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ABSTRACT 

 This dissertation investigates a newly defined cryptographic differential, called a 

c-differential, and its relevance to the nonlinear substitution boxes of modern symmetric 

block ciphers. We generalize the notions of perfect nonlinearity, bentness, and avalanche 

characteristics of vectorial Boolean and p-ary functions using the c-derivative and a new 

autocorrelation function, while capturing the original definitions as special cases (i.e., 

when c=1). We investigate the c-differential uniformity property of the inverse function 

over finite fields under several extended affine transformations. We demonstrate that 

c-differential properties do not hold in general across equivalence classes typically used 

in Boolean function analysis, and in some cases change significantly under slight 

perturbations. Thus, choosing certain affine equivalent functions that are easy to 

implement in hardware or software without checking their c-differential properties could 

potentially expose an encryption scheme to risk if a c-differential attack method is ever 

realized. We also extend the c-derivative and c-differential uniformity into higher order, 

investigate some of their properties, and analyze the behavior of the inverse function's 

second order c-differential uniformity. Finally, we analyze the substitution boxes of some 

recognizable ciphers along with certain extended affine equivalent variations and 

document their performance under c-differential uniformity. 
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Executive Summary

Differential cryptanalysis encompasses a group of techniques aimed at exploiting how
certain pairs of differences, called differentials, trace through an encryption scheme in an
attempt to recover information about the secret key. Recently, researchers introduced a
new type of differential, called a 𝑐-differential, that has the potential to expand differential
cryptanalysis against block ciphers in a new direction. In this dissertation, we further the
theoretical and practical investigation of this 𝑐-differential and its potential impact on the
substitution boxes of modern symmetric block ciphers.

This new 𝑐-differential immediately leads to the notion of a discrete 𝑐-derivative. Many es-
sential cryptographic properties of vectorial Boolean or 𝑝-ary functions can be described and
characterized by the behavior of a function’s derivatives. Equipped with the 𝑐-derivative,
we introduce a new autocorrelation function, and with this tool we generalize multiple
cryptographic properties of substitution boxes. These generalizations include the notions of
perfect nonlinearity, bentness, and avalanche characteristics. Naturally, the traditional defi-
nitions of these properties are captured as special cases of our generalizations, specifically
when 𝑐 = 1. We also extend the 𝑐-derivative and 𝑐-differential into higher order, investigate
some of their properties, and analyze the behavior of the inverse function’s second order
c-differential uniformity.

We further investigate and quantify the resistance of certain vectorial Boolean and 𝑝-ary
functions against this new potential differential attack. Using the 𝑐-differential uniformity
property that was introduced along with the 𝑐-differential, we study the inverse function
and some extended affine transformations over finite fields. We also analyze real-world
substitution boxes of known ciphers to determine their 𝑐-differential properties. We demon-
strate that small perturbations to functions highly resistant to classical differential attacks
can change their resistance to this new type of attack, sometimes significantly. This is im-
portant because functions often maintain essential nonlinearity properties through certain
equivalence relations. Cryptographic designers have the option to choose a function that is
equivalent to one with good properties but that is easier to implement on specific hardware
or software. This may no longer be a safe option under the threat of a 𝑐-differential attack.
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CHAPTER 1:
Introduction

1.1 Background
Modern digital communications, and by extension our modern society, rely heavily upon
cryptography to ensure the security and integrity of data being sent over public channels,
most notably the internet. The fundamental cryptographic principles of confusion and
diffusion, introduced by Shannon [1] in 1949, have remained remarkably relevant for over
seven decades and continue to be foundational goals of any encryption scheme. Confusion
refers to a highly complex relationship between plaintext, secret key, and ciphertext that
cannot be well-approximated by simpler systems. Diffusion means that small changes to
the input of an encryption or decryption algorithm should result in large changes in the
corresponding ciphertext or plaintext.

In order to realize the principle of confusion in real-world systems, cryptographers often
rely upon nonlinear substitution boxes, or “S-boxes.” In mathematics, these S-boxes are also
known as vectorial Boolean functions or (𝑛, 𝑚)-functions, since they take as input an 𝑛-tuple
of bits and output an 𝑚-tuple of bits. The proper design of secure S-boxes for symmetric
block ciphers is a challenging problem. There are many competing demands—such as speed,
efficiency, and security—and multiple potential vulnerabilities that must be addressed at
the same time. Cryptographic designers must accept tradeoffs between competing criteria,
inevitably achieving suboptimal performance in some respect.

One of the primary classes of attacks on block ciphers that S-boxes must be designed to
protect against is differential cryptanalysis. A classical differential attack exploits the fact
that certain differences between plaintexts result in high probability outputs into the last
round of the cipher. If these probabilities are high enough, an attacker gains some statistical
insight into the secret key, thus potentially compromising confidentiality. Resistance to this
attack can often be quantified by a property of S-boxes called differential uniformity. Since
the public introduction of differential cryptanalysis techniques in the late 1980s, there have
been multiple extensions and modifications, some based on specific ciphers. Recently, a new

1



type of differential was introduced in [2]. This new multiplicative output differential, which
is called a “𝑐-differential,” along with the related 𝑐-differential uniformity, has the potential
to expand upon differential cryptanalysis and create new vulnerabilities for encryption
schemes to deal with.

The goal of this research has been to investigate this new differential and determine its
relevance to the substitution boxes of modern symmetric block ciphers. Specifically, we
generalize existing vectorial Boolean function properties using the 𝑐-derivative to account
for the threat posed by the new 𝑐-differential. Additionally, we have sought to analyze some
theoretical classes and real-world applications of vectorial Boolean functions to determine
their 𝑐-differential properties. As a result of this mathematical and computational analysis,
our aim is to provide insight into how functions used as primitives in block cipher S-boxes
can be protected against the threat of a 𝑐-differential attack.

1.2 Contributions
This dissertation makes the following scholarly contributions:

• We define new crosscorrelation and associated autocorrelation functions using the
new 𝑐-derivative.

• We use this new autocorrelation function to extend the notion of perfect nonlinearity
based on balanced derivatives into a property called perfect 𝑐-nonlinearity.

• We extend the notion of vectorial Boolean function bentness into what we call 𝑐-
differential bentness by using a Walsh-Hadamard transform product motivated by the
𝑝-ary definition of a bent function.

• We characterize 0-differential bent functions and provide examples of perfect 𝑐-
nonlinear functions for 𝑐 ≠ 1, even in characteristic 2.

• We generalize avalanche characteristics—specifically the strict avalanche criterion,
propagation criterion, and the global avalanche characteristics—using the 𝑐-derivative
and capture bounds on these properties.

• We demonstrate how small perturbations of the multiplicative inverse function,
namely the extended affine transformation of adding certain linearized monomials
or polynomials, can result in a significant change in the 𝑐-differential uniformity.

• We summarize and organize the current findings on 𝑐-differential uniformity from

2



multiple researchers into one location.
• We extend the first order 𝑐-derivative into higher order 𝑐-derivatives, capture proper-

ties of these extensions, and investigate higher order 𝑐-differential uniformity of the
inverse function.

• We conduct an analysis of many real-world substitution boxes, computing their 𝑐-
differential uniformities and documenting how certain extended affine transformations
change their 𝑐-differential uniformity.

1.3 Dissertation Organization
This dissertation is divided into seven chapters. In addition to this introductory chapter, the
remaining chapters are laid out as follows. Chapter 2 contains preliminary definitions, basic
material on Boolean, vectorial Boolean, and 𝑝-ary functions with a focus on cryptographic
properties along with multiple examples and a description of differential cryptanalysis.
Chapter 3 introduces the 𝑐-differential, 𝑐-derivative, and generalizes many existing vectorial
Boolean function properties using the 𝑐-derivative. Chapter 4 is an extensive look into
the 𝑐-differential uniformity of the multiplicative inverse function over finite fields under
extended affine equivalence, a popular S-box primitive. The 𝑐-derivative and corresponding
𝑐-differential uniformity are extended into higher order and investigated in Chapter 5,
and Chapter 6 is our analysis of real-world S-boxes with results from a 𝑐-differential
perspective. Finally, Chapter 7 concludes the dissertation and contains some follow-on
research possibilities.

3
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CHAPTER 2:
Cryptographic Properties of Boolean and Vectorial

Boolean Functions

This chapter establishes the foundation upon which the rest of this dissertation will depend.
We introduce notations, definitions, properties, and background information which we will
use in the following chapters. We provide multiple examples in order to demonstrate certain
properties and prepare for expanding these notions in the rest of the dissertation.

2.1 Preliminaries
We denote the set of integers, real numbers, and complex numbers by Z, R, and C, respec-
tively. The complex conjugate of an element 𝑧 will be written as 𝑧. For a positive integer 𝑛
and 𝑝 a prime number, we let F𝑝𝑛 be the finite field with 𝑝𝑛 elements, and F∗𝑝𝑛 = F𝑝𝑛 \ {0}.
That is, F∗𝑝𝑛 is F𝑝𝑛 without the additive identity (0) element. For 𝑎 ≠ 0, we often write 1

𝑎

to mean the inverse of 𝑎 in the multiplicative group of the finite field under discussion. Z𝑛
will be used for the ring of integers modulo 𝑛.

We let F𝑛𝑝 be the 𝑛-dimensional vector space over F𝑝. We use bold font for vectors. The
elements of this vector space are 𝑛-tuples x, such that x = {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛} with 𝑥𝑖 ∈ F𝑝.
When there is no danger of confusion, we may write the vectors without commas. In
the case of 𝑝 = 2, we say x is a binary vector of length 𝑛. For inner products or scalar
products on a vector space, we will use the “·” notation. That is, the inner product of 𝒂

and 𝒃 is 𝒂 · 𝒃. For the direct product of two vector spaces 𝑉1 and 𝑉2, we use “×.” That is,
𝑉1 ×𝑉2 = {(𝒂, 𝒃) |𝒂 ∈ 𝑉1, 𝒃 ∈ 𝑉2}.

We will use ⊕, equivalent to the exclusive or (xor) operation, to represent addition in F2,
and + will represent addition in characteristic 0. However, we will also use + to represent
addition of elements in a finite field, even if in an extension field of characteristic 2, as is
accustomed in mathematics. The composition of functions will be denoted by “◦.” Brackets
“| |” will represent both cardinality of sets and absolute value, including complex absolute
value, though it will be made clear by the context which applies.
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The ring of polynomials over F𝑝 with 𝑛 variables will be denoted by F𝑝 [𝑥1, 𝑥2, . . . , 𝑥𝑛], with
F𝑝 [𝑥1, 𝑥2, . . . , 𝑥𝑛]/⟨𝑝(𝑥)⟩ representing the quotient ring modulo 𝑝(𝑥). We use 𝐾

𝑛
↩→ 𝐿 to

represent a degree 𝑛 field extension from a subfield 𝐾 to an extension field 𝐿. The absolute
trace function of a field extension of degree 𝑛 to its base field will be denoted by Tr𝑛. That
is, Tr𝑛 : F𝑝𝑛 → F𝑝, and Tr𝑛 (𝑥) =

∑𝑛−1
𝑖=0 𝑥

𝑝𝑖 . If the dimension is clear we may simply use Tr.
For the 𝑞th primitive root of unity, we use 𝜁𝑞, where 𝜁𝑞 = 𝑒

2𝜋𝑖
𝑞 , for any 𝑞.

2.2 Boolean Functions
Boolean functions have been studied extensively in the context of cryptography. We pro-
vide here some necessary background before proceeding onto vectorial Boolean functions
which form the critical nonlinear components of many encryption schemes. More detailed
explanations and results on classical Boolean functions can be found in [3], [4], [5], [6],
and [7].

Definition 2.2.1 A Boolean function 𝑓 in 𝑛 variables is a map from F𝑛2 to F2,

𝑓 : F𝑛2 → F2. (2.1)

A Boolean function (BF) inputs a binary vector of length 𝑛 and outputs a 0 or 1. There are
multiple ways to represent a BF and depending on the context one may be more advantageous
than another. An easy visual method to represent a BF is called the truth table, which is
a (0,1)-sequence of the images of every element in F𝑛2. In other words, the truth table of
𝑓 is ( 𝑓 (𝑥0), 𝑓 (𝑥1), . . . , 𝑓 (𝑥2𝑛−1)), with 𝑥𝑖 ∈ F𝑛2 ordered lexicographically in the natural
counting order.

Example 2.2.1 Table 2.1 is the truth table of a BF 𝑓 : F3
2 → F2. This low-dimension

example function will serve to demonstrate cryptographic properties of Boolean functions
as we proceed.
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𝑥3 𝑥2 𝑥1 𝑓

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Table 2.1. Truth Table of a Boolean Function 𝑓

The Hamming weight of an arbitrary vector in F𝑛2, denoted by 𝑤𝑡 (𝒙), is the number of 1’s
in the vector 𝒙. The Hamming weight of a BF is the Hamming weight of its truth table. For
Example 2.2.1, we have 𝑤𝑡 ( 𝑓 ) = 4. The Hamming distance between two arbitrary vectors
in F𝑛2, denoted by 𝑑 (𝒙, 𝒚), is the weight of 𝒙 ⊕ 𝒚, i.e., 𝑤𝑡 (𝒙 ⊕ 𝒚). The Hamming distance
between two functions 𝑓 and 𝑔 is the Hamming weight of the difference in their truth tables,
𝑤𝑡 ( 𝑓 ⊕ 𝑔).

