at most A that passes through

x, and intersects K in at least ng points. Then,

n
. A
Iy
2q-1)
A=) +1
In particular, if X > n we get that |K| > ({%)n
Proof Let £ be a large integer and let
d= Mg —1
Mg—1—((-1
m = AL ( ) + £
nqg

By our choice of m and d, we have ng(m — (£ — 1)) > A(d — (€ — 1)). Since ng > A,

we have that for all w such that 0 < w < -1, ng(m — w) > A(d — w). Just as in
the proof of Theorem 5.2.2, we will prove that
d+
(")

(™)

K| = > a”

where o — —~24—— as £ — oc.
AR 4
7
d+n

If possible, let |K| < ,,(7,,';;__) . As before, by Proposition 5.2.1 there exists a

p | K| ( ,r‘n D » D)
non-zero polynomial P(X) € F,[X] of total degree d*, where d* < d, such that
mult(P,a) > m for every a € K. We will deduce that in fact P must vanish on
all points in S with multiplicity €. We will then get the desired contradiction from

Corollary 2.1.9.

Claim 5.3.2 For each xg € S,
nult(P,xq) > €.

Proof Fix any i with wt(i) = w < £ — 1. Let Q(X) = PY(X). Note that Q(X)

1s a polynomial of degree at most d* — w. By Lemma 2.1.4, for all points a € K,
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mult(Q,a) > m — w.

Let C%, be the curve of degree A through xg, that intersects K in at least nq
points. Let ty € F, be such that Cx (to) = Xo. Let Qx,(T) be the polynomial
Q o O (T) € F,T). Then Q,(T) is a univariate polynomial of degree at most
A(d* — w). By Corollary 2.1.6, for all points t € F, such that Cx (t) € K, Qx,(T)
vanishes at ¢ with multiplicity m — w. Since the nmunber of such points ¢ is at least
ng, we get that Qx, (T) has at least ng(m — w) zeros (counted with multiplicity).

However, by our choice of parameters, we know that
ng(m —w) > A(d — w) > A(d" — w) > deg(Qx,(T)).

Since the degree of Qy, (T') is strictly less than the number of its zeros, Qx, (T') must be
identically zero. Thus we get Qx, (to) = Q(Cx, (t0)) = Q(xo) = 0 Hence PH(x4) = 0.

(
Since this is true for all i with wt(i) < £ — 1, we conclude that mult(P,xq) > ¢. W

Thus P vanishes at every point in S with multiplicity £. As P(X) is a non-zero
polynomial, Corollary 2.1.9 implies that €S| < d*¢*~1. Hence €\g" < dg™!, which

contradicts the choice of d.

d-fn
Thus |K| > (L_)j By choice of d and m,

-1
7

(/\ﬁq-— 1+n)

Azl ([fl) +l+n—1
( . )

K| 2

nq

Picking € arbitrarily large, we conclude that

n n
AMg—14n 6/\ -1 A\
K| > Jim 4\,\yq_(lﬁ(f?'l)+2+ — = lim ___\_q_l____ = “‘Tii——
den 45 SR D4 ————17[—— 1 — f 50 Ag— _
(A ) on (M) 40 NESEE
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5.4 Improved Mergers

In this section we state and prove our main result on randomness mergers.

5.4.1 Definitions and Theorem Statement

We start by recalling some basic quantities associated with random variables. The
statistical distance between two random variables X and Y taking values from a finite

domain €2 is defined as
max [Pr[X € S]— Pr[Y € 5]|.
SCO

We say that X is e-close to Y if the statistical distance between X and Y is at most €,
otherwise we say that X and Y are e-far. The min-entropy of a random variable X is

defined as

1
(X) & min_log, [ =——— ) .
002 i e (=)

We say that a random variable X is e-close to having min-entropy m if there exists a
random variable Y of min-entropy m such that X is e-close to Y.

A “merger” of randomness takes a A-tuple of random variables and “merges”
their randomness to produce a high-entropy random variable, provided the A-tuple

is “somewhere-random” as defined below.

Definition 5.4.1 (Somewhere-random source) For integers A and N a simple
(N, A)-somewhere-random source is a random variable A = (Ay, ..., Ay) taking values
in S, where S is some finite set of cardinality 2V, such that for some i, € [A], the
distribution of A, is uniform over S. A (N, A)-somewhere-random source is a conver

combination of simple (N, A)-somewhere-random sources. (When N and A are clear

from context we refer to the source as simply a “somewhere-random source”. )
We are now ready to define a merger.

Definition 5.4.2 (Merger) For positive integer A and set S of size 2, a func-

tion f: S* x {0,1} — S is called an (m,€)-merger (of (N, A)-somewhere-random
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sources), if for every (N,A) somewhere-random source A = (Aq,...,Ap) taking val-
ues in S*. and for B being uniformly distributed over {0,1}%, the distribution of

F(A1,....Ap), B) is e-close to having min-entropy m.

A merger thus has five parameters associated with it: N, A, m, € and d. The
general goal is to give explicit constructions of mergers of (N, A)-somewhere-random
sources for every choice of N and A, for as large an m as possible, and with € and
d being as small as possible. Known mergers attain m = (1 — ¢) - N for arbitrarily
small ¢ and our goal will be to achieve § = o(1) as a function of N, while € is an
arbitrarily small positive real number. Thus our main concern is the growth of d as
a function of N and A. Prior to this work, the best known bounds required either

d=Q(og N +logA) or d = Q(A). We only require d = Q(log A).

Theorem 5.4.3 For every €,0 > 0 and integers N, A, there exists a ((1 —9) - N,¢)-

merger of (N, A)-somewhere-random sources, computable in polynomial time, with

1 2A

5.4.2 The Curve Merger of [DWO08| and its analysis

seed length

The merger that we consider is a very simple one proposed by Dvir and Wigder-
son [DW08], and we improve their analysis using our extended method of multiplici-
ties. We note that they used the polynomial method in their analysis; and the basic
method of n'mlﬁpli(:ities doesn’t seemn to improve their analysis.

