405 research outputs found

    Autocorrelations of Vectorial Boolean Functions

    Get PDF
    International audienceRecently, BarOn et al. introduced at Eurocrypt'19 a new tool, called the differential-linear connectivity table (DLCT), which allows for taking into account the dependency between the two subciphers E0 and E1 involved in differential-linear attacks. This paper presents a theoretical characterization of the DLCT, which corresponds to an autocorrelation table (ACT) of a vectorial Boolean function. We further provide some new theoretical results on ACTs of vectorial Boolean functions

    On the Boomerang Uniformity of some Permutation Polynomials

    Get PDF
    The boomerang attack, introduced by Wagner in 1999, is a cryptanalysis technique against block ciphers based on differential cryptanalysis. In particular it takes into consideration two differentials, one for the upper part of the cipher and one for the lower part, and it exploits the dependency of these two differentials. At Eurocrypt’18, Cid et al. introduced a new tool, called the Boomerang Connectivity Table (BCT), that permits to simplify this analysis. Next, Boura and Canteaut introduced an important parameter for cryptographic S-boxes called boomerang uniformity, that is the maximum value in the BCT. Very recently, the boomerang uniformity of some classes of permutations (in particular quadratic functions) have been studied by Li, Qu, Sun and Li, and by Mesnager, Tang and Xiong. In this paper we further study the boomerang uniformity of some non-quadratic differentially 4-uniform functions. In particular, we consider the case of the Bracken-Leander cubic function and three classes of 4-uniform functions constructed by Li, Wang and Yu, obtained from modifying the inverse functions.publishedVersio

    On the freezing of variables in random constraint satisfaction problems

    Full text link
    The set of solutions of random constraint satisfaction problems (zero energy groundstates of mean-field diluted spin glasses) undergoes several structural phase transitions as the amount of constraints is increased. This set first breaks down into a large number of well separated clusters. At the freezing transition, which is in general distinct from the clustering one, some variables (spins) take the same value in all solutions of a given cluster. In this paper we study the critical behavior around the freezing transition, which appears in the unfrozen phase as the divergence of the sizes of the rearrangements induced in response to the modification of a variable. The formalism is developed on generic constraint satisfaction problems and applied in particular to the random satisfiability of boolean formulas and to the coloring of random graphs. The computation is first performed in random tree ensembles, for which we underline a connection with percolation models and with the reconstruction problem of information theory. The validity of these results for the original random ensembles is then discussed in the framework of the cavity method.Comment: 32 pages, 7 figure

    The Extended Autocorrelation and Boomerang Tables and Links Between Nonlinearity Properties of Vectorial Boolean Functions

    Get PDF
    Given the links between nonlinearity properties and the related tables such as LAT, DDT, BCT and ACT that have appeared in the literature, the boomerang connectivity table BCT seems to be an outlier as it cannot be derived from the others using Walsh-Hadamard transform. In this paper, a brief unified summary of the existing links for general vectorial Boolean functions is given first and then a link between the autocorrelation and boomerang connectivity tables is established

    Mathematical aspects of the design and security of block ciphers

    Get PDF
    Block ciphers constitute a major part of modern symmetric cryptography. A mathematical analysis is necessary to ensure the security of the cipher. In this thesis, I develop several new contributions for the analysis of block ciphers. I determine cryptographic properties of several special cryptographically interesting mappings like almost perfect nonlinear functions. I also give some new results both on the resistance of functions against differential-linear attacks as well as on the efficiency of implementation of certain block ciphers

    Observations on the DLCT and Absolute Indicators

    Get PDF
    Recently Bar-On et al. proposed the DLCT for a tighter analysis of probabilities for differential-linear distinguishers. We extend the analysis of the DLCT, and gain new insights about this notion. The DLCT entries correspond to the autocorrelation spectrum of the component functions and thus the DLCT is nothing else as the ACT. We note that the ACT spectrum is invariant under some equivalence relations. Interestingly the ACT spectrum is not invariant under inversion (and thus not under CCZ equivalence), implying that it might be beneficial to look at the decryption for a differential-linear cryptanalysis. Furthermore, while for Boolean functions a lower bound for the maximal absolute autocorrelation, the absolute indicator, is not known, the case for vectorial Boolean functions is different. Here, we prove that for any vectorial Boolean function, its absolute indicator is lower bounded by 2n/22^{n/2}. Eventually, for APN functions we show a connection of the absolute indicator to the linearity of balanced Boolean functions, and exhibit APN permutations with absolute indicator bounded by 2(n+1)/22^{(n+1)/2}

    C-DIFFERENTIALS AND GENERALIZED CRYPTOGRAPHIC PROPERTIES OF VECTORIAL BOOLEAN AND P-ARY FUNCTIONS

    Get PDF
    This dissertation investigates a newly defined cryptographic differential, called a c-differential, and its relevance to the nonlinear substitution boxes of modern symmetric block ciphers. We generalize the notions of perfect nonlinearity, bentness, and avalanche characteristics of vectorial Boolean and p-ary functions using the c-derivative and a new autocorrelation function, while capturing the original definitions as special cases (i.e., when c=1). We investigate the c-differential uniformity property of the inverse function over finite fields under several extended affine transformations. We demonstrate that c-differential properties do not hold in general across equivalence classes typically used in Boolean function analysis, and in some cases change significantly under slight perturbations. Thus, choosing certain affine equivalent functions that are easy to implement in hardware or software without checking their c-differential properties could potentially expose an encryption scheme to risk if a c-differential attack method is ever realized. We also extend the c-derivative and c-differential uniformity into higher order, investigate some of their properties, and analyze the behavior of the inverse function's second order c-differential uniformity. Finally, we analyze the substitution boxes of some recognizable ciphers along with certain extended affine equivalent variations and document their performance under c-differential uniformity.Commander, United States NavyApproved for public release. Distribution is unlimited
    • 

    corecore