Another natural representation is a multivariate polynomial called the algebraic normal
form. Because the inputs to the polynomial can only be 0 or 1, every variable must be
considered modulo 𝑥2

𝑖
− 𝑥𝑖. Therefore, the algebraic normal form (ANF) is a polynomial in

the quotient ring

F2 [𝑥1, 𝑥2, . . . , 𝑥𝑛]/⟨𝑥2
1 − 𝑥1, 𝑥

2
2 − 𝑥2, . . . , 𝑥

2
𝑛 − 𝑥𝑛⟩. (2.2)

The ANF is given by

𝑓 (𝒙) = 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) =
∑︁
𝒂∈F𝑛2

𝑐𝒂𝑥
𝑎1
1 𝑥

𝑎2
2 · · · 𝑥𝑎𝑛𝑛 , (2.3)
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where 𝑐𝒂 ∈ F2 and 𝒂 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) ∈ F𝑛2.

The ANF of 𝑓 as described in Table 2.1 is 𝑓 (𝒙) = 𝑓 (𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥3 ⊕ 𝑥1 ⊕ 𝑥2𝑥3. The
number of variables in the highest order monomial with nonzero coefficient is the algebraic
degree. This definition of algebraic degree makes sense due to the existence and uniqueness
of the ANF [5]. The algebraic degree of 𝑓 is 2.

2.3 Cryptographic Properties of Boolean Functions
In order to be useful in a cryptographic algorithm, Boolean functions must have properties
that realize the bedrock cryptographic principles of confusion and diffusion, described in
the introductory chapter. Additionally, functions should have properties that defend against
known attacks. Unfortunately, not all properties can be optimized at the same time, and
therefore tradeoffs must be made. Because of the complexity in the relationships between
some of the properties, there is no agreed upon standard of which properties at what
level must be achieved. Cryptographic designers choose properties that meet their needs
and provide resistance against the types of attacks believed most likely to be faced. One
important property was already introduced, the algebraic degree. The algebraic degree must
be high to avoid multiple known attacks, including higher-order differential cryptanalysis
on block ciphers and attacks against low linear complexity on stream ciphers [7]. In this
section, we describe several important properties of Boolean functions that prepare the
reader for the follow-on chapters. For a more detailed analysis of cryptographic properties
of Boolean functions, including tradeoffs, see [5], [7], [8].

2.3.1 Balance
A Boolean function is balanced if its output is half 0’s and half 1’s. Balance helps avoid
statistical dependence between the input and the output and is widely considered an essential
property. As a simple example of a tradeoff, the maximum algebraic degree of a 𝑛 variable
balanced function is 𝑛 − 1. The function 𝑓 from Table 2.1 is balanced.

2.3.2 Nonlinearity
Linear systems are often easy to solve, which is antithetical to the goal of a cryptographic
transformation. A cryptographic Boolean function should therefore be highly nonlinear.
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To measure nonlinearity, the distance of a BF from any linear or affine (i.e., degree ≤ 1)
Boolean function must be measured. The Walsh-Hadamard transform, a version of the
discrete Fourier transform, captures this information and much more.

Definition 2.3.1 The Walsh-Hadamard transform (WHT) of a function 𝑓 on F𝑛2 is the
integer-valued function𝑊 𝑓 : F𝑛2 → Z defined by

𝑊 𝑓 (𝒘) =
∑︁
𝒙∈F𝑛2

(−1) 𝑓 (𝒙)⊕𝒘·𝒙 . (2.4)

The value of the transform at 𝒘 is called the Walsh-Hadamard coefficient and the multi-
set containing the list of all 2𝑛 coefficients is called the Walsh-Hadamard spectrum. This
spectrum contains essential information on properties of the Boolean function. For instance,
if we consider the coefficient at 0, we have the sum

∑
𝒙∈F𝑛2 (−1) 𝑓 (𝒙) . If 𝑓 is balanced, then

the sum is half 1’s and half −1’s, which add up to 0. Thus, if the coefficient at 0 is 0, we
know the function is balanced.

However, the most useful information provided by the WHT is the nonlinear properties of
𝑓 . The max absolute value of the coefficients is called the linearity of 𝑓 , as it represents the
number of bits in the truth table that match an affine function’s truth table. The nonlinearity
is defined as the minimum distance between 𝑓 and the class of all affine Boolean functions
on 𝑛 variables. This value is denoted by N 𝑓 and is calculated by

N 𝑓 = 2𝑛−1 − 1
2

max
𝒖∈F𝑛2

|𝑊 𝑓 (𝒖) |. (2.5)

We now provide an example, using the same function from Table 2.1.

Example 2.3.1 To find the WHT coefficients of our function 𝑓 , we use Definition 2.3.1. At
𝒘 = 000 and 𝒘 = 001, we have

𝑊 𝑓 (000) = (−1)0 + (−1)1 + (−1)0 + (−1)1 + (−1)0 + (−1)0 + (−1)1 + (−1)1 = 0,
𝑊 𝑓 (001) = (−1)0 + (−1)0 + (−1)0 + (−1)0 + (−1)0 + (−1)1 + (−1)1 + (−1)0 = 4.
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The rest of the coefficients are 𝑊 𝑓 (010) = 4,𝑊 𝑓 (011) = 0,𝑊 𝑓 (100) = 0,𝑊 𝑓 (101) =

4,𝑊 𝑓 (110) = −4,𝑊 𝑓 (111) = 0, which gives us a WH spectrum of

{0, 4, 4, 0, 0, 4,−4, 0}.

Thus, the nonlinearity of 𝑓 is N 𝑓 = 22 − 1
2 |4| = 2. In other words, if we change the truth

table of 𝑓 in two positions, we would arrive at an affine function. The WHT coefficients
also tell us which affine function. Consider any of the input 𝒘’s such that the absolute
value of its WHT coefficient is equal to the max absolute value of the WHT spectrum. For
instance, 𝒘 = (001), with coefficient of 4. This vector corresponds to the linear function
𝑔(𝑥1, 𝑥2, 𝑥3) = 𝑥1, with a truth table of (0, 1, 0, 1, 0, 1, 0, 1). Notice if we change two spots
in the truth table of 𝑓 (Table 2.1), the truth tables would match. Thus, the WHT provides
us with the nonlinearity and the closest affine approximation of the Boolean function.

While we used the WHT definition to calculate 𝑓 ’s WH spectrum in this example, we note
here that there are much more efficient ways to compute these values. An example is included
in [9], in which the complexity is lowered from𝑂 (22𝑛) in the naive definition-based method
we used in Example 2.3.1, to 𝑂 (𝑛2𝑛) in a fast Fourier transform-based algorithm (𝑂 (·) is
the usual big-Oh notation).

Continuing with our discussion of nonlinearity, there are certain Boolean functions that
achieve optimal nonlinearity. These functions are called bent, and in the Boolean function
context we now define.

Definition 2.3.2 An even variable Boolean function 𝑓 is bent if

N 𝑓 = 2𝑛−1 − 2𝑛/2−1. (2.6)

In the case of bent functions, the absolute value of all WHT coefficients is 2𝑛/2. For odd
variable functions an exact upper bound on nonlinearity is still unknown for 𝑛 ≥ 9 [6].

Unfortunately, bent functions are never balanced and therefore are rarely used in crypto-
graphic schemes, another example of tradeoffs between different criteria. However, the idea
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of bentness, (i.e., optimal nonlinearity), is a fascinating topic with decades of research and
many generalities and extensions into other fields of mathematics. We will return to the
topic in the following chapters and generalize the idea of bentness using the 𝑐-differential.

2.3.3 Strict Avalanche and Propagation Criteria
The Boolean function property most closely associated with Shannon’s diffusion principle
is the propagation criterion. There are several equivalent ways to define this property, but we
choose to use the discrete derivative, as derivative-based analysis will be used extensively
in follow-on chapters. As we will show, the derivative provides a natural method to measure
the behavior of a function as certain bits of the input are changed. The strict avalanche
criterion is a particular case of the propagation criterion when only one bit is changed. The
overall propagation behavior of a function is often called the avalanche characteristics. We
start by defining the discrete derivative in the case of Boolean functions.

Definition 2.3.3 Let 𝑓 be a Boolean function. The derivative of 𝑓 with respect to 𝒂 ∈ F𝑛2 is
the function

𝐷𝑎 𝑓 (𝒙) = 𝑓 (𝒙 ⊕ 𝒂) ⊕ 𝑓 (𝒙), for all 𝒙 ∈ F𝑛2. (2.7)

With the derivative defined, we can now define the strict avalanche criterion (SAC) and
propagation criterion (PC). One of the equivalent definitions is based on probabilities. In
essence, SAC means that if one input bit is changed, then all output bits should change with
probability 1/2. The generalization of SAC is PC, in which multiple input bits are changed
and each output bit still changes with probability 1/2.

Definition 2.3.4 Let 𝑓 be a Boolean function. Then 𝑓 satisfies the strict avalanche criterion
if, for all 𝒂 such that 𝑤𝑡 (𝒂) = 1, the derivative 𝐷𝒂 𝑓 (𝒙) is balanced.

Definition 2.3.5 Let 𝑓 be a Boolean function. Then 𝑓 satisfies the propagation criterion of
order 𝑘 if, for all 𝒂 such that 1 ≤ 𝑤𝑡 (𝒂) ≤ 𝑘 , the derivative 𝐷𝒂 𝑓 (𝒙) is balanced.

In other words, 𝑓 is PC(𝑘) if for all 𝒂 of weight 1, 2, . . . , 𝑘 , the derivative of 𝑓 with respect
to 𝒂 differs from 𝑓 for half of the truth table. The connection to diffusion is obvious. Not
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only does a small change in the input significantly change the output, but the output is
changed in a measurably random way. Checking to see if all derivatives are balanced can be
accomplished using another essential analytical tool, the crosscorrelation and the associated
autocorrelation functions, which we now define.

Definition 2.3.6 Let 𝑓 and 𝑔 be Boolean functions from F𝑛2 → F2 and 𝒖 ∈ F𝑛2. The
crosscorrelation between 𝑓 and 𝑔 at 𝒖 is

ℭ 𝑓 ,𝑔 (𝒖) =
∑︁
𝒙∈F𝑛2

(−1) 𝑓 (𝒙⊕𝒖)⊕𝑔(𝒙) , (2.8)

and the corresponding autocorrelation of 𝑓 is

ℭ 𝑓 (𝒖) =
∑︁
𝒙∈F𝑛2

(−1) 𝑓 (𝒙⊕𝒖)⊕ 𝑓 (𝒙) . (2.9)

Notice the exponent in the autocorrelation function is the derivative of 𝑓 with respect to 𝒖.
Thus, if the derivative is balanced, half the values with be −1 and the other half 1, resulting
in a value of 0 for the autocorrelation at 𝒖. This gives us the following lemma.

Lemma 2.3.7 A Boolean function 𝑓 is PC(𝑘) if and only if the autocorrelation is 0 for all
𝒖 with 1 ≤ 𝑤𝑡 (𝒖) ≤ 𝑘 .

We return to our example function 𝑓 in Table 2.1 to demonstrate the autocorrelation function.

Example 2.3.2 Using 𝑓 ’s truth table of (0,1,0,1,0,0,1,1), we compute the autocorrelation
as

ℭ 𝑓 (000) = (−1)0 + (−1)0 + (−1)0 + (−1)0 + (−1)0 + (−1)0 + (−1)0 + (−1)0 = 8,
ℭ 𝑓 (001) = (−1)1 + (−1)1 + (−1)1 + (−1)1 + (−1)0 + (−1)0 + (−1)0 + (−1)0 = 0.

The rest of the autocorrelation is ℭ 𝑓 (010) = 0,ℭ 𝑓 (011) = −8,ℭ 𝑓 (100) = 0,ℭ 𝑓 (101) =

0,ℭ 𝑓 (110) = 0,ℭ 𝑓 (111) = 0, which gives us an autocorrelation spectrum
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{8, 0, 0,−8, 0, 0, 0, 0}.

Notice the autocorrelation value at the vector 0 will always be 2𝑛; we call this the trivial
autocorrelation. For 𝑓 , all the inputs of weight 1 led to values of 0 in the autocorrelation, thus
𝑓 is SAC, or equivalently, PC(1). However, the autocorrelation at (011) is 8 and therefore
𝑓 is not PC(2).

If there exists a non-zero 𝒖 such that ℭ 𝑓 (𝒖) is ±2𝑛, then 𝒖 is called a linear structure of 𝑓 .
Linear structures are considered weaknesses of cryptographic Boolean functions [10]. We
will return to this topic in Chapter 3 from the perspective of the new 𝑐-derivatives.

2.3.4 Connection between Nonlinearity and Propagation Criterion
In [11] Meier and Staffelbach showed that Boolean functions that have all non-trivial
autocorrelation values of 0 (i.e., PC(𝑛) functions), are equivalent to the bent functions
we introduced in Section 2.3.2. That is, optimal nonlinearity is equivalent to optimal
propagation criterion and can only be achieved in unbalanced functions with an even
number of variables.