The curve merger of [DWO08], denoted fpw, is obtained as follows. Let ¢ > A be
a prime power, and let n be any integer. Let v,...,7a € Fy be distinet, and let
¢i(T) € T[T} be the unique degree A — 1 polynomial with ¢;(y;) = 1 and for all j # ¢,
¢i(y;) = 0. Then for any x = (x1,...,%a) € (IF";)A and u € Fy, the curve merger fpw
maps (F?)* x Fy to F? as follows:

A

fow((X1,...,Xp),u) = Z ci{u)x;.
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In other words, fpw((x1,...,xa),u) picks the (canonical) curve passing through

X1, ---,Xa and outputs the uth point on the curve..

Theorem 5.4.4 Let ¢ > A and A be somewhere-random source taking values in

(]FZ)A. Let B be distributed uniformly over F,, with A, B independent. Let C =

fow(A,B). Then for
€

C is e-close to having min-entropy (1 — 6) - n - log, q.

Theorem 5.4.3 easily follows from the above. We note that [DW0S8] proved a similar
theorem assuming ¢ > poly(n, A), forcing their seed length to grow logarithmically
with n as well.

Proof of Theorem 5.4.3: Let ¢ = 27, so that g > (QTA);' and let n = N/d. Then we
may identify identify F, with {0,1}% and F? with {0,1}". Take f to be the function
fow given ecarlier. Clearly f is computable in the claimed time. Theorem 3.4.4 shows

that f has the required merger property.

We now prove Theorem 5.4.4.
Proof of Theorem 5.4.4: Without loss of generality, we may assume that A is a
simple somewhere-random source. Let m = (1 —6) - n - log, ¢. We wish to show that
Jfow(A, B) is e-close to having min-entropy m.
Suppose not. Then there is a sct K C F? with [K| < 2™ = g1=9n < (ZiA)n such
that
Eg[f(A, B)e K] >e.

Suppose A;, is uniformly distributed over I Let A_;, denote the random variable
(Alz ce 7Ai0~17 Ai0+17 SR 7AA)‘

By an averaging argument, with probability at least A = € /2 over the choice of A,
we have

Pr_[/(AB) € K] > 1,

—ifys
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where 7 = €/2. Since Ay, is uniformly distributed over Fy, we conclude that there is

1)

a set S of cardinality at least A\g"™ such that for any x € S,

Prf(A,B) € K | Ay, =] 2 1.

Fixing the values of A_;,, we conclude that for cach x € S, there is a y = y(x) =
(¥1,...,ya) with y;, =  such that Prg[f(y,B) € K] > n. Define the degree A —
1 carve Cu(T) = fly(x),T) = Z?__ﬂlyjcj(T). Then Cy passes through x, since
Cu(i,) = Z;L_l ¥;i¢i(V,) = ¥i, = X, and Prger, [Cx(B) € K] > 7 by definition of Ci.
Thus S and K satisfy the hypothesis of Theorem 5.3.1. We now conclude that

T

= (A1) ()\;’%) 1) (A— (fe\q/—Ql)/nq> - (%)”

This is a contradiction, and the proof of the theorem is complete. R

The Somewhere-High-Entropy case: It is possible to extend the merger analysis
given above also to the case of somewhere-high-entropy sources. In this scenario the
source is comprised of blocks, one of which has min entropy at least r. One can then
prove an analog of Theorem 5.4.4 saying that the output of fpw will be close to
having min entropy (1—49)-r under essentially the same conditions on g. The proof is
done by hashing the source using a random linear function into a smaller dimensional
space and then applying Theorem 5.4.4 (in a black box manner). The reason why

this works is that the merger cominutes with the linear map (for details see [DWO03]).

5.5 Extractors with sub-linear entropy loss

In this section we use our improved analysis of the Curve Merger to show the existence
of an explicit extractor with logarithmic seed and sub linear entropy loss.
We will call a random variable X distributed over {0,1}* with min-entropy k an

(n, k)-source.



Definition 5.5.1 (Extractor) A function E : {0,1}7x{0,1}¢ — {0,1}" is a (k,¢)-
extractor if for every (n, k)-source X, the distribution of E(X,Uy) is e-close to uniform,
where Uy is a random variable distributed uniformly over {0, 1}d, and X, Uy are inde-

pendent. An extractor is called explicit if it can be computed in polynomial time.

It is common to refer to the quantity & — m in the above definition as the entropy
loss of the extractor. The next theorem asserts the existence of an explicit extractor

with logarithmic seed and sub-linecar entropy loss.

Theorem 5.5.2 (Basic extractor with sub-linear entropy loss) For cveryc; >
1, for all positive integers k < n with k > log*(n), there exists an caplicit (k,e€)-
extractor E 2 {0,137 x {0,134 — {0, 1}™ with

d = O(c; - log(n)),

b m—0 (LL)&I%@ and
log(n)

The extractor of this theorem is constructed by composing several known explicit
constructions of pseudorandom objects with the merger of Theorem 5.4.3. In Sec-
tion 5.5.1 we describe the construction of our basic extractor. We then show, in Sec-
tion 5.5.2 how to use the repeated extraction’ technique of Wigderson and Zuckerman
[WZ99] to boost this extractor and reduce the entropy loss to k —m = O(k/log®n)

for any constant ¢ (while keeping the seed logarithmic).

Theorem 5.5.3 (Final extractor with sub-linear entropy loss) For cverycy,co >
1, for all positive integers k < n, there exists an explicit (k,€)-extractor E : {0,1}" x
{0,119 — {0,1}™ with

d = O(c1cz - log(n)),

k
kzO(f—ﬁ)
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5.5.1 Proof of Theorem 5.5.2

Note that we may equivalently view an extractor E : {0,1}" x {0,1}¢ — {0,1}™ as
a randomized algorithm E : {0,1}* — {0,1}™ which is allowed to use d uniformly
random bits. We will present the extractor E as such an algorithm which takes 5
major steps.

Before giving the formal proof we give a high level description of our extractor.
Our first step is to apply the lossless condenser of [GUV07] to output a string of
length 2k with min entropy & (thus reducing our problem to the case k = Q(n)). The
construction continues along the lines of [DWO08]. In the second step, we partition
our source (now of length n’ = 2k) into A = log(n) consecutive blocks Xi,..., X, €
{0,1}7/A of equal length. We then consider the A possible divisions of the source
into a prefix of j blocks and suffix of A — j blocks for j between 1 and A. By a result
of Ta-Shma [TSY6b], after passing to a convex combination, one of these divisions is
a (K, ko) block source with & being at least & — O(k/A) and kg being at least poly-
logarithmic in k. In the third step we use a block source extractor (from [RRS00]) on
each one of the possible A divisions (using the same seed for each division) to obtain
a somewhere random source with block length &'. The fourth step is to merge this
somewhere random source into a single block of length &' and entropy &'-(1—9) with §
sub-constant. In view of our new merger parameters, and the fact that A (the number
of blocks) is small enough, we can get away with choosing 6 = loglog(n)/log(n) and
keeping the seed logarithmic and the error poly-logarithinic. To finish the construction
(the fifth step) we need to extract almost all the entropy from a source of length &/
and entropy k'- (1 —9). This can be done (using known techniques) with logarithinic
seed and an additional entropy loss of O(4 - k').

We now formally prove Theorem 5.5.2. We begin by reducing to the case where

n = O(k) using the lossless condensers of [GUV07].

Theorem 5.5.4 (Lossless condenser [GUVO0T]) For all integers positive k < n
with k = w(log(n)), there exists an explicit function Cauy : {0,1}* x {0,1}¥ —
{0,1Y" with n' = 2k. d' = O(log(n)), such that for cvery (n, k)-source X, C(X, Ug) is
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. . . . " 4
(1/n)-close to an (n', k)-source, where Uy is distributed uniformly over {0, 1}, and

X, Uy are independent.

Step 1: Pick Uy uniformly from
{0, 1}

Compute X' = Cguv(X, Ug).

By the above theorem, X' is (1/n)-close to an (n/, k)-source, where n’ = 2k. Our

next goal is to produce a somewhere-block source. We now define these formally.

Definition 5.5.5 (Block Source) Let X = (Xy,X;) be a random source over {0, 1} x
{0,1}"2. We say that X is a (ky, k»)-block source if Xy is an (ny, ky)-source and for

cach &1 € {0,1}™ the conditional random variable Xo|Xy = 21 is an (no, ks)-source.

Definition 5.5.6 (Somewhere-block source) Let X = (Xq,...,Xs) be a random
variable such that each X; is distributed over {0,1}% x {0,1}%2. We say that X
is a simple (ki, ko)-somewhere-block source if there exists i € [A] such that X; is a
(K1, k2)-block source. We say that X is a somewhere-(ky, ko)-block source if X is a

convex combination of simple somewhere random sources.

We now state a result of Ta-Shina [TS96b] which converts an arbitrary source into
a somewhere-block source. This is the first step in the proof of Theorem 1 on Page 44
of [TS96b] (Theorem 1 shows how convert any arbitrary source to a somewhere-block
source, and then does more by showing how one could extract from such a source).

Let A be an integer and assume for simplicity of notation that n’ is divisible by
A. Let

! / 1 n' /A A
X:( 17‘..7XA)€ {0,1}

denote the partition of X’ into A blocks. For every 1 < j < A we denote

and Z; = (X0 ;,..., X}).
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Consider the function By : {0,1}7 — ({0,1}%)*, where

Bag(X") = ((Y1,Z1),(Y2,Z3), ..., (Ya, Za)).

The next theorem shows that the source ((Y;, Zj))j cla] 18 close to a somewhere-block

source.

Theorem 5.5.7 ([TS96b]) Let A be an integer. Let k = ky + ky + 5. Then the
function Big @ {0,1}% — ({0, 137N s such that for any (W', k)-source X', letting
X" = BA(X"), we have that X" is O(n-27%)-close to a somewhere-(ky — O(n'/A), ky)-

block source.

Step 2: Sct A = log(n).
Compute X" = (X[,X},....X}) =

Brs(X).
Plugging ky = O(log*(n)) = O(log*(k)), s = O(logn) and k; = k — ky — s in

the above theorem, we conclude that X" is n™%M-close to a somewhere-(k’, k2)-block

source, w here
K =k —O(n'/log(n)) =k — ky — s — O(k/log(n)) = k — O(k/log(n)),

where for the last inequality we use the fact that k > log?(n) and so both s and ks
are bounded by O(k/log(n)).
We next use the block source extractor from [RRS00] to convert the above somewhere-

block source to a somewhere-random source.

Theorem 5.5.8 ([RRS00]) Letn/ = ny+ny and let k', ko be such that ky > log*(ny).
Then there exists an explicit function Egsw : {0, 1} x {0,1}%2 x {0, 1} — {0,1}™"
withm” = k', d" = O(log(n')), such that for any (k', ks)-block source X, Egsw (X, Ugr)

—(1;

. . . . N " . . .
is (ny) """ -close to the uniform distribution over {0,1}™", where Uy is distributed

- p E /! .
uniformly over {0,1}%", and X, Ugr are independent.

Set d” = O(log(n')) as in Theorem 5.5.8.
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Step 3: Pick Ugr uniformly from {0,1}%".
For each j € [A], compute X} =
Ersw (X}, Ugr).

By the above theorem, X" is n

-1 7
! )-('51()86 to a somewhere-random source. We are

now ready to use the merger M from Theorem 5.4.3. We invoke that theorem with
entropy-loss § = loglog(n)/log(n) and error e = @11_(7;) and hence M has a seed
length of

1 A |
d" = O(_O_ log .E_) = O(Cl 1()g(Tl))

Step 4: Pick Ud’” unif()flnly from {U l}d/”,

Compute X" = M(X", Ugr).
By Theorem 5.4.3, X" is O(log iy )-close to a (K, (1 — d)&')-source. Note that

0 = o(1), and thus X"”” has nearly full entropy. We now apply an extractor for sources

with extremely-high entropy rate, given by the following lemma.

Lemma 5.5.9 For any k' and & > 0, there exists an explicit (K'(1 — &), k'~9D).
extractor Bgcn : {0, 13F x {0, 1} s {0, 1}0-3% with ¢ = O(log(k')).

The proof of this lemma follows casily from Theorem 5.5.8. Roughly speaking, the
input is partitioned into blocks of length &' — 6k — log* k" and 6k’ + log* &'. Tt follows
that this partition is close to a (k'(1 — 20) — log* &', log* k’)-block source. This block

source is then passed through the block-source extractor of Theorem 5.5.8.