Later, in [10], Nyberg called functions whose derivatives are balanced in all non-zero
directions perfect nonlinear. Thus, if a Boolean function’s all non-trivial autocorrelation
coefficients are 0, the function is perfect nonlinear (PN), bent, and PC(𝑛). Although we have
seen these functions are not usable under most practical scenarios because bent functions
are not balanced, having the derivatives close to balanced is a desirable feature. This notion
will play a central role in Chapter 3 when we introduce the 𝑐-derivative and extend perfect
nonlinearity in another direction.

2.3.5 Other Properties
We have introduced the properties of classical Boolean functions that will be expanded
upon in the rest of this dissertation. However, there are many other properties that must be
taken into account when considering Boolean functions to serve as primitives in crypto-
graphic transformations. Correlation immunity measures the independence of the output of
a Boolean function on any specific input variables and must be high in stream cipher appli-
cations. Functions that are correlation immune and balanced are called resilient. Algebraic
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immunity, another important property of Boolean functions used in stream ciphers, mea-
sures resistance against algebraic attacks. The property called Algebraic thickness counts
the minimum number of terms in any ANF of a function with which it is affinely equivalent,
and should be high. Equivalence relations among Boolean functions will be discussed in
the vectorial Boolean functions section.

There are many considerations when choosing a Boolean function as a cryptographic prim-
itive. Some properties are generally considered to be essential regardless of the application:
balancedness, high nonlinearity, and high degree. The other properties are more focused on
the specific applications of the Boolean function.

2.4 Vectorial Boolean Functions
While Boolean functions have a rich history of research and application, many cryptographic
transformations cannot be fully represented by one because of the single output bit. While a
classical BF maps 𝑛 bits into one bit, the nonlinear substitution boxes of block ciphers map
𝑛 bits into 𝑚 bits. These multi-bit output functions are called vectorial Boolean functions.
We present the relevant background information here before moving onto the differential
attack against block ciphers. A more detailed look into vectorial BFs can be found in [12].

Definition 2.4.1 Let n and m be two positive integers. A vectorial Boolean function 𝐹 is a
map from F𝑛2 to F𝑚2 ,

𝐹 : F𝑛2 → F𝑚2 . (2.10)

Boolean functions introduced in Section 2.2 coincide with𝑚 = 1 and are sometimes referred
to as classical Boolean functions. Vectorial BFs from F𝑛2 to F𝑚2 are also called (𝑛, 𝑚)-
functions, and we will use this notation throughout this dissertation. In a cryptographic
context, they are often called substitution boxes, or “S-boxes,” and are often the only
nonlinear component of an encryption scheme. As opposed to the lower case 𝑓 ’s we used
for classical BFs, we will use upper case 𝐹’s to represent vectorial BFs. Given an (𝑛, 𝑚)-
function 𝐹, with 𝒙 ∈ F𝑛2, and classical BFs 𝑓1, 𝑓2, ..., 𝑓𝑚, if 𝐹 (𝒙) = ( 𝑓1(𝒙), 𝑓2(𝒙), ... 𝑓𝑚 (𝒙)),
then 𝑓1, 𝑓2, ... 𝑓𝑚 are called the coordinate functions of 𝐹.

Similar to classical BFs, we first represent a vectorial BF with a truth table. In our example,
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we will use a (3, 3) function, but in general 𝑛 does not always equal 𝑚. With 3-bit vector
outputs for every input, it is typical to list the output as the result of three separate coordinate
functions, as we have done in Table 2.2.

𝑥3 𝑥2 𝑥1 𝑓3 𝑓2 𝑓1

0 0 0 0 1 0
0 0 1 0 1 1
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 1 1 1
1 0 1 1 0 0
1 1 0 1 0 1
1 1 1 0 0 0

Table 2.2. Truth Table of a Vectorial Boolean Function 𝐹

While the coordinate functions of 𝐹 must have good properties as described in Section
2.3, that is not sufficient. All non-zero linear combinations of these coordinate functions
must also meet the desired properties. These linear combinations are called the component
functions of 𝐹. If 𝒃 is an element of F𝑚2 , we can represent these component functions by
the scalar product of 𝒃 and 𝐹, i.e., the component functions of 𝐹 are the classical Boolean
functions 𝒃 · 𝐹 (𝒙), 𝒃 ≠ 0.

Instead of viewing a vectorial BF in binary as a truth table of coordinate functions, we can
also view the function in an integer (or hexadecimal) format, which is more representative
of how an S-box is normally presented and can be seen in Table 2.3.

𝑥 0 1 2 3 4 5 6 7
𝐹 (𝑥) 2 3 1 6 7 4 5 0

Table 2.3. The S-box 𝐹
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2.4.1 Finite Fields and Univariate Polynomial Representation
The notion of the algebraic normal form from classical BFs can be extended to vectorial
BFs, but this representation will not be used in this dissertation. In the case where 𝑚 = 𝑛,
there is another representation, the univariate polynomial representation, that will be used
extensively in the following chapters. In order to do this we first need to endow the vector
space F𝑛2 with the structure of the finite field F2𝑛 [12]. This is possible because F2𝑛 can
be viewed as a 𝑛-dimensional vector space over F2, with a natural basis composed of the
powers of a primitive element. The elements of F𝑛2 are then the coefficients of the powers.
Since our example function 𝐹 from Table 2.2 is a (3, 3) function, we provide an example
of how to endow F3

2 with the structure of F23 .

Example 2.4.1 . Let an instance of F23 be defined by F2 [𝑥]/⟨𝑥3 + 𝑥 + 1⟩ with 𝛼 being a root
of 𝑥3 + 𝑥 + 1. Then Table 2.4 has the following mapping.

F23 0 𝛼0 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6

F23 0 1 𝛼 𝛼2 𝛼 + 1 𝛼2 + 𝛼 𝛼2 + 𝛼 + 1 𝛼2 + 1
F3

2 000 001 010 100 011 110 111 101
Z8 0 1 2 4 3 6 7 5

Table 2.4. A Mapping between F23 and F3
2. Adapted from [9].

With the ability to construct such a mapping, an (𝑛, 𝑛)-function can be uniquely represented
as a polynomial in one variable with coefficients in 𝐹2𝑛 , that is, the univariate polynomial

𝐹 (𝑥) =
2𝑛−1∑︁
𝑖=0

𝑎𝑖𝑥
𝑖, 𝑎𝑖 ∈ F2𝑛 . (2.11)

To find the coefficients 𝑎𝑖, we can use the discrete Fourier transform, as shown in [9]. Then
we have 𝑎0 = 𝐹 (0), 𝑎2𝑛−1 =

∑
𝑥∈F2𝑛 𝐹 (𝑥), and

𝑎𝑖 =

2𝑛−2∑︁
𝑘=0

𝐹 (𝛼𝑘 )𝛼−𝑘𝑖, 1 ≤ 𝑖 ≤ 2𝑛 − 2.
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When we apply this technique to our example function 𝐹, we get the univariate polynomial
𝐹 (𝑥) = 𝑥3 + 𝛼. The algebraic degree of a function under the univariate polynomial repre-
sentation is not the highest integer power, but rather the largest binary Hamming weight of
the exponents 𝑖 with 𝑎𝑖 ≠ 0. In our case, since 3 = 011, 𝑑𝑒𝑔(𝐹) = 𝑤𝑡 (011) = 2.

With the univariate polynomial representation and the associated mapping between F𝑛2 and
F2𝑛 , it is sometimes more convenient to work in the finite field rather than the vector space.
In other cases, the vector space may be better suited. It will be clear which environment we
are working in based on the context.

2.4.2 Walsh Hadamard Transform and Autocorrelation for Vectorial
Boolean Functions

The Walsh-Hadamard transform that was essential in analysis of the nonlinearity of classical
BFs is now defined for (𝑛, 𝑚)-functions.

Definition 2.4.2 The Walsh-Hadamard transform of an (𝑛, 𝑚)-function at (𝒂, 𝒃), with 𝒂 ∈
F𝑛2, 𝒃 ∈ F𝑚2 , is the Walsh-Hadamard transform of its component function 𝒃 · 𝐹 (𝒙) at 𝒂. That
is

𝑊𝐹 (𝒂, 𝒃) =
∑︁
𝒙∈F𝑛2

(−1)𝒃·𝐹 (𝒙)⊕𝒂·𝒙 . (2.12)

The WH spectrum of a (𝑛, 𝑚)-function can therefore be represented by an 𝑛 by 𝑚 array
with the rows of 𝒂 ∈ 𝐹𝑛2 and the columns of 𝒃 ∈ 𝐹𝑚2 . The WH spectrum array, also called a
linear approximation table, for our example function 𝐹 is in Table 2.5.
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𝒂\𝒃 000 001 010 011 100 101 110 111
000 8 0 0 0 0 0 0 0
001 0 -4 0 -4 0 4 0 -4
010 0 0 -4 4 0 0 -4 -4
011 0 4 -4 0 0 4 4 0
100 0 0 -4 -4 4 -4 0 0
101 0 4 4 0 4 0 0 -4
110 0 0 0 0 4 4 -4 4
111 0 4 0 -4 -4 0 -4 0

Table 2.5. WHT Table of a Vectorial Boolean Function 𝐹

This table contains all of the WH transforms of the component functions of 𝐹. We call
the nonlinearity of 𝐹 the minimum nonlinearity of any of its components’ functions (recall
we do not consider 𝒃 = 0 as a component function). With a max absolute value of 4 in
the WHT table, from Equation 2.4 we know that the nonlinearity of 𝐹 is therefore 2. Just
as with classical BFs, the maximum possible nonlinearity is achieved for even number of
variables when the nonlinearity is 2𝑛−1 − 2𝑛/2−1. In this case, every component function is
bent, and we call the vectorial BF bent as well. There are restrictions on the values of 𝑛, 𝑚,
in order for an (𝑛, 𝑚)-function to be bent. In addition to 𝑛 being even, it was shown in [10]
that 𝑚 cannot be larger than 𝑛/2. For this reason, there are no bent (𝑛, 𝑛)-functions.

Next, the crosscorrelation from Definition 2.3.6 is extended to vectorial BFs.

Definition 2.4.3 . Let F, G : F𝑛2 → F𝑚2 be (𝑛, 𝑚)-functions. The crosscorrelation at 𝒖 ∈
F𝑛2, 𝒃 ∈ F𝑚2 is defined as

ℭ𝐹,𝐺 (𝒖, 𝒃) =
∑︁
𝒙∈F𝑛2

(−1)𝒃·(𝐹 (𝒙⊕𝒖)⊕𝐺 (𝒙)) (2.13)
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and the corresponding autocorrelation of 𝐹 is

ℭ𝐹 (𝒖, 𝒃) =
∑︁
𝒙∈F𝑛2

(−1)𝒃·(𝐹 (𝒙⊕𝒖)⊕𝐹 (𝒙)) . (2.14)

Just as we used an 𝑛 by 𝑚 array to display the WHT of an (𝑛, 𝑚)-function, we also use an
𝑛 by 𝑚 array to display the autocorrelation table of our example function 𝐹 from Table 2.2
in Table 2.6.

𝒖\𝒃 000 001 010 011 100 101 110 111
000 8 8 8 8 8 8 8 8
001 8 -8 0 0 0 0 0 0
010 8 0 0 0 0 0 -8 0
011 8 0 0 0 0 0 0 -8
100 8 0 0 0 -8 0 0 0
101 8 0 0 0 0 -8 0 0
110 8 0 -8 0 0 0 0 0
111 8 0 0 -8 0 0 0 0

Table 2.6. Autocorrelation Table of a Vectorial Boolean Function 𝐹

The autocorrelation table displays the autocorrelation of the component functions of 𝐹,
𝒃 · 𝐹, 𝒃 ≠ 0. Recall that 𝒖 = 0 is the trivial autocorrelation.

Similar to how we defined the propagation criterion for a classical Boolean function, we use
the equivalent notions of balanced derivatives and 0-valued autocorrelations (see Lemma
2.3.7) to define PC(𝑘) for (𝑛, 𝑚)-functions.

Definition 2.4.4 Let 𝐹 be an (𝑛, 𝑚)-function. 𝐹 satisfies the propagation criterion of order
𝑘 if, for all 𝒖 such that 1 ≤ 𝑤𝑡 (𝒖) ≤ 𝑘 , the derivative 𝐷𝑢𝐹 (𝒙) is balanced.

Equivalently, if the autocorrelation function of 𝐹 is 0 at all 𝒖 with 1 ≤ 𝑤𝑡 (𝒖) ≤ 𝑘 , 𝐹
is PC(𝑘). A 0-valued autocorrelation, that is ℭ𝐹 (𝒖, 𝒃) =

∑
𝒙∈F𝑛2 (−1)𝒃·(𝐹 (𝒙⊕𝒖)⊕𝐹 (𝒙)) = 0,
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implies the 𝒃-component functions of 𝐹 have autocorrelation value of 0. Again, we see the
(𝑛, 𝑚)-function obtains a property only when all of the component functions do.

2.4.3 Differential Uniformity
The final property of vectorial Boolean functions we will introduce in this foundational
chapter is directly related to differential cryptanalysis. The motivation for the property will
be made clear in Section 2.5, where we introduce and describe differential cryptanalysis.