Step 5: Pick Ugw uniformly from
{0,134

Compute X" = Eyiga(X"", Ugm).

Output X"

This completes the description of the extractor E. It remains to note that d, the
total number of random bits used, is at most d' +d” +d” + d” = O(c;logn), and

that the output X" is O( —)-close to uniformly distributed over

{0, 1}(1—36)k’ = {0, l}k—O(hﬁ%iﬁﬂ).

This completes the proof of Theorem 5.5.2.
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We sumnmarize the transformations in the following table:

Function | Seed length Input-type Output-type
Cauv O(log(n)) (n, k)-source (2k, k)-source
BA 0 (2k, k)-source somewhere-(k', log*(k))-block
FErsw O(log(k)) somewhere-(k, log* (k))-block (K', O(log(n)))-somewhere-random
M O(log(n)) | (K, O(log(n)))-somewhere-random (k' k" — o(k))-source
Fuicn O(log(k)) (K', k' — o(k))-source Uk —o(k)

5.5.2 Improving the output length by repeated extraction

We now use some ideas from [RRS00] and [WZ99Y] to extract an even larger fraction
of the min-entropy out of the source. This will prove Theorem 5.5.3. We first prove a
variant of the theorem with a restriction on k. This restriction will be later removed

using known constructions of extractors for low min-entropy.

Theorem 5.5.10 (Explicit extractor with improved sub-linear entropy loss)

w

For every c1,¢; > 1, for all positive integers k < n with k = log

an explicit (k,€)-extractor B {0, 13" x {0,1}% — {0,1}™ with

(U(n), there exists

d = O(c1c; - log(n)),

k
=0 ()

We first transform the extractor given in Theorem 5.5.2 into a strong extractor
(defined below) via [RRS00, Theorem 8.2 (which gives a generic way of getting a
strong extractor from any extractor). We then use a trick from [WZ99] that repeatedy
uses the same extractor with independent seeds to extract the ‘remaining entropy’

from the source, thus improving the entropy loss.
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Definition 5.5.11 A (k,e€)-extractor E : {0,1}" x {0,1}¥ — {0,1}™ is strong if
for every (n,k)-source X, the distribution of (E(X,Uy),Uy) is e-close to the uniform
distribution over {0, 1} where Uy is distributed uniformly over {0,134, and X, Uy

are independent.

Theorem 5.5.12 ([RRS00, Theorem 8.2]) Any eaplicit (k,€)-extractor E : {0, 1}
{0,1} — {0,1}™ can be transformed into an eaplicit strong (k, O(y/€))-extractor
E - {07 l}n % {0, 1}0((1) — {()’ l}mwd—’zlog(l/e)—O(l)'

Theorem 5.5.13 ([WZ99, Lemma 2.4]) Let E; - {0, 1} x {0, 1}4 — {0,1}™ be
an explicit strong (k,e;)-extractor, and let Eq @ {0,137 x {0,1}% — {0,1}™ be an

caplicit strong (k — (m1 + 1), 62)'3Xtr3<’2t0r. Then the function
By : {0,131 x ({0,1)% x {0,1}%) = {0,1)7+

defined by
Es(z,1.y2) = Exv(z,11) o Ex(x, y2)

is a strong (k,ey + €2 + 277)-extractor.

We can now prove Theorem 5.5.10. Let E be the (k,e)-extractor with seed

O(cylogn) of Theorem 5.5.2. By Theorem 5.5.12, we get an explicit strong (k, /€)-
extractor E' with entropy loss O(kl—o%g—’—‘) We now iteratively apply Theorem 5.5.13
as follows. Let E© = E’. For cach 1 < i < O(cy), let E@ : {0,1}" x {0,1}% —
{0,1}™ be the strong (k, €;)-extractor produced by Theorem 5.5.13 when we take
E; = E% Y and B, to be the strong (k — m;_; — c1logn, 1/log® (n))-extractor with

seed length O(cplogn) given by Theorem 5.5.2 and Theorem 5.5.12. Thus,

d; = O(icy logn).

loglog n
m; =m;_1 + (k—m;_1 — ¢ logn) (1 -0 (M)> .
, logn
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Thus the entropy loss of E® is given by:

loglogn k
e (ke — (1o (ke +0 =0 , A
bmmi = (k= mis) (1 (1 © ( logn ))) (e1logn) (log’(-n))

E©@)} i4 the desired extractor. B

Remark In fact [GUVO0T7] and [RRV99] show how to extract all the minentropy
with polylogarithmic seed length. Combined with the lossless condenser of [GUV07]
this gives an extractor that uses logarithmic seed to extract all the minentropy from

sources that have minetropy rate at most 200vogn)

Theorem 5.5.14 (Corollary of [GUV07, Theorem 4.21]) For all positive in-
tegers n > k such that k = 200Y%8%) and for all € > 0 there exists an explicit
(k,€)-extractor E : {0,1}™ x {0,1}¢ + {0,1}™ with d = O(log(n)) and m =k +d —
2log(1/e) — O(1).

This result combined with Theorem 5.5.10 gives an extractor with improved sub-
linear entropy loss that works for sources of all entropy rates, thus completing the

proof of Theorem 5.5.3.

5.6 Bounds on the list size for list-decoding Reed-
Solomon codes

In this section, we give a simple algebraic proof of an upper bound on the list size for
list-decoding Reed-Solomon codes within the Johnson radius.

Before stating and proving the theorem, we need some definitions. For a bivariate
polynomial P(X,Y) € F[X,Y], we define its (a,b)-degree to be the maximum of
ai+bj over all (4, 7) such that the monomial X*Y”7 appears in P(X,Y) with a nonzero
coefficient. Let N(k,d,6) be the number of monomials X*Y7 which have (1, k)-degree

at most d and j < 0d/k. We have the following simple fact.
Fact 5.6.1 For any k<d and 6 € [0,1], N(k,d.0) >0-(2—6)- g;-
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Now we prove the main theorewm of this section. The proof is an enhancement of
the original analysis of the Gurnswami-Sudan algorithm using the extended method

of multiplicities.

Theorem 5.6.2 (List size bound for Reed-Solomon codes) Let (o, 1), .., (an, 3,) €
F?. Let R,y € [0,1] with* > R. Let k = Rn. Let JU(X), ..., fu(X) € F[X] be poly-
nomials of degree at most k, such that for each j € [L] we have |{i € [n] : [iloy) =

Bit| >~n. Then L < F{LR'

Proof Let € > 0 be a parameter. Let § = -—25. Let m be a large integer (to
(1+3)

+7

be chosen later), and let d = (1 +¢) - m - ‘/WTQ%T)' We first interpolate a nonzero
polynomial P(X,Y’) € F[X, Y] of (1, k)-degree at most d and Y-degree at most. 0d /k,
that vanishes with multiplicity at least m at each of the points (o, 5;). Such a
polynomial exists if N(k,d,6), the number of monomials available, is larger than the

number of homogeneous linear constraiuts imposed by the vanishing conditions:

m(m + 1)

51 < N(k,d.0). (5.1)

This can be made to hold by picking m sufficiently large, since by Fact 5.6.1,

d? 1+ €)?m?
N(k,d,0) > 6- (2= 6)7- = £—+§l—-n

Having obtained the polynomial P(X,Y), we also view it as a univariate poly-
nomial Q(Y) € F(X)[Y] with coefficients in, F(X), the field of rational functions in
X.

Now let f(X) be any polynomial of degree at most k such that, letting I = {i e
[n] © flai) = B}, [I] 2 A We claim that the polynomial Q(Y) vanishes at f(X)
with multiplicity at least m — d/A. Indeed, fix an integer j < m — d/A, and let
R;j(X) = QW (f(X)) = PO)(X, f(X)). Notice the degree of R;(X) is at most d. By

Proposition 2.1.5 and Lemma 2.1.4, we have for every i € I,

mult(R;, o) > mult (P09, (a4, 8:)) > mult(P, (o, 3;)) — J.
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Thus
Zmult(Rj,ai) >l (m—=75)>A - (m—j)>d

el
By Lemina 2.1.8, we conclude that R;(X) = 0. Since this holds for every j < m—d/A,
we conclude that mlt(Q, (X)) > m — d/A.
We now complete the proof of the theorem. By the above discussion, for each
j € [L], we know that mult(Q, f;(X)) > m — % Thus, by Lemma 2.1.8 (applied

to the nouzero polynomial Q(Y) € F(X)[Y] and the set of evaluation points S =

{£;:(X) 5 €[L]})

deg(Q) > Z mult(Q, f(X)) > (m — i) - L.

~yn
jelr) !

Since deg(Q) < 0d/k, we get,

0d/k > (m— i) - L.

f\/n

TV‘. finnd - . . ‘le a9y — 2 Ty (F
Using d = (1+¢)-m 7y and 0 = i we get,

L f =

9 1
Sk m _ kT . = - ¢ rRY
Pmwm mEee-o-& LJRE-1D-2 &-(3+£)

Letting € - 0, we get L < ;?{L‘ﬁ, ag desired. M

5.7 Open Problems

We conclude with some open problems.

1. Construct explicit extractors with logarithmic seed which extract all the entropy

out of a weak random source.

2. Construct explicit extractors with seeds of length (14 o(1)) log n which extract

nearly all the entropy out of a weak random source.
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3. Do there exist Kakeya sets of size ¢"/2"(1+4 0(1))7 It would be very interesting
to know that there are settings where the extended method of multiplicities can

give the sharp answer.

4. More philosophically, when do multiplicities help? For which problems is the

extended method of multiplicities likely to be effective?
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Chapter 6

Explicit Functions Uncorrelated

with Low-degree Polynomials

6.1 Introduction

The fourth and final result of this thesis is the explicit construction of functions
f : Fy — Ty that have small correlation with low-degree multivariate polynomials.
The main idea underlying this construction is to reinterpret the vector space F3 as
the large finite field Fon; under this reinterpretation, our explicit constructions have
a simple description and admit a simple analysis. We start by informally describing
this method.

For simmplicity, let us work over the two element field Fy (all our results generalize
to larger fields). Suppose we have a problem involving functions from FZ to Fy that
can be represented as low-degree multivariate polynomials (henceforth called “low-
degree” functions). The heart of the method is to view f as a univariate polynomial
over the extension field Fo. and to consider the problem in the larger field. More
precisely, embed FZ in Fon using an addition-respecting isomorphism. Using this
embedding, view f: Fon — Fy C Fyn as a univariate polynomial in Fs. [X].

At first sight this method may seem counter-intuitive because even simple func-
tions f can have very high degree when viewed as univariate polynomials over Fon.

To wit, the degree of the simple function f(zi,...,z,) = z;, when viewed as a poly-
: & 3 > 1, N
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nomial over Fa», jumps from 1 to 2*~1, because f vanishes on 21 inputs. However,
what comes to our aid is the following observation. Although f may have very large
degree, it is “nicely structured” in the sense that it is a very sparse polynomial and
moreover the exact location of its nonzero coefficients can be easily specified. For
instance, it is well-known since the work of Ore in the 1930’s [Ore33, Ore34] that any
degree 1 function, when represented over Fan is linearized, meaning it can be written
as f(X) = c+2?:‘01 a; X% where ¢,ay,...,a,_ 1 € Fan. Similarly, f is of degree d over

F, it and ouly if its representation over Fon is of the form

¢+ Z ai],“.,ikXQiJ +...+2ik‘ (6.1)

Thus, we have nontrivial information about the number of nonzero coefficients of f,
and the set of possibly nonzero coefficients of f. It is precisely this extra structure
that we use to perform our analysis, which we describe next.

We can now describe some examples of our explicit exponentially-hard functions.
Let p(X) = X* € Fu[X] where £ is odd and the binary expansion of £ has more than
d ones. Then, the function f : F3 — F, given by f(z) = Tr(p(z))is the first bit of
p(X) (or any other nontrivial linear combination of the bits of p(X)) has correlation
at most (4¢2/2)Y%"" with degree d polynomials. In particular, taking ¢ = 24+ — 1
we conclude that the function that computes the first bit X2"'=1 has correlation at
most 4 - 272" with all degree d polynomials (see Theorem 6.2.5).