Definition 2.4.5 Let 𝐹 be an (𝑛, 𝑚)-function with 𝒂 ∈ F𝑛2, 𝒃 ∈ F𝑚2 , and let Δ𝐹 (𝑎, 𝑏) = |𝒙 ∈
F𝑛2 : 𝐹 (𝒙 ⊕ 𝒂) ⊕ 𝐹 (𝒙) = 𝒃 |. The quantity 𝛿𝐹 = max{Δ𝐹 (𝑎, 𝑏) : 𝒂 ∈ F𝑛2, 𝒃 ∈ F𝑚2 , 𝒂 ≠ 0} is
called the differential uniformity of 𝐹.

To find the differential uniformity (DU) of an (𝑛, 𝑚)-function, a difference distribution
table (DDT) is constructed, with the rows consisting of the 𝒂’s, columns consisting of the
𝒃’s, and inputs consisting of Δ𝐹 (𝑎, 𝑏). We use our function from Table 2.2 to demonstrate
in Table 2.7.

𝒂\𝒃 000 001 010 011 100 101 110 111
000 8 0 0 0 0 0 0 0
001 0 2 0 2 0 2 0 2
010 0 0 2 2 2 2 0 0
011 0 2 2 0 2 0 0 2
100 0 0 0 0 2 2 2 2
101 0 2 0 2 2 0 2 0
110 0 0 2 2 0 0 2 2
111 0 2 2 0 0 2 2 0

Table 2.7. Difference Distribution Table of a Vectorial Boolean Function 𝐹

For 𝒂 ≠ 0, we see the largest value is 2, and the differential uniformity of 𝐹, 𝛿𝐹 , is therefore 2.
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The differential uniformity counts the number of 𝒙’s in F𝑛2 such that, for specific 𝒂 and 𝒃

in 𝐹𝑛2 , the derivative of 𝐹 with respect to 𝒂 equals 𝒃. Recall from Subsection 2.3.4 that
balanced derivatives, or at least close to balanced derivatives, are a desirable property. We
will discuss why in Section 2.5.

2.4.4 Equivalence Relations on Vectorial Boolean Functions
The number of Boolean and vectorial Boolean functions increases rapidly with the number
of variables. There are 22𝑛 classical BFs in 𝑛 variables and (2𝑚)2𝑛 = 2𝑚2𝑛 vectorial BFs
with 𝑛 input variables and 𝑚 output bits.

From Table 2.8, it is obvious searching through the entire space of BFs with many variables
is infeasible, and the situation is even more dire for vectorial BFs. However, many of
the properties we care most about remain invariant under certain transformations. These
transformations form equivalence classes which partition the count of functions to more
reasonable sizes. Functions with good properties, e.g., high nonlinearity, be can classified
by these relations.

𝑛 2 3 4 5 6 7 8 9
BFs’ count 16 256 65,536 4,294,967,296 ≈ 1.8𝑒19 ≈ 3.4𝑒38 ≈ 1.1𝑒77 ≈ 1.3𝑒154

Table 2.8. Growth of Boolean Functions on 𝑛 Variables

Definition 2.4.6 Let 𝐹 and 𝐺 be (𝑛, 𝑚)-functions. 𝐹 and 𝐺 are:

1) Affine Equivalent if 𝐺 = 𝐴 ◦ 𝐹 ◦ 𝐵, where 𝐴 and 𝐵 are affine mappings of F𝑚2 and F𝑛2,
respectively.
2) Extended Affine Equivalent if 𝐺 = 𝐴 ◦ 𝐹 ◦ 𝐵 +𝐶, where 𝐴 and 𝐵 are affine mappings of
F𝑚2 , and F𝑛2, respectively, and 𝐶 in an affine mapping from F𝑛2 → F𝑚2 .
2) Carlet-Charpin-Zinoviev Equivalent if the graphs of 𝐺 and 𝐹, {(𝒙, 𝐺 (𝒙)) |𝒙 ∈ F𝑛2}
and {(𝒙, 𝐹 (𝒙)) |𝒙 ∈ F𝑛2}, are equal under some affine mapping 𝐴 of F𝑛2 × F𝑚2 . That is,
(𝒙, 𝐺 (𝒙)) = 𝐴(𝒙, 𝐹 (𝒙)).

21



Affine equivalence is a particular case of extended affine (EA) equivalence when𝐶 = 0. 𝐸𝐴
equivalence is in turn a particular case of Carlet-Charpin-Zinoviev (CCZ) equivalence. Dif-
ferential uniformity is invariant under the CCZ equivalence [13], and is therefore invariant
under 𝐸𝐴 and affine equivalences. Thus, if a function with good differential uniformity is,
for instance, difficult to implement in hardware or software, an 𝐸𝐴 equivalent function could
maintain the same DU but be easier to implement. Later, in Chapter 4, we will show that
the new 𝑐-differential uniformity property does not hold in general under 𝐸𝐴 equivalence
and a cipher designer may not be able to make a similar substitution.

2.5 Differential Cryptanalysis
In 1991, Biham and Shamir published details of a new cryptanalytic tool called differential
cryptanalysis [14]. The target of the attack was the block cipher standard of the time, the Data
Encryption Standard (DES). Although this was the first public appearance of the technique
in print, one of the creators of DES at the company IBM would later state in [15] that the
design team, along with the U.S. National Security Agency, were aware of the technique in
the 1970s and DES was designed to be resistant against it. The same article, published in
1994, included rationale for why some of the design criteria of DES were not made public:

disclosure of the design considerations would reveal the technique of differential
cryptanalysis, a powerful technique that can be used against many ciphers. [15]

With a 56-bit key, a brute force attack on DES could require up to 256 attempts before
exhausting the key space. While this may have seemed like a large enough space at the time
DES was introduced, the continual upward trend of computing power eventually rendered
the DES algorithm vulnerable to brute force attacks, and a replacement was sought in the
mid-1990s [16]. The differential cryptanalysis technique on DES reduces the complexity
from the brute force attack, but still requires 247 chosen plaintexts, an unrealistic amount in
practical situations. While the differential attack on DES proved to be more theoretical than
practical, the groundwork was laid for a very effective cryptanalytic tool that has evolved
and now considered a primary concern of any block cipher.
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2.5.1 Overview of an Attack
Modern block ciphers are iterative, that is, they are composed of multiple rounds. In order
to realize confusion and diffusion, the rounds involve substitutions and permutations, with
most achieving confusion through look up tables that are in reality the (𝑛, 𝑚)-functions
and S-boxes described in Section 2.4. While these S-boxes also have properties related
to diffusion, other parts of block ciphers are primarily responsible to ensure diffusion is
achieved. The two most popular ways to design a block cipher are the Feistel network and the
substitution permutation network (SPN), see [3] for a detailed description of both designs.
Figure 2.1 shows an example 16-bit four round substitution permutation network block
cipher diagram. In this basic example, the 𝑆’s represent the S-boxes. The plaintext is xor’d
with an initial key, broken into four parts, and then fed into four S-boxes. After the S-box,
the outputs are mixed up via a permutation (diffusion) box and xor’d with a round key before
the next round starts. Different encryption schemes use different numbers of rounds; most
are at a minimum ten rounds and some have more than 30. The desired output is a ciphertext
that appears random to an adversary without the secret key.

Assume we inject two plaintexts, 𝑝1 and 𝑝2, into a block cipher such that the difference
between the two is Δ𝑝, i.e., 𝑝1 ⊕ 𝑝2 = Δ𝑝. As the two plaintexts move through rounds of
the cipher, they are transformed, resulting in ciphertexts 𝑐1 and 𝑐2. Let Δ𝑐 = 𝑐1 ⊕ 𝑐2 be the
difference between the two ciphertexts. In an ideal cipher, the probability that a certain Δ𝑐

occurs given a Δ𝑝 would be 1/2𝑛 where 𝑛 is the number of bits in a block of plaintext. In
other words, if 𝑝1 ⊕ 𝑝2 = Δ𝑝 and 𝑐1 ⊕ 𝑐2 = Δ𝑐, then any other pair of plaintexts that also
have difference Δ𝑝 have a different Δ𝑐. Anything less than this ideal is the vulnerability
targeted in differential cryptanalysis.

The pair (Δ𝑝,Δ𝑐) is called a differential. The classical differential attack is a statistical
chosen-plaintext attack in which the attacker chooses plaintexts with difference Δ𝑝 and
seeks to gain insight into the secret key by exploiting the fact that Δ𝑐 occurs with high
probability, compared to 1/2𝑛. Notice the difference Δ𝑝 is not changed by the xor operation
with the round key because (𝑝1 ⊕ 𝑘) ⊕ (𝑝2 ⊕ 𝑘) = 𝑝1 ⊕ 𝑝2 ⊕ 𝑘 ⊕ 𝑘 = Δ𝑝. However, Δ𝑝 is
changed by the S-box. This is where our look into the difference distribution table (Table 2.7
is an example) and differential uniformity becomes relevant. Recalling the equation used to
find the differential uniformity, 𝐹 (𝒙 ⊕ 𝒂) ⊕ 𝐹 (𝒙) = 𝒃, we see the difference in input is 𝒂
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Figure 2.1. 4-Round Substitution Permutation Network (SPN)

while the difference in output is 𝒃. That is, for one S-box, (𝒂, 𝒃) = (Δ𝑝,Δ𝑐).

Of course, there is more than one S-box and there are many rounds. The output of the high
probability differential from one S-box to the next is used, and a path is traced through the
cipher, using the highest probabilities available from DDT’s of the different S-boxes. The
probabilities from all the rounds, except for the last round, are combined to determine the
differential characteristic. If this differential characteristic is significantly larger than the
brute force probability (i.e., exhaustive key search), then a differential attack may reduce
the complexity of the key search or “break” the cipher.
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Figure 2.2. SPN with Differential Trace

The cryptanalysis process will involve the encryption of many chosen plaintexts that satisfy
the Δ𝑝 difference identified while determining the differential characteristic. The attack
then moves onto attempted recovery of bits from the last round key. The specific design
of each block cipher requires modifications to this description, often times making the
attack much more sophisticated, see [17] for a more detailed description of an attack. But in
general, using ciphertexts from known plaintexts, a partial decryption is performed on the
bits corresponding to the target last round S-boxes, with the corresponding key bits called
the target partial subkey. The target partial subkey is small enough that all combinations
can be attempted for the ciphertexts. After this partial decryption, the bits are run backward
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through the S-box of the final round to see if they match the high probability expected
difference. If they do, they are deemed good pairs. The target partial subkey attempt that
gives us the highest count of good pairs is probably correct. If so, the attack has extracted
key bits from the last round key and can be used to further attack the system. Figure 2.2
provides a simplified visual simulation of the process.

2.5.2 Resistance against a Differential Attack
Based on the description of the attack, it is obvious that the primary mitigation for an
iterated block cipher against a differential attack is ensuring that there are no differential
characteristics that result in probabilities much better than exhaustive key search. This can
be achieved by ensuring low differential uniformity for S-boxes and having a high number of
rounds with many permutations. In fact, in [18] the authors demonstrate that under certain
conditions this resistance can be proven.

Keeping differential uniformity low is now considered essential in all block cipher designs.
Because differential uniformity is defined using derivatives, the question of optimally low
differential uniformity is tied to Nyberg’s notion of perfect nonlinearity and balanced
derivatives. In Subsection 2.4.2 it was observed that there are no bent (𝑛, 𝑛)-functions and
in Subsection 2.3.4 it was observed that bentness and balanced derivatives are equivalent
for classical Boolean functions. From Section 2.4 we know all component functions of
(𝑛, 𝑛)-functions are classical Boolean functions. Thus, there are no perfect nonlinear (𝑛, 𝑛)-
functions.

Another way to demonstrate an (𝑛, 𝑛)-function cannot have balanced derivatives (and
therefore not be perfect nonlinear) is by using the property that if 𝒙 is a solution to
𝐹 (𝒙 ⊕ 𝒂) ⊕ 𝐹 (𝒙) = 𝒃, then so is 𝒙 ⊕ 𝒂. But in an (𝑛, 𝑛)-function, in order to be bal-
anced the derivative must achieve every value of 𝒃 only once. The best achievable DU is
therefore when 𝒙 and 𝒙 ⊕ 𝒂, for some 𝒂, are the only solutions for any 𝒃. If this is the case
the (𝑛, 𝑛)-function has DU of 2 and is called almost perfect nonlinear (APN). The “almost”
is a bit unfortunate because it suggests something less than optimal. However, in the case
of an (𝑛, 𝑛)-function, APN is optimal and results in the lowest DU possible.
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2.5.3 Extensions of Differential Cryptanalysis
The original differential cryptanalysis technique has been modified and extended in multiple
ways and differential cryptanalysis is now considered a class of attacks that exploit how any
kind of difference can be traced through an encryption scheme to collect statistically relevant
information on key bits. While some of these extensions apply to hashing algorithms and
other types of symmetric encryption, our focus is on block ciphers. In [19], two extensions
are introduced; truncated and higher order differential attacks. A truncated differential
differs from the original notion in that only a subset of the bits of plaintext and ciphertext
pairs are predicted as opposed to the entire bit strings. This can allow for higher probability
differential characteristics and therefore higher likelihood of key bit recovery. Higher order
differentials utilize the notion of higher order discrete derivatives in vectorial Boolean
functions, introduced and explored in [20]. As opposed to the ordinary differentials that
trace one plaintext at a time, these higher order differentials trace the differences of multiple
plaintexts and have been shown to break ciphers that are traditionally resistant to ordinary
differential cryptanalysis [21]. This idea will be revisited extensively in Chapter 5. In
impossible differential cryptanalysis, instead of differential characteristics that have high
probabilities, characteristics with zero probability are used to rule out many keys [22]. The
boomerang attack, introduced in [23], allows an attacker to trace differentials only partly
through a cipher, increasingly the likelihood of success on some ciphers.