As an added bonus, this approach gives simple constructions of functions from
F3 to F3' (with m large) that have exponentially small agreement with all m-tuples
of low-degree polynomials, viewed as maps from F} to FP (here the agreement of
two functions agree(f, g), is the fraction of points in F} on which they have the same
evaluation). Again the constructions are very simple and natural. For example if
m = n, the same function p(X) = X* from above has exponentially small agreement
with m-tuples of degree d polynomials (see Theorem 6.2.4).

One instance of the classical Weil bound for character sums shows that if f :

Fyn — Fy is a function of the form Tr o p, where p : Fon — Fan is a low degree
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univariate polynomial, then f has exponentially small correlation with any degree 1
polynomial g : F} — Fy, except when f is itself a degree 1 polynomial. Our result is
a generalization of this phenomenon to Fy polynomials of higher degree d, namely, if
f is the above form, then f has exponentially small correlation with any polynomial

g : F} — F, of degree at most d, except when f is itself of Fo-degree at most d.

In coding theory terminology, this result gives a dichotomy relating dual BCH
codes and Reed-Muller codes. Let Cy be the dual-BCH code contained in {0,1}*"
with parameter t = O(1) (so that it has n?(1) codewords). Let Cy bethe Reed-
Muller code contained in {0,1}?" of degree d polynomials, with d = O(1). The for

any codeword ¢ € C, one of the following cases must hold:
1. ce Chy,
2. cis 1/2 — 2790 far from all the codewords of Cs.

We now outline the method of proof. Let f denote our exponentially-hard function
described above and let g be a degree d polynomial. Recall we are interested in
bounding [E[(—1)/®=9@]|. As in [VW07] (who pioneered the use of the Gowers
norm in this context), it suffices to show that the bias of the function after taking
d + 1 directional derivatives is small. This reduces our problem to understanding the
d+ 1% derivative of our function f and to show that it is unbiased. Now we view f as
a univariate polynomial in Fan. Using the structure of its coefficients, we deduce that
its d + 1°* derivative is a nonzero polynomial over Fan of relatively low degree. We
finish the proof with an application of the Weil bound, Theorem 2.3.2, and conclude

that f and g have exponentially small correlation.

Organization of this Chapter: In the next section we prove our main results on
explicit functions uncorrelated with low-degree polynomials. We conclude with some
open problems. For the sake of self-containedness, we include an exposition of an

elementary proof of the Weil bound due to Bombieri and Stepanov in the appendix.
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6.2 Low degree univariate polynomials hard for

multivariate polynomials

In this section, we prove our main results on correlation (for the special case of Fy).
Preliminary material on the interplay between polynomials over F % and Fy. can be
found in Section 2.3.

Let ¢ = 2". We show that functions over F, of low F -degree but moderate Fo-
degree are “very far” from functions with low Fa-degree. Our proofs use the machinery
of discrete derivatives (generalized to functions between arbitrary vector spaces). See
Section 2.3.2 for the necessary definitions.

At an intuitive level, the reason hehind these results can be explained as follows.
Functions that have low Fg-degree are themselves very pseudorandom: they satisfy
many equidistribution type properties such as the Schwartz-Zippel lemma and the
Weil bound. Now when a function with low F,-degree is also known to have at least
moderate Fy-degree, this gives it some robustness: even after a few derivatives of
this function have been taken, we know that the function remains non-zero (by the
lower bound on Fy-degree) and we know that the function is still a low-F q degree
function, which gives it some pseudorandomness properties. This robustness against
derivatives is what makes it uncorrelate with low Fy-degree polynomials, which simply
vanish after we take a few derivatives.

We begin by proving a result that. gives simple explicit functions having low agree-
ment with polynomial-tuples. The proof is somewhat simpler in this case and con-
tains many of the main ideas. A special case to keep in mind is V = W = F, and

flx) =221

Theorem 6.2.1 Let V and W be F, vector spaces. Suppose f:V — W is such that
degy,(f) > d and degg (f) < £. Then for all g : V — W with degg, (9) < d, we have

E I/Q‘Hvl
(o))< (£)
q

Before starting with the proof, we state a simple lemma which gives a lower bound
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on the number of “cubes” contained in a subset of F3. It is proved via a repeated
application of the Cauchy-Schwarz Lemma, and is closely related to the proof of

Lemma 2.2.5 dealing with the Gowers norm.

Lemma 6.2.2 Let S CF3. Then

El
Pr VIQ[/{],(:W%E a)eS| > —) .
TyQ 1.0l EFY - AL

- el

We now prove Theorem 6.2.1.

Proof The idea of the proof is to study how often the d + 1% derivative of f
vanishes. We then use this information to conclude that f must have low agreement
with any function g with Fo-degree at most d.

Define h: V x V& 5 W by

/’L(l’,a) = (Da(f - g))(:l’)

Fact 2.3.3 shows that Da(g) = 0 for all a. Thus, by linearity of Dy, we have h(z,a) =
(Daf)(z). Fact 2.3.3 implies that A is a non-zero function with F,-degree at most £.

The Schwartz-Zippel Lemma (Lemma 2.1.7) now shows that

| e~

Prlh(z,a) = 0] < -
x,a

e

Let S={z eV : f(z) = g(x)}. By Equation (2.4), h(x,a) # 0 implies that there
exists I C [d+ 1] such that (f —g)(x+>_,.;a) # 0, or equivalently 2+ 3>, ;a; € S.

Therefore

(3N

Pr VIC,(x+) a)eS| < Pr [h(z,a)=0]<-.

01,01 L €V z€V,acvdtl

|

el

1 /2(1 1
The above inequality, combined with Lemina 6.2.2, shows that % < (g) , as

desired. ®

Before we state our correlation bound, we make a definition.
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Definition 6.2.3 (Odd function) Let f:F, — F, and let

q—1
flz)= Z ;T
=0

be its (unique) polynomial representation. We say f is an odd function of for all

1< g— 1, whenever ¢ is even, o; = (.

We now prove a correlation bound for functions mapping to Fa. In the language
of coding theory, it states that if a codeword f of the dual of a BCH code of constant
distance is not also an element of the Reed-Muller code of degree d polynomials, then
it is 1/2 — 2~/ 2 far from every codeword of that Reed-Muller code. As mentioned
in the introduction, this is a generalization of the classical Weil bound that states the

same thing for d = 1.