These modifications and others have demonstrated that resistance against conventional
differential cryptanalysis is necessary, but not always sufficient. Further steps must be
taken to ensure resistance against all known extensions of differential cryptanalysis. It is
almost certain that cryptanalysts are tweaking and enhancing these modifications while also
attempting the creation of new techniques. In the next chapter, we begin our theoretical
and practical investigation of a newly proposed differential and attempt to determine its
relevance to the S-boxes of modern block ciphers.

2.6 Binary to 𝑃-ary
While the definitions, properties, and examples in this chapter up to this point are all in fields
of characteristic 2 (i.e., binary), most can be generalized to fields of characteristic 𝑝, for any
prime number 𝑝. In this section, we provide the more general characteristic 𝑝 definitions of
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the most relevant concepts that will be expanded upon in the following chapters. We start
with the characteristic 𝑝 generalization of Boolean functions, called 𝑝-ary functions.

Definition 2.6.1 Let 𝑝 be a prime number. A 𝑝-ary function 𝑓 in 𝑛 variables is a map from
F𝑛𝑝 to F𝑝

𝑓 : F𝑛𝑝 → F𝑝 . (2.15)

Recall in the binary case a Boolean function is balanced if the truth table has half 0’s and
half 1’s. In 𝑛 variables, this means 2𝑛−1 values will be 1, and 2𝑛−1 values will be 0. Extending
to the 𝑝-ary case, we see a balanced 𝑝-ary function achieves each of the 𝑝 different potential
outputs 𝑝𝑛−1 times. We can also generalize the notion of Hamming weight from binary to
𝑝-ary by considering how many non-zero positions are in a vector. That is, if 𝒙 is a 𝑝-ary
vector, then 𝑤𝑡 (𝒙) is the number of non-zero positions of 𝒙.

The Walsh-Hadamard transform that was used to calculate the nonlinearity (and other
properties) of a Boolean function in Subsection 2.3.2 is extended to the 𝑝-ary case by
changing the base of the exponent from −1 to the more general 𝑝th primitive root of unity,
𝜁𝑝. Notice the ⊕ operation used in binary is replaced by the appropriate + or - modulo the
prime characteristic.

Definition 2.6.2 The Walsh-Hadamard transform of a 𝑝-ary function 𝑓 on F𝑛𝑝 is the
complex-valued function𝑊 𝑓 : F𝑛𝑝 → C defined by

𝑊 𝑓 (𝒘) =
∑︁
𝒙∈F𝑛𝑝

𝜁
𝑓 (𝒙)−𝒘·𝒙
𝑝 . (2.16)

Next, we define the characteristic 𝑝 generalization of (𝑛, 𝑚) or vectorial Boolean functions.

Definition 2.6.3 Let n and m be two positive integers and p be a prime number. A vectorial
𝑝-ary function 𝐹 is a map from F𝑛𝑝 to F𝑚𝑝 ,

𝐹 : F𝑛𝑝 → F𝑚𝑝 . (2.17)
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We will call vectorial 𝑝-ary functions (𝑛, 𝑚, 𝑝)-functions when 𝑝 can be any prime, and
(𝑛, 𝑚)-functions when 𝑝 = 2. Next, the derivative of a Boolean function is generalized to
the 𝑝-ary case.

Definition 2.6.4 Let 𝑓 be a 𝑝-ary function. The derivative of 𝑓 with respect to 𝒂 ∈ F𝑛𝑝 is
the function

𝐷𝑎 𝑓 (𝒙) = 𝑓 (𝒙 + 𝒂) − 𝑓 (𝒙), for all 𝒙 ∈ F𝑛𝑝 . (2.18)

The crosscorrelation and autocorrelation functions are generalized to 𝑝-ary with this deriva-
tive, and as in the case of the 𝑝-ary WHT, a change of base of the exponent to 𝜁𝑝.

Definition 2.6.5 Let F, G : F𝑛𝑝 → F𝑚𝑝 be (𝑛, 𝑚, 𝑝)-functions. The crosscorrelation at 𝒖 ∈
F𝑛𝑝, 𝒃 ∈ F𝑚𝑝 is defined as

ℭ𝐹,𝐺 (𝒖, 𝒃) =
∑︁
𝒙∈F𝑛𝑝

𝜁
𝒃·(𝐹 (𝒙+𝒖)−𝐺 (𝒙))
𝑝 (2.19)

and the corresponding autocorrelation of 𝐹 is

ℭ𝐹 (𝒖, 𝒃) =
∑︁
𝒙∈F𝑛𝑝

𝜁
𝒃·(𝐹 (𝒙+𝒖)−𝐹 (𝒙))
𝑝 . (2.20)

The Walsh-Hadamard transform of an (𝑛, 𝑚, 𝑝)-function follows by calculating the WHT
of its component 𝑝-ary functions.

Definition 2.6.6 The Walsh-Hadamard transform of an (𝑛, 𝑚, 𝑝)-function at (𝒂, 𝒃), with
𝒂 ∈ F𝑛𝑝, 𝒃 ∈ F𝑚𝑝 , is the Walsh-Hadamard transform of its component function 𝒃 · 𝐹 (𝒙) at 𝒂.
That is,

𝑊𝐹 (𝒂, 𝒃) =
∑︁
𝒙∈F𝑛𝑝

𝜁
𝒃·𝐹 (𝒙)−𝒂·𝒙
𝑝 . (2.21)

The vector space to finite field mapping described in Subsection 2.4.1, which is essential
for the rest of this dissertation, also works for F𝑛𝑝 to F𝑝𝑛 . We provide an example in the case
of F2

3.
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Example 2.6.1 Let an instance of F32 be defined by F3 [𝑥]/⟨𝑥2 + 2𝑥 + 2⟩ with 𝛼 being a root
of 𝑥2 + 2𝑥 + 2. Then Table 2.9 has the following mapping.

F32 0 𝛼0 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7

F32 0 1 𝛼 𝛼 + 1 2𝛼 + 1 2 2𝛼 2𝛼 + 2 𝛼 + 2
F2

3 00 01 10 11 21 02 20 22 12
Z9 0 1 3 4 7 2 6 8 5

Table 2.9. A Mapping between F32 and F2
3

As in the binary case, when𝑚 = 𝑛, a function can be represented by a univariate polynomial
of the form

𝐹 (𝑥) =
𝑝𝑛−1∑︁
𝑖=0

𝑎𝑖𝑥
𝑖, 𝑎𝑖 ∈ F𝑝𝑛 . (2.22)

Using the 𝑝-ary derivative, differential uniformity is extended into characteristic 𝑝.

Definition 2.6.7 Let 𝐹 be an (𝑛, 𝑚, 𝑝)-function with 𝒂 ∈ F𝑛𝑝, 𝒃 ∈ F𝑚𝑝 , and let Δ𝐹 (𝑎, 𝑏) =
|𝒙 ∈ F𝑛𝑝 : 𝐹 (𝒙+𝒂) −𝐹 (𝒙) = 𝒃 |. The quantity 𝛿𝐹 = max{Δ𝐹 (𝑎, 𝑏) : 𝒂 ∈ F𝑛𝑝, 𝒃 ∈ F𝑚𝑝 , 𝒂 ≠ 0}
is called the differential uniformity of 𝐹.

Unlike the case of 𝑝 = 2, when 𝑝 > 2 there do exist perfect nonlinear functions when 𝑛 = 𝑚.
That is, there exist (𝑛, 𝑛, 𝑝)-functions with balanced derivates and differential uniformity
of 1.

Example 2.6.2 . The function 𝐹 : F32 → F32 , where 𝐹 (𝑥) = 𝑥2 in univariate polynomial
representation is perfect nonlinear. To see this, consider the derivative of 𝐹, 𝐷𝑎𝐹 (𝑥) =

(𝑥 + 𝑎)2 − 𝑥2 = 𝑥2 + 2𝑎𝑥 + 𝑎2 − 𝑥2 = 2𝑎𝑥 + 𝑎2. For all 𝑎 ≠ 0, the derivative is a permutation
of the elements of F32 , and therefore balanced. Because 𝐹 has balanced derivatives for all
𝑎 ≠ 0, 𝐹 is a perfect nonlinear (2, 2, 3) function.
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The real-world S-boxes that will be investigated later in this dissertation are all in character-
istic 2, as binary implementations continue to dominate the universe of block ciphers that
have been made public. However, most of the mathematical results in Chapters 3, 4, and 5
will apply to any prime characteristic, and this final section gives us the tools to proceed in
these environments.

To conclude this foundational chapter, we note that for reasons of speed and efficiency,
the only nonlinear component of most symmetric block ciphers are the substitution boxes
composed of (𝑛, 𝑚)-functions that we have described. Thus, the S-box plays a uniquely
important role in cryptography. With the essential definitions, notations, properties, and
background in place, we proceed in our investigation into 𝑐-differentials and their relevance
to these critical components of modern digital communications security.
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CHAPTER 3:
𝑐-Differentials and Generalizations of Cryptographic

Properties of Vectorial Boolean Functions

As described in Chapter 2, differential cryptanalysis poses a real and evolving threat to
block ciphers that utilize S-boxes. As one of the main potential vulnerabilities of a secret
key encryption scheme, newly proposed ciphers often provide an analysis of resistance to the
various known differential attacks, and these attacks continue to advance in sophistication.
In [24], the authors defined and used a multiplicative differential against some real-world
ciphers in an attempt to attack schemes that use modular multiplication as a primitive
operation. Given an (𝑛, 𝑚, 𝑝)-function 𝐹 : F𝑝𝑛 → F𝑝𝑚 with 𝑝 prime, instead of considering
inputs (𝑥, 𝑥 + 𝑎) with associated outputs (𝐹 (𝑥), 𝐹 (𝑥 + 𝑎)), the differential they introduced
has inputs of the form (𝑐𝑥, 𝑥) and outputs (𝐹 (𝑐𝑥), 𝐹 (𝑥)). This technique proved successful
against several variants of the IDEA cipher, and the authors challenged others to find new
differentials.

Motivated by their success, Stănică et al. started a theoretical analysis of a different multi-
plicative differential in [2]. This new differential uses the same inputs as the original attack,
(𝑥, 𝑥 + 𝑎), but multiplies one of the outputs by 𝑐, with 𝑐 residing in the codomain of 𝐹. This
results in the outputs (𝑐𝐹 (𝑥), 𝐹 (𝑥 + 𝑎)) and is called a “𝑐-differential.” Notice when 𝑐 = 1
the original differential is recovered. Because the 𝑐-differential is multiplicative, it is more
convenient to work with (𝑛, 𝑚, 𝑝)-functions over finite fields instead of vector spaces. The
normal vector space inner product used in Chapter 2 will be replaced by the absolute trace
function of a field extension, Tr𝑛 (𝑥). That is, 𝑎 · 𝑏 → Tr𝑛 (𝑎𝑏). With this new differential,
the authors of [2] defined a new discrete derivative.

Definition 3.0.1 Let F : F𝑝𝑛 → F𝑝𝑚 be an (𝑛, 𝑚, 𝑝)-function with 𝑐 ∈ F𝑝𝑚 . The (multi-
plicative) 𝑐-derivative of 𝐹 with respect to 𝑎 ∈ F𝑝𝑛 is the function

𝑐𝐷𝑎𝐹 (𝑥) = 𝐹 (𝑥 + 𝑎) − 𝑐𝐹 (𝑥), for all 𝑥 ∈ F𝑝𝑛 .
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Many essential cryptographic properties of vectorial Boolean and 𝑝-ary functions can be
described in terms of the discrete derivative. In this chapter, we use the 𝑐-derivative to extend
the notions of perfect nonlinearity, bentness, and avalanche characteristics by introducing
a new crosscorrelation function and corresponding autocorrelation function. The material
in sections 3.1, 3.2, and 3.3 is based on and expanded from Stănică, Gangopadhyay, Geary,
Riera, and Tkachenko [25].

3.1 𝑐-Crosscorrelation and 𝑐-Autocorrelation
In Section 2.4.2, the crosscorrelation and autocorrelation functions were defined for vectorial
Boolean functions. Using the discrete 𝑐-derivative from Definition 3.0.1 we now extend
these notions with the following new definitions.