Theorem 6.2.4 Suppose f : By — F, is an odd function with Fy-deg(f) > d and
Fo-deg(f) < £. Then for all g : F, — Fy with Fa-deg(g) < d, we have

A2\ 172912
Corr(Tro f,g) < (45 ) .

Remark  Some hypothesis related to oddness is necessary in the previous theoren,
to rule out functions f with Tr(f) = 0 identically. The oddness propagates through
the proof and finally plays a crucial role when we apply the Weil bound.

Proof Here we give the proof ouly for the case f(x) = ¢

This case already
contains the main ideas, the case of general f involves just a few more details.

Our proof follows the same strategy as the proof of Theorem 6.2.1. Define h :
d r
Fy x T+t — F, by

h(x,a) = (Da(f))(x).
By Fact 2.3.3, h is a non-zero function of F,-degree at most £.
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2(1«}* 1

d+1
[(—«,1)~(’("°)+rpr(f(%))}l2 < ||(~1)9+rﬁ°f 7ar By Lemma 2.2.5

IExEIFQ
= ||(=1)T! H?}fi:l By Lemma 2.2.8, since degg, (g) < d.

[(_1)Da(Trof)(z:)]

€F,,aeF; !

=E, cp, acr [(—l)rﬁ((D"f)(“))] as Tr is linear

_1\Tr(h(z,a))
el acFit! [( 1) ]

We wish to bound this expression from above, i.e., we wish to show that the
function A is unbiased. Our strategy is to partition the domain of A into lines, and
show that on most lines the restriction of A to that line is unbiased. We do this by
finding a univariate polynomial embedded in h, and applying the Weil bound to it.

Proceeding with our chain of inequalities, we get

‘2(1,1 1

|]Ea:eIFq {(_1)9($)+rﬁ(f($))] <E

= Szelf, ack; " yeF, [(—1)ﬁ(h(x’ya))]
(as a and ya are identically distributed)
<E,ep, acri't [Eyer; [(-1)7 ]|

At this point we pause to understand the expression h(z,ya). By Fact 2.3.3, the
polynomial h{z,Ya) € F [Y] may be written as >, 2" %h;(a)Y? =: h, o(Y) € F,[Y].
We will show that for most (x, a), the function h, 4(Y) satisfics the hypotheses of the
Weil bound, Theorem 2.3.2.

To show that h, »(Y) cannot be written in the form g(Y)2+ g(Y) + ¢, we will find
an gp > £/2 with 2 fiy, such that the coefficient of Y* in A, o(Y) is nonzero. Together
with the fact that deg(h,a(Y) < £, this implies that h, 4(Y) cannot be written in the
form g(Y)? + g(Y) +c.

By the remark after Fact 2.3.4, 49 > £/2 with 2 Nio, such that the coefficient
&t~ h; (a) of the monomial Y™ in h(z,Ya) is a nonzero polynomial of F,-degree at
most € in the variables (z, a). Thus, whenever (x, a) are such that 2% h;(a) evaluates

to something nonzero (which happens for most (x, a), because of the Schwartz-Zippel
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lemma), the polynomial h,a(Y) is not of the form g(Y)2 + g(Y) + ¢, which is the

hypothesis needed for the Weil bound. We now continue our calculation:

R od+1
|Eqper, [(—1 )g(:c)+"ﬁ(f(a:))] < E,cr, acrt ! [Lation, (a)=0) +
EzEIFq,aGIFg"'l [le"i')h,‘,ﬂ(a);m . lEyéIﬁ‘; [(—I)Trcfh(msya))] l}
< £ + g™ /?
q

(We bound the first term using the Schwartz-Zippel lemima 2.1.7.
We applied the Weil bound, as discussed above, to bound the second term. )

< 20q7V2.

Taking 24*1-th roots of both sides, the result follows.

Theorem 6.2.5 (Main) There is an explicit function fo : F2 — Fy such that for
any g : 3 — Fy with Fy
3
Corr(fy, g) < —

L

Proof Let f: F, — F, be given by f(z) = 22""'~!. We see that degp (f) =
2941 _ 1. By Lemma 2.3.1, degy, (f) = d+ 1. Thus f(x) satisfies the hypothesis of
Theorem 6.2.4. Taking fo(x) = Tro f(z), we get the result. W

These results generalize in a straightforward manner to low-degree polynomial-

tuples mapping from Fy — F* for arbitrary F,, m and n.

6.3 Open Problems

We conclude with some open problems.

1. Find explicit functions which are exponentially hard for polynomials of degree
polylog(n). This would give strong average-case lower bounds and pseudoran-

dom generators for AC°[], a cherished goal of modern low-level complexity
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theory. We believe that the kinds of functions considered here, namely traces

of low-degree polynomials over a big field, should have this property.

Concretely, we conjecture that the function f : Fon — Fy given by f(z) =
Tr(a™1) has 279 correlation with polynomials having Fo-degree at most polylog(n).
Apart from solving the open problem mentioned above, this would also imply
that the natural operation of inversion over finite fields is average-case hard for

ACO ().

Traces of low-degree polynomials over a big field also appeared in our explicit
constructions of affine dispersers in Chapter 4. Perhaps there is some interesting
notion of pseudorandomness that these functions have which explains all these

applications?
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Appendix A

The elementary proof of the Weil
bound

A.1 The Weil bound

Let g = 2*. Let Tr : F, — F be the trace map. Our goal is to prove the Weil bound,
which gives a bound on the number of zeroes of a function of the form Tr(f(x)),

where f({X) is a low degree polynomial over F.

Theorem A.1.1 (Weil bound) For any f(X) € F,[X] of with degree exactly d,

where d is an odd integer at most 29271 we have

Z (_1)T‘r'(f(l)) < 24221,

CCEIF(;

We briefly comment why this form of the theorem implies the version in Theo-
rem 2.3.2. Consider a polynomial f(X) which is not of the form g(X)? + ¢(X) + c.
Then by repeatedly replacing some monomials in f(X) of the form aX?™ by al?xm,
we can obtain another polynomial f/(X) of odd degree, such that deg(f’) < deg(f),
and for all z € Fou, Tr(f(z)) = Tr(f'(x)). This allows us to deduce Theorem 2.3.2
from Theoremn A.1.1 (upto an O(1) multiplicative factor).
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The proof that we present is due to Bombieri, building on ideas of Stepanov. A
related proof, also building on ideas of Stepanov, was given by Schmidt. An excellent
reference for both proofs is [Sch04]. Our aim is to give an exposition of the proof that

requires minimal prerequisites.