Definition 3.1.1 Let F, G : F𝑝𝑛 → F𝑝𝑚 be (𝑛, 𝑚, 𝑝)-functions with 𝑐 ∈ F𝑝𝑚 . The 𝑐-
crosscorrelation at 𝑢 ∈ F𝑝𝑛 , 𝑏 ∈ F𝑝𝑚 is defined as

𝑐ℭ𝐹,𝐺 (𝑢, 𝑏) =
∑︁
𝑥∈F𝑝𝑛

𝜁
Tr𝑚 (𝑏(𝐹 (𝑥+𝑢)−𝑐𝐺 (𝑥)))
𝑝 (3.1)

and the corresponding 𝑐-autocorrelation of 𝐹 is

𝑐ℭ𝐹 (𝑢, 𝑏) =
∑︁
𝑥∈F𝑝𝑛

𝜁
Tr𝑚 (𝑏(𝐹 (𝑥+𝑢)−𝑐𝐹 (𝑥)))
𝑝 . (3.2)

Notice that when 𝑐 = 1, 𝑝 = 2, and we use the normal vector space inner product, the
original (𝑛, 𝑚)-function cross and autocorrelations are recovered. Working in finite fields,
the component functions of 𝐹 are Tr𝑚 (𝑏𝐹), 0 ≠ 𝑏 ∈ F𝑝𝑚 . Thus, the 𝑐-crosscorrelation
of the (𝑛, 𝑚, 𝑝)-function is the crosscorrelation of the 𝑏-component Boolean function of
𝐹 with the 𝑐 multiple of the 𝑏-component Boolean function 𝐺. That is, 𝑐ℭ𝐹,𝐺 (𝑢, 𝑏) =

ℭTr𝑚 (𝑏𝐹),Tr𝑚 (𝑏𝑐𝐺) (𝑢). The same observation holds for the 𝑐-autocorrelation, 𝑐ℭ𝐹 (𝑢, 𝑏) =

ℭTr𝑚 (𝑏𝐹),Tr𝑚 (𝑏𝑐𝐹) (𝑢).

Throughout this chapter, we will be using the fact that balanced 𝑐-derivatives in the direction
of 𝑢 imply a 𝑐-autocorrelation of 0 at 𝑢. That is, if 𝐹 (𝑥 + 𝑢) − 𝑐𝐹 (𝑥) is balanced, then
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∑
𝑥∈F𝑝𝑛 𝜁

Tr𝑚 (𝑏(𝐹 (𝑥+𝑢)−𝑐𝐹 (𝑥)))
𝑝 = 0. This follows from [26, Theorem 5.4], from which we see

the exponential sum of a balanced function is 0.

Using our new autocorrelation function, we now proceed to generalize the definitions of
perfect nonlinearity and bentness, show these two generalizations are equivalent notions,
and capture the current definitions as special cases of our generalizations.

3.2 Perfect 𝑐-Nonlinearity
In [10], Nyberg defined a perfect nonlinear (𝑛, 𝑚)-function as a function whose derivatives
are balanced in every non-zero direction. In other words, the derivatives take every value the
same number of times. For an (𝑛, 𝑚, 𝑝)-function, this equates to the derivatives achieving
every output 𝑝𝑛−𝑚 times, which only makes sense when 𝑛 ≥ 𝑚. As pointed out in the
previous section, having balanced derivatives implies that the function’s autocorrelation
must be zero in all non-trivial cases. Recall from Section 2.4.2 that trivial autocorrelations
occur when 𝑏 or 𝑢 are 0, in which case the autocorrelation of an (𝑛, 𝑚, 𝑝)-function is 𝑝𝑛.
With our new 𝑐-autocorrelation and 𝑐 ≠ 1, the trivial autocorrelations are when 𝑏 = 0,
which also results in 𝑝𝑛, but 𝑢 = 0 is no longer a trivial case. We now extend Nyberg’s
definition into our notion of perfect 𝑐-nonlinearity.

Definition 3.2.1 Let 𝐹 be an (𝑛, 𝑚, 𝑝)-function and 𝑐 ∈ F𝑝𝑚 fixed, we say that 𝐹 is perfect
𝑐-nonlinear (P𝑐N) if its 𝑐-autocorrelation 𝑐ℭ𝐹 (𝑢, 𝑏) = 0, for all 𝑢 ∈ F∗𝑝𝑛 , 𝑏 ∈ F∗𝑝𝑚 . A strictly
perfect 𝑐-nonlinear is a function 𝐹 for which all 𝑐ℭ𝐹 (𝑢, 𝑏) = 0, for all 𝑢 ∈ F𝑝𝑛 , 𝑏 ∈ F∗𝑝𝑚 .

We show in Lemma 3.2.2 that, when 𝑛 = 𝑚, P𝑐N and strictly P𝑐N are equivalent. Addition-
ally, for 𝑝 = 2 it was demonstrated in [27] that the 𝑐-derivative of a P𝑐N function must be a
permutation polynomial (and therefore balanced) when 𝑐 ≠ 1. Thus, P𝑐N and strictly P𝑐N
are equivalent notions in even characteristic or when 𝑛 = 𝑚, and the only case in which an
(𝑛, 𝑚, 𝑝)-function may be P𝑐N but not strictly P𝑐N is when 𝑝 > 2 and 𝑛 ≠ 𝑚.

If the 𝑐-derivatives of an (𝑛, 𝑚, 𝑝)-function are balanced, that is, if 𝑐𝐷𝑎𝐹 (𝑥) = 𝐹 (𝑥 + 𝑎) −
𝑐𝐹 (𝑥) at every fixed 𝑎 ≠ 0 assumes the same value 𝑦 ∈ F𝑝𝑚 for exactly 𝑝𝑛−𝑚 values of
𝑥 ∈ F𝑝𝑛 , then 𝐹’s nontrivial autocorrelation is 0 and 𝐹 is perfect 𝑐-nonlinear. The converse
is true if 𝑛 = 𝑚, as shown in the following lemma.
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Lemma 3.2.2 Let 𝐹 be an (𝑛, 𝑛, 𝑝)-function. If 𝐹 is perfect 𝑐-nonlinear, then the 𝑐-
derivatives of 𝐹 are balanced.

Proof: Because 𝐹 is P𝑐N, the 𝑐-autocorrelation of 𝐹, 𝑐ℭ𝐹 (𝑢, 𝑏), is 0 for 𝑏 ≠ 0. That is,

𝑐ℭ𝐹 (𝑢, 𝑏) =
∑︁
𝑥∈F𝑝𝑛

𝜁
Tr𝑚 (𝑏(𝐹 (𝑥+𝑢)−𝑐𝐹 (𝑥)))
𝑝 = 0.

Here we will use [26, Theorem 7.7], which tells us that if∑︁
𝑥∈F𝑝𝑛

𝜒( 𝑓 (𝑥))) = 0,

then 𝑓 (𝑥) is a permutation polynomial where 𝜒 is the canonical additive character of F𝑝𝑛 ,
which is 𝜒𝑏 (𝑎) = 𝜁Tr𝑛 (𝑏𝑎)

𝑝 . Then, we have

0 =
∑︁

𝑐ℭ𝐹 (𝑢, 𝑏)

=
∑︁
𝑥∈F𝑝𝑛

𝜁
Tr𝑛 (𝑏(𝐹 (𝑥+𝑢)−𝑐𝐹 (𝑥)))
𝑝

=
∑︁
𝑥∈F𝑝𝑛

𝜒𝑏 ((𝐹 (𝑥 + 𝑢) − 𝑐𝐹 (𝑥))

=
∑︁
𝑥∈F𝑝𝑛

𝜒𝑏 (𝑐𝐷𝑢𝐹 (𝑥)).

Then, by [26, Theorem 7.7], 𝑐𝐷𝑢𝐹 (𝑥) is a permutation polynomial, and the derivatives must
be balanced.

Because the 𝑐-derivative of a P𝑐N (𝑛, 𝑛, 𝑝)-function is a permutation polynomial, when
𝑛 = 𝑚 a P𝑐N function is strictly P𝑐N. Later, we show that a general (𝑛, 𝑚, 𝑝)-function is
perfect 𝑐-nonlinear if and only if the traces of the 𝑐-differentials are balanced.

3.3 𝑐-Differential Bent
The definitions of bent Boolean and vectorial Boolean functions in Chapter 2 have been
generalized in numerous ways. We mention here [5] and [6], which include many examples.
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One generalization is from binary to 𝑝-ary for prime 𝑝. A 𝑝-ary function 𝑓 : F𝑝𝑛 → F𝑝

is bent if the square of the complex absolute value of the Walsh Hadamard transforms is
constant at all inputs, namely, |𝑊 𝑓 (𝑤) |2 = 𝑊 𝑓 (𝑤)𝑊 𝑓 (𝑤) = ℭ𝐹 (0) = 𝑝𝑛, for all 𝑤 ∈ F𝑝𝑛 .
Notice this definition captures the classical bent Boolean functions, which have WHT
spectrum of ±2𝑛/2, as |2𝑛/2 |2 = 2𝑛 = 𝑝𝑛, since 𝑝 = 2. This notion of bentness is extended
to vectorial 𝑝-ary functions by simply considering the same product for each component
function.

Using this idea, we now define a new bent concept that takes into account the 𝑐-differential.

Definition 3.3.1 Let 𝐹 be an (𝑛, 𝑚, 𝑝)-function. 𝐹 is 𝑐-differential bent if
𝑊𝐹 (𝑎, 𝑏)𝑊𝐹 (𝑎, 𝑏𝑐) = 𝑐ℭ𝐹 (0, 𝑏), for all 𝑎 ∈ F𝑝𝑛 , 𝑏 ∈ F∗𝑝𝑚 .

In other words, for each component function of 𝐹, if the product 𝑊𝐹 (𝑎, 𝑏)𝑊𝐹 (𝑎, 𝑏𝑐) is
equal to the 𝑐-autocorrelation at zero for all inputs 𝑎, then 𝐹 is 𝑐-differential bent. For 𝑐 = 1,
this is the classical case and well known. Our task is to show that the perfect 𝑐-nonlinearity
and 𝑐-differential bent are equivalent. To show for all 𝑐 we first need the following lemma,
which is a modification of a known result [28] utilizing our new 𝑐-crosscorrelation and
𝑐-differential bent notion.

Lemma 3.3.2 Let 𝑝 be a prime number, 𝐹 and 𝐺 be (𝑛, 𝑚, 𝑝)-functions, and 𝑐 ∈ F𝑝𝑚 .
Then for all 𝑏 ∈ 𝐹𝑝𝑚 , we have∑︁

𝑢∈F𝑝𝑛
𝑐ℭ𝐹,𝐺 (𝑢, 𝑏)𝜁−Tr𝑛 (𝑢𝑎)

𝑝 = 𝑊𝐹 (𝑎, 𝑏)𝑊𝐺 (𝑎, 𝑏𝑐),

𝑐ℭ𝐹,𝐺 (𝑢, 𝑏) = 𝑝−𝑛
∑︁
𝑎∈F𝑝𝑛

𝑊𝐹 (𝑎, 𝑏)𝑊𝐺 (𝑎, 𝑏𝑐)𝜁Tr𝑛 (𝑢𝑎) .
(3.3)

In particular, if 𝐹 = 𝐺, then∑︁
𝑢∈F𝑝𝑛

𝑐ℭ𝐹 (𝑢, 𝑏)𝜁−Tr𝑛 (𝑢𝑎)
𝑝 = 𝑊𝐹 (𝑎, 𝑏)𝑊𝐹 (𝑎, 𝑏𝑐)

𝑐ℭ𝐹 (𝑢, 𝑏) = 𝑝−𝑛
∑︁
𝑎∈F𝑝𝑛

𝑊𝐹 (𝑎, 𝑏)𝑊𝐹 (𝑎, 𝑏𝑐)𝜁Tr𝑛 (𝑢𝑎)
𝑝 .
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Proof: We start with∑︁
𝑢∈F𝑝𝑛

𝑐ℭ𝐹,𝐺 (𝑢, 𝑏)𝜁−Tr(𝑢𝑎)
𝑝 =

∑︁
𝑢∈F𝑝𝑛

∑︁
𝑧∈F𝑝𝑛

𝜁
Tr𝑚 (𝑏(𝐹 (𝑧+𝑢)−𝑐𝐺 (𝑧))
𝑝 𝜁

Tr𝑛 (−𝑢𝑎)
𝑝

=
∑︁
𝑢∈F𝑝𝑛

∑︁
𝑧∈F𝑝𝑛

𝜁
Tr𝑚 (𝑏(𝐹 (𝑧+𝑢)−𝑐𝐺 (𝑧))
𝑝 𝜁

−Tr((𝑧+𝑢)𝑎)+Tr𝑛 (𝑧𝑎)
𝑝

=
∑︁
𝑧∈F𝑝𝑛

𝜁
−Tr𝑚 (𝑏𝑐𝐺 (𝑧))
𝑝 𝜁

Tr𝑛 (𝑧𝑎)
𝑝

∑︁
𝑢∈F𝑝𝑛

𝜁
Tr𝑚 (𝑏𝐹 (𝑧+𝑢))
𝑝 𝜁

−Tr𝑛 ((𝑧+𝑢)𝑎)
𝑝

𝑤:=𝑧+𝑢
=

∑︁
𝑧∈F𝑝𝑛

𝜁
−Tr𝑚 (𝑏𝑐𝐺 (𝑧))
𝑝 𝜁

Tr(𝑧𝑎)
𝑝

∑︁
𝑤∈F𝑝𝑛

𝜁
Tr𝑚 (𝑏𝐹 (𝑤))
𝑝 𝜁

−Tr𝑛 (𝑤𝑎)
𝑝

=𝑊𝐹 (𝑎, 𝑏)𝑊𝐺 (𝑎, 𝑏𝑐).

For the second identity, we reverse the argument, and obtain

𝑝−𝑛
∑︁
𝑎∈F𝑝𝑛

𝑊𝐹 (𝑎, 𝑏)𝑊𝐺 (𝑎, 𝑏𝑐)𝜁Tr𝑛 (𝑢𝑎)

=𝑝−𝑛
∑︁
𝑎∈F𝑝𝑛

∑︁
𝑧,𝑤∈F𝑝𝑛

𝜁
−Tr𝑚 (𝑏𝑐𝐺 (𝑧))
𝑝 𝜁

Tr𝑛 (𝑧𝑎)
𝑝 𝜁

Tr𝑚 (𝑏𝐹 (𝑤))
𝑝 𝜁

−Tr𝑛 (𝑤𝑎)
𝑝 𝜁Tr𝑛 (𝑢𝑎)

=𝑝−𝑛
∑︁

𝑧,𝑤∈F𝑝𝑛
𝜁

Tr𝑚 (𝑏(𝐹 (𝑤)−𝑐𝐺 (𝑧))
𝑝

∑︁
𝑎∈F𝑝𝑛

𝜁
Tr𝑛 ((𝑢+𝑧−𝑤)𝑎)
𝑝

=
∑︁
𝑧∈F𝑝𝑛

𝜁
Tr𝑚 (𝑏(𝐹 (𝑢+𝑧)−𝑐𝐺 (𝑧))
𝑝 = 𝑐ℭ𝐹,𝐺 (𝑢, 𝑏).

The case when 𝐹 = 𝐺 follows immediately using the same argument, and the claim is
shown.

Now, we can show the equivalence between perfect 𝑐-nonlinearity and 𝑐-differential bent-
ness.

Theorem 3.3.3 Let 1 ≤ 𝑚 ≤ 𝑛 be integers, 𝑝 prime, 𝐹 be an (𝑛, 𝑚, 𝑝)-function, 1 ≠ 𝑐 ∈
F𝑝𝑚 . Then 𝐹 is perfect 𝑐-nonlinear if and only if 𝐹 is 𝑐-differential bent. Moreover, 𝐹 is
strictly perfect 𝑐-nonlinear if and only if𝑊𝐹 (𝑎, 𝑏)𝑊𝐹 (𝑎, 𝑏𝑐) = 0, for all 𝑎 ∈ F𝑝𝑛 , 𝑏 ∈ F∗𝑝𝑚 .

Proof: (⇒) We first assume that 𝐹 is perfect 𝑐-nonlinear, and so, 𝑐ℭ𝐹 (𝑢, 𝑏) = 0, for all
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𝑢 ∈ F∗𝑝𝑛 and 𝑏 ∈ F∗𝑝𝑚 . From Lemma 3.3.2, for an arbitrary 𝑏 ∈ F∗𝑝𝑚 , we compute

𝑊𝐹 (𝑎, 𝑏)𝑊𝐹 (𝑎, 𝑏𝑐) =
∑︁
𝑢∈F𝑝𝑛

𝑐ℭ𝐹 (𝑢, 𝑏)𝜁−Tr𝑛 (𝑢𝑎)
𝑝

=𝑐ℭ𝐹 (0, 𝑏) +
∑︁

0≠𝑢∈F𝑝𝑛
𝜁
−Tr𝑛 (𝑢𝑎)
𝑝 𝑐ℭ𝐹 (𝑢, 𝑏)

=𝑐ℭ𝐹 (0, 𝑏),

where we use the assumption that the 𝑐-autocorrelations 𝑐ℭ𝐹 (𝑢, 𝑏) are zero, except, possibly,
at 𝑢 = 0.

(⇐) For the reciprocal, we assume that 𝐹 is 𝑐-differential bent, that is,𝑊𝐹 (𝑎, 𝑏)𝑊𝐹 (𝑎, 𝑏𝑐) =
𝑐ℭ𝐹 (0, 𝑏), 𝑏 ≠ 0. Then, for any 𝑏 ∈ F∗𝑝𝑚 and 𝑢 ∈ F∗𝑝𝑛 ,

𝑐ℭ𝐹 (𝑢, 𝑏) = 𝑝−𝑛
∑︁
𝑎∈F𝑝𝑛

𝑊𝐹 (𝑎, 𝑏)𝑊𝐹 (𝑎, 𝑏𝑐)𝜁Tr𝑛 (𝑢𝑎)
𝑝

= 𝑝−𝑛𝑐ℭ𝐹 (0, 𝑏)
∑︁
𝑎∈F𝑝𝑛

𝜁
Tr𝑛 (𝑢𝑎)
𝑝 = 0,

where we use the property that the exponential sum of a balanced function (in this case
Tr𝑛 (𝑢𝑎), for 𝑢 ≠ 0) is zero. This proves the first claim, and we now show our second claim.

(⇒) We assume that 𝐹 is strictly perfect 𝑐-nonlinear. Using the same equations as above,
but with the added fact that 𝑐ℭ𝐹 (𝑢, 𝑏) = 0 for all 𝑢 ∈ F𝑝𝑛 , we arrive at

𝑊𝐹 (𝑎, 𝑏)𝑊𝐹 (𝑎, 𝑏𝑐) = 𝑐ℭ𝐹 (0, 𝑏) = 0.

(⇐) Again using the equations above, but this time with the fact that𝑊𝐹 (𝑎, 𝑏)𝑊𝐹 (𝑎, 𝑏𝑐) = 0
for all 𝑎 ∈ F𝑝𝑛 , 𝑏 ∈ F∗𝑝𝑚 , we see that 𝑐ℭ𝐹 (𝑢, 𝑏) = 0 for all 𝑢 ∈ F𝑝𝑛 , 𝑏 ∈ F∗𝑝𝑚 and 𝐹 is strictly
perfect 𝑐-nonlinear. This completes the proof.

Earlier, we showed P𝑐N is equivalent to balanced 𝑐-derivatives for 𝑛 = 𝑚 or 𝑝 = 2. Returning
to the notion of perfect nonlinearity being the consequence of balanced derivatives, we now
show a more general result for any 𝑝 and with 𝑚 not necessarily equal to 𝑛 involving the
traces of the 𝑐-derivatives.
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Theorem 3.3.4 Let 𝐹 be an (𝑛, 𝑚, 𝑝)-function, and 𝑐 ∈ F𝑝𝑚 fixed. Then 𝐹 is a perfect
𝑐-nonlinear function (𝑐-differential bent) if and only if, for all 𝑏 ≠ 0, 𝑢 ≠ 0 fixed, 𝑥 ↦→
Tr𝑚 (𝑏(𝐹 (𝑥 + 𝑢) − 𝑐𝐹 (𝑥)) is balanced.

Proof: (⇒) With 𝑐 ∈ F𝑝𝑛 constant, for every 𝑢 ∈ F𝑝𝑛 , 𝑏 ∈ F𝑝𝑚 , 0 ≤ 𝑗 ≤ 𝑝 − 1, we partition
the traces of the differentials by letting 𝑆𝑢,𝑏

𝑗 ,𝑐
= {𝑥 ∈ F𝑝𝑛 | Tr𝑚 (𝑏(𝐹 (𝑥 + 𝑢) − 𝑐𝐹 (𝑥))) = 𝑗}.

Our goal is to show these partitions are all of the same size, and thus the traces of the
derivatives are balanced. Now, consider the cyclotomic polynomial 𝜙𝑝 (𝑥) = 1 + 𝑥 + 𝑥2 +
· · · + 𝑥𝑝−1. Evaluating at 𝜁𝑝, which is a root of the cyclotomic polynomial, we deduce that
𝜁
𝑝−1
𝑝 = −(1 + 𝜁𝑝 + · · · + 𝜁 𝑝−2

𝑝 ). If 𝑢 ∈ F∗𝑝𝑛 , 𝑏 ∈ F∗𝑝𝑚 , and 𝐹 is perfect 𝑐-nonlinear, then using
our partition we obtain

0 = 𝑐ℭ𝐹 (𝑢, 𝑏) =
∑︁
𝑥∈F𝑝𝑛

𝜁
Tr𝑚 (𝑏(𝐹 (𝑥+𝑢)−𝑐𝐹 (𝑥)))
𝑝 =

𝑝−1∑︁
𝑗=0

|𝑆𝑢,𝑏
𝑗 ,𝑐
|𝜁 𝑗𝑝 .

Now, using the identity for 𝜁 𝑝−1
𝑝 , we have

𝑝−1∑︁
𝑗=0

|𝑆𝑢,𝑏
𝑗 ,𝑐
|𝜁 𝑗𝑝 =

©­«
𝑝−2∑︁
𝑗=0

|𝑆𝑢,𝑏
𝑗 ,𝑐
|𝜁 𝑗𝑝

ª®¬ + |𝑆𝑢,𝑏
𝑝−1,𝑐 |𝜁

𝑝−1
𝑝

=
©­«
𝑝−2∑︁
𝑗=0

|𝑆𝑢,𝑏
𝑗 ,𝑐
|𝜁 𝑗𝑝

ª®¬ − |𝑆𝑢,𝑏
𝑝−1,𝑐 | (1 + 𝜁𝑝 + · · · + 𝜁 𝑝−2

𝑝 )

=

𝑝−2∑︁
𝑗=0

(
|𝑆𝑢,𝑏
𝑗 ,𝑐
| − |𝑆𝑢,𝑏

𝑝−1,𝑐 |
)
𝜁
𝑗
𝑝 .

To show the coefficients of 𝜁 𝑗𝑝 must be zero, we consider the field extension Q
𝑝−1
↩→ Q(𝜁𝑝).

This extension has degree 𝑝−1 and the elements in the set
{
𝜁
𝑗
𝑝 | 0 ≤ 𝑗 ≤ 𝑝 − 2

}
are linearly

independent inQ(𝜁𝑝) overQ. Therefore, |𝑆𝑢,𝑏
𝑗 ,𝑐
| = |𝑆𝑢,𝑏

𝑝−1,𝑐 | for all 0 ≤ 𝑗 ≤ 𝑝−2. In summary,
the cardinality of the set 𝑆𝑢,𝑏

𝑗 ,𝑐
is independent of 𝑗 , and so, for all 𝑐, 𝑏, 𝑢 ≠ 0 fixed, the

partitions of Tr𝑚 (𝑏(𝐹 (𝑥 + 𝑢) − 𝑐𝐹 (𝑥)) are of equal size and the traces of the derivatives are
balanced.
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(⇐) If 𝑥 ↦→ Tr𝑚 (𝑏(𝐹 (𝑥 + 𝑢) − 𝑐𝐹 (𝑥)) is balanced, then

𝑐ℭ𝐹 (𝑢, 𝑏) =
∑︁
𝑥∈F𝑝𝑛

𝜁
Tr𝑚 (𝑏(𝐹 (𝑥+𝑢)−𝑐𝐹 (𝑥)))
𝑝 = 0,

where we again use the property that the exponential sum of a balanced function (in this
case the traces of the derivatives) is 0, and thus 𝐹 is perfect 𝑐-nonlinear.

With this result, we can characterize the 0-differential bent functions.

Corollary 3.3.5 Let 𝐹 be an (𝑛, 𝑚, 𝑝)-function. The following statements are equivalent:

(𝑖) 𝐹 is a 0-differential bent (perfect 0-nonlinear) function;
(𝑖𝑖) 𝑊𝐹 (0, 𝑏) = 0, for all 𝑏 ≠ 0;
(𝑖𝑖𝑖) (Under 𝑚 = 𝑛) 𝐹 is a permutation polynomial.

Proof: If (𝑖) holds, then by the previous theorem, the traces of the differentials of 𝐹 are
balanced when 𝑐 = 0. That is, Tr𝑚 (𝑏(𝐹 (𝑥 + 𝑢)) is balanced. Because 𝑥 + 𝑢 is a bijection of
input set F𝑝𝑛 , Tr𝑚 (𝑏(𝐹 (𝑥 + 𝑢)) is balanced if and only if 𝑥 ↦→ Tr𝑚 (𝑏(𝐹 (𝑥)) is balanced.
Therefore,𝑊𝐹 (0, 𝑏) =

∑
𝑥∈F𝑝𝑛 𝜁

Tr𝑚 (𝑏𝐹 (𝑥))
𝑝 = 0 and we have (𝑖𝑖). With (𝑖𝑖) holding and under

𝑚 = 𝑛, by Lemma 3.2.2 𝐹 is a permutation polynomial and (𝑖𝑖𝑖) is established. Finally, again
using [26, Theorem 7.7] as in Lemma 3.2.2, a permutation polynomial implies balanced
derivatives when 𝑐 = 0 and so 𝐹 is 0-differential bent, and (𝑖𝑖𝑖) implies (𝑖).

Thus, if 𝑚 = 𝑛 and 𝐹 is a permutation of F𝑝𝑛 , then 𝐹 is 0-differential bent and perfect
0-nonlinear. For examples of 𝑐-differential bent (thus P𝑐N) functions for all 𝑐 ≠ 1, consider
𝐹 (𝑥) = 𝑥𝑝𝑘 , the linearized monomials on F𝑝𝑛 .

Corollary 3.3.6 Let 𝐹 : F𝑝𝑛 → F𝑝𝑛 be defined as 𝐹 (𝑥) = 𝑥𝑝𝑘 . Then 𝐹 is 𝑐-differential bent
(perfect 𝑐-nonlinear) for all 𝑐 ≠ 1.