A.2 The plan

We begin with a standard lemma.

Lemma A.2.1 For any a € F, Tr(a) = 0 if and only if « is of the form 3%+ 3, for

some 3 € F,.

The (a,b)-degree of a monomial X'Y7 is defined to be ai + bj. The (a, b)-degree
of a polynomial is the maximum of the (a,b)-degree of its monomials.

We will need the following version of Bezout’s theorem:

Theorem A.2.2 Let K be a field. Let A(X)Y) € K[X,Y] with X-degree at most
dx and Y -degree at most dy. Let B(X,Y) € K[X,Y] be relatively prime to A(X,Y)
and have (dy,dx)-degree at most D. Then,

{(2,9) € K x K : Alz,y) = B(z,y) = 0}| < D.

This has an elementary proof using resultants.

Let V. = {(x,y) € Fy x Fy : P(x,y) = 0}, where P(X,Y) € F,[X,Y] is the
polynomial Y2 +Y + f(X). Using Lemma A.2.1, we sce that Z$€F'1(~1)Tr(f @) —
[V| — 2™ Therefore it suffices to show that
v

o — 22?2l < |V| < 2™ 4 242/

This is the form in which we will do the main argument.

Our strategy is as follows. We will find a polynomial Q(X,Y") relatively prime to
P(X,Y) such that for any (x,y) € V, Q(z,y) is 0. Thus the cardinality of V is at
at most the number of points of intersection of P(X,Y) = 0 and Q(X,Y) = 0. We
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will then use Theoremn A.2.2 to get an upper bound for this quantity. Applying this

upper bound to a different function f, we will get the required lower bound too.

A.3 The execution

Let S be the set of all integers that can be written as either 2i or 2i + d, for some
nonuegative integer 4. Let S; = {s € S : s < j}. For any j > d, we have |S;| =
(5 —(d—1)/2). For any s € S, let M,(X,Y) be the monomial X*/? if s is even, or
X=9/2y if 5 is odd. Notice that the (2, d)-degree of My(X,Y) is s.

First observe that any polynomial R(X,Y") € F,[X,Y] of (2, d)-degree j, is con-
gruent modulo P(X,Y) to exactly one polynomial of Y-degree at most 1 (repeatedly
replacing every oceurrence of Y2 by Y + f(X)). We denote this polynomial m
In fact, the same argument shows that m has (2, d)-degree at most j. and is in

the Fy linear span of {M,(X,Y) : s € S;}. Clearly, the map R(X,Y) — R(X,Y) is

F-linear.

A.3.1 The upper bound
Let r = |n/2]. Let k, £ be two integers (to be picked later) satistying the following
3 conditions:

1. k€ >d,

2. L < v,

3. (k=(d=1)/2) (- (d—=1)/2) > (27¢+ k — (d—1)/2).

Also let (ast)ses, tes, be formal variables over F,.

Consider the polynomial

AX,Y) = Z agM(X,Y)M,(X,Y)?.

s€ES) tES)

Its (2, d)-degree is at most 2"+ k. Thus A(X,Y) is in the linear span of {M,(X,Y) :

u € Syrerr ). Thus the map sending (as)ses, es, to A(X,Y) is a linear map from
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a space of dimension |S[|Se| to a space of dimension [Syrex]. Thus, as k, € satisty
(k= (d=1)/2)(¢ = (d—1)/2) > 27 + k — (d — 1) /2, we know that there is a nonzero
A(X,Y) of the above form such that A(X,Y) = 0 (i.c., P(X,Y) divides A(X,Y)).
Take such an A(X,Y).
We will now see how to construct the polynomial Q(X,Y) that we wanted earlier.
Let
QX,Y) = > o MJ(X,Y)"T M(X,Y).

s€5;,teSe
Note that the (2, d)-degree of Q(X,Y) is at most 2° "k + £.

Let us now check that for any (z,y) € V, Q(x,y) = 0. The crucial observation is:

QX,Y) = a2 MU(X, YT MUX, Y)Y mod (X¥ — XYY —Y
st

SESKES,

(A1)
= AX, V)" mod (X - X, Y —Y). (A.2)

Take (z,y) € V. As P(x,y) = 0 and P(X,Y) divides A(X,Y), we conclude that
A(z,y) = 0. Furthermore, since z,y € F,, we have 22" — x = 0 and 42" — y = 0. The
crucial observation above now implies that Q(z,y) = 0.

Thus V' is contained in the set of all common solutions (x, y) of Q(z,y) = P(z,y) =
0.

Finally, let us show that Q(X,Y") is relatively prime to P(X,Y). Because f has
odd degree, P(X,Y) is irreducible. Thus it suffices to show that m 1s nonzero.
Note that:

QX,Y)= Y af M(X. Y)Y M(X,Y)

SES, teS,

The (2, d)-degree of any single term a2~ M,(X,Y)?" " My(X,Y) is 2*"s+t. Using
the fact that t < € < 2777, we see that all terms have distinct (2, d)-degrees, and hence
a1ty nonzero linear combination of themn must be nonzero. Thus Q(X,Y) # 0, and so

P(X,Y) is relatively prime to Q(X,Y).
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We may now apply Theorem A.2.2, and conclude the number of common solutions
(z,y) of Q(z,y) = P(x,y) = 0 is at most 2" "k + £ Thus |V]| < 2" "k + L.

Sununarizing, we showed that for any k, € satisfying

3 (k—(d— 1)/~ (d—1)/2) > (L +k - (d—1)/2).

we have |V| <277k + £,

Picking

and £ =277 — 1, we get |V] < 2" 4 242777,

By the discussion in the previous section, we conclude that for any f(X) of degree

Z(_l)’l‘r(f(l‘)) < 242121

IIZGF(;

A.3.2 The lower bound

Applying the upper bound to the polynomial g(X) := f(X) + «, where a € F, with

Tr(a) = 1, we get
Z(_l)ﬂ(g(w)) < 24221

T GIF q

which, by choice of g, implies that

_ Z(_l)Tr(f(m)) < 24on/21

z€lF,

This completes the proof of Theorem A.1.1.
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