Proof: Using the trace properties Tr𝑛 (𝛼 + 𝛽) = Tr𝑛 (𝛼) + Tr𝑛 (𝛽) and Tr𝑛 (𝛼𝑝) = Tr𝑛 (𝛼), we
show these functions are P𝑐N by computing the traces of their derivatives as

Tr𝑛 (𝑏 (𝑐𝐷𝑎𝐹 (𝑥))) = Tr𝑛
(
𝑏((𝑥 + 𝑎)𝑝𝑘 − 𝑐𝑥𝑝𝑘 )

)
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= Tr𝑛
(
𝑏(𝑥𝑝𝑘 + 𝑎𝑝𝑘 − 𝑐𝑥𝑝𝑘 )

)
= Tr𝑛

(
𝑏(1 − 𝑐)𝑥𝑝𝑘

)
+ Tr𝑛 (𝑏𝑎)

= Tr𝑛
(
(𝑏(1 − 𝑐))𝑝−𝑘𝑥)𝑝𝑘

)
+ Tr𝑛 (𝑏𝑎)

= Tr𝑛
(
𝑏(1 − 𝑐)𝑝−𝑘𝑥

)
+ Tr𝑛 (𝑏𝑎),

which is balanced if 𝑐 ≠ 1 because the trace function of 𝑥 times a constant is always
balanced.

Thus, any linearized monomial is a (strictly) perfect 𝑐-nonlinear function for all 𝑐 ≠ 1.
In fact, given any linearized polynomial 𝐿, for which Tr𝑛

(
(1 − 𝑐)𝑝−𝑘𝐿 (𝑥)

)
is balanced,

a similar argument shows that 𝐿 is a (strictly) perfect 𝑐-nonlinear function for all 𝑐 ≠ 1.
Furthermore, when 𝑐 = 0 we can see this class of polynomials is a superclass of permutation
polynomials.

3.4 Some Examples of P𝑐N Functions
We provide next some examples demonstrating Corollaries 3.3.5 and 3.3.6. Using the open-
source mathematical software system SageMath, we computed 𝑐-autocorrelation tables to
exhibit several results of these Corollaries.

Example 3.4.1 Consider 𝐹 (𝑥) = 𝑥5 over F23 , with F23 = F2 [𝑥]/⟨𝑥3 + 𝑥 + 1⟩ and “𝑎” as a
root of 𝑥3 + 𝑥 + 1. As a permutation polynomial, by Corollary 3.3.5, 𝐹 is 0-differential bent
and hence 0-perfect nonlinear. Table 3.1 is the 0-autocorrelation table and confirms this is
indeed true.
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𝒖\𝒃 0 1 𝑎 𝑎 + 1 𝑎2 𝑎2 + 1 𝑎2 + 𝑎 𝑎2 + 𝑎 + 1
0 8 0 0 0 0 0 0 0
1 8 0 0 0 0 0 0 0
𝑎 8 0 0 0 0 0 0 0

𝑎 + 1 8 0 0 0 0 0 0 0
𝑎2 8 0 0 0 0 0 0 0

𝑎2 + 1 8 0 0 0 0 0 0 0
𝑎2 + 𝑎 8 0 0 0 0 0 0 0

𝑎2 + 𝑎 + 1 8 0 0 0 0 0 0 0

Table 3.1. 0-Autocorrelation Table of 𝐹 from Example 3.4.1

Example 3.4.2 Consider 𝐹 (𝑥) = 𝑥4 over F23 with F23 defined as in our previous example. If
𝑝 = 2 and 𝑘 = 2, then we have 𝑥4 = 𝑥𝑝

𝑘 and by Corollary 3.3.6, 𝐹 (𝑥) is perfect 𝑐-nonlinear
for all 𝑐 ≠ 1. The 𝑐-autocorrelation tables for 𝑐 ≠ 1 all match Table 3.1, confirming that
𝐹 (𝑥) is P𝑐N and 𝑐-differential bent for all 𝑐 ≠ 1.

Other computations reveal more examples of 𝑐-different bent (perfect 𝑐-nonlinear) functions
outside of the previous corollaries.

Example 3.4.3 𝐹 (𝑥) = 𝑥5 over F33 is 2-differential bent. Defining F33 by F3 [𝑥]/⟨𝑥3+2𝑥+1⟩,
we compute the 2-autocorrelation table of 𝐹. The result is a 27 by 27 matrix with 0’s in all
positions except for the trivial 𝑏 = 0 column where the values are 𝑝𝑛 = 27.

Table 3.2 captures the previous examples and few others computed using SageMath.
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𝐹 (𝑥) over 𝑐-differential bent
𝑥5 F23 𝑐 = 0
𝑥4 F23 all 𝑐 ≠ 1
𝑥5 F33 𝑐 = 0, 2
𝑥21 F34 all 𝑐 ≠ 1
𝑥15 F33 𝑐 = 0, 2

Table 3.2. Examples of 𝑐-Differential Bent Functions

3.5 𝑐-Avalanche Characteristics
As discussed in Subsection 2.3.3, the Boolean function property most closely related to
Shannon’s diffusion principle is the propagation criterion (PC), or more generally speaking,
the avalanche characteristics. Recall a function is PC(𝑘) if all the derivatives in the direction
of vectors 𝒂 with 1 ≤ 𝑤𝑡 (𝒂) ≤ 𝑘 are balanced. As pointed out in Lemma 2.3.7, this is
equivalent to the autocorrelation being 0 at those vectors. The definition was extended in
Subsection 2.4.2 to vectorial BFs. When working in a finite field F, the 𝑝-ary weight of an
element 𝑎 ∈ F is simply the number of non-zero positions in the vector representing 𝑎 in the
mapping between the finite field and the vector space. Now, equipped with the 𝑐-derivative
and the 𝑐-autocorrelation function, we can generalize PC in a new direction.

Definition 3.5.1 Let 𝐹 be an (𝑛, 𝑚, 𝑝)-function, 𝑎 ∈ F𝑝𝑛 , 𝑐 ∈ F𝑝𝑚 and let 𝑤𝑡 (𝑎) be the
weight of the 𝑝-ary vector representing 𝑎. Then 𝐹 satisfies the 𝑐-strict avalanche criterion
if, for all 𝑎 such that 𝑤𝑡 (𝑎) = 1, the derivative 𝑐𝐷𝑎𝐹 (𝑥) is balanced.

Definition 3.5.2 Let 𝐹 be an (𝑛, 𝑚, 𝑝)-function, 𝑎 ∈ F𝑝𝑛 , 𝑐 ∈ F𝑝𝑚 and let 𝑤𝑡 (𝑎) be the
weight of the 𝑝-ary vector representing 𝑎. Then 𝐹 satisfies the 𝑐-propagation criterion of
order 𝑘 if, for all 𝑎 such that 1 ≤ 𝑤𝑡 (𝑎) ≤ 𝑘 , the derivative 𝑐𝐷𝑎𝐹 (𝑥) is balanced.

Consider a function 𝐹 that satisfies 𝑐-PC at input 𝑎 and its component functions. Because
the 𝑐-PC property is satisfied, the 𝑐-derivative in the direction of 𝑎 is balanced. The absolute
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trace of a balanced function is balanced, and therefore Tr𝑚 (𝑏(𝐹 (𝑥+𝑎)−𝑐𝐹 (𝑥))) is balanced.
Thus we see that the probability that Tr𝑚 (𝑏(𝐹 (𝑥 + 𝑎) − 𝑐𝐹 (𝑥))) = 𝑑 is 1

𝑝
for all 𝑑 ∈ F𝑝 and

we maintain the equivalent notions of balanced derivatives with probabilities of changing
outputs in the original spirit of strict avalanche and propagation criterion.

The connection between PC, SAC and autocorrelation in Lemma 2.3.7 also holds for 𝑐-PC
of (𝑛, 𝑚, 𝑝)-functions. This is due to the same argument for made after Definition 3.2.1 for
perfect 𝑐-nonlinear functions and the 0 autocorrelation values that are the result of balanced
derivatives. We capture the same idea here with another lemma.

Lemma 3.5.3 Let 𝐹 be (𝑛, 𝑚, 𝑝)-function and 𝑤𝑡 (𝑎) be the weight of the 𝑝-ary vector
representing 𝑎. If 𝐹 is 𝑐-PC(𝑘), then the 𝑐-autocorrelation of 𝐹 at 𝑎, 𝑏 ≠ 0, 𝑐ℭ𝐹 (𝑎, 𝑏) =∑
𝑥∈F𝑝𝑛 𝜁

Tr𝑚 (𝑏(𝐹 (𝑥+𝑎)−𝑐𝐹 (𝑥)))
𝑝 = 0 for all 𝑎 such that 1 ≤ 𝑤𝑡 (𝑎) ≤ 𝑘 .

A similar generalization and a thorough analysis of the strict avalanche criterion based on
the 𝑐-differential was done in [29]. However, SAC (and 𝑐-SAC) is considered to be a local
property of a function in that it provides a good indication of behavior when the input is
changed in one position (i.e., by vectors of weight one). PC of order 𝑘 , while stronger than
SAC, is still a local property, providing information on how a function behaves when the
input is changed by specific amounts. Unfortunately, a function that satisfies SAC or PC(𝑘)
may still have an undesirable linear structure of weight larger than 𝑘 . In order to provide a
better understanding of the overall behavior of a function under the action of changing the
input, the authors of [30] introduced the so-called Global Avalanche Characteristics (GAC).

In [30], two different measurements are defined to capture the GAC of a function: the
absolute indicator and the sum of squares indicator. The absolute indicator is the largest
absolute value of all non-trivial autocorrelation coefficients of a function, while the sum of
squares indicator is the sum of all of the autocorrelation coefficients squared. The lower the
values of both indicators, the better the GAC of the function. For instance, if the absolute
indicator of a binary function is 2𝑛, the function has a linear structure, even if it has a good
PC(𝑘) properties for some 𝑘 less than 𝑛. We will introduce the generalization of GAC to
𝑐-GAC in Section 3.5.2, but before that we consider the extension of GAC from classical
Boolean to 𝑝-ary and (𝑛, 𝑚, 𝑝)-functions, which may have been described before but we
could not locate.
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In the case of 𝑝-ary functions, for the absolute indicator we switch from the normal absolute
value to the complex absolute value. For the sum of squares indicator, we sum the squares
of the complex absolute values of the autocorrelation coefficients. We formally define these
concepts, discuss some bounds, and then provide an example. Notice we return to traditional
vector space definitions since we are not working with the multiplicative differential. We
will return to finite field definitions when we explore 𝑐-GAC.

Definition 3.5.4 Let 𝑓 be a 𝑝-ary function, and ℭ 𝑓 (𝒖) be the autocorrelation of 𝑓 at
𝒖 ∈ F𝑛𝑝. The sum of squares indicator for 𝑓 , 𝜎 𝑓 , is

𝜎 𝑓 =
∑︁
𝒖∈F𝑛𝑝

���ℭ 𝑓 (𝒖)
���2, (3.4)

where | · | is the complex absolute value.

Definition 3.5.5 Let 𝑓 be a 𝑝-ary function, and ℭ 𝑓 (𝒖) be the autocorrelation of 𝑓 at
0 ≠ 𝒖 ∈ F𝑛𝑝. The absolute indicator for 𝑓 , 𝜔 𝑓 , is

𝜔 𝑓 = max
𝒖∈F𝑛𝑝
𝒖≠0

��ℭ 𝑓 (𝒖)
�� . (3.5)

We can bound the indicators in a similar manner as done in [30].

Theorem 3.5.6 Let 𝑓 be a 𝑝-ary function. Then

(𝑖) 𝑝2𝑛 ≤ 𝜎 𝑓 ≤ 𝑝3𝑛;
(𝑖𝑖) 𝜎 𝑓 = 𝑝2𝑛 if and only if 𝑓 is perfect nonlinear;
(𝑖𝑖𝑖) 𝜎 𝑓 = 𝑝3𝑛 if and only if 𝑓 is affine.

Proof: For the lower bound in (𝑖), we note that the autocorrelation of 𝑓 is always 𝑝𝑛 when
𝒖 = 0. Therefore, the minimum is achieved when the rest of the values of the autocorrelation
spectrum are 0 and we have

𝜎 𝑓 ≥
(
ℭ 𝑓 (0)

)2
= (𝑝𝑛)2 = 𝑝2𝑛. (3.6)
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These functions with non-trivial autocorrelation spectrum of 0 are exactly the perfect
nonlinear 𝑝-ary functions, and we have (𝑖𝑖). For the upper bound in (𝑖), we note that
the autocorrelation spectrum is maximum when every 𝒖 is a linear structure of 𝐹 and
ℭ 𝑓 (𝒖) = 𝑝𝑛. Thus, if all 𝒖 ∈ F𝑛𝑝 are linear structures, we have

𝜎 𝑓 ≤ 𝑝𝑛
(
ℭ 𝑓 (𝑢)

)2
= 𝑝𝑛 (𝑝𝑛)2 = 𝑝3𝑛. (3.7)

Functions whose linear structures are every element of F𝑛𝑝 are affine functions, and we
have (𝑖𝑖𝑖).

Corollary 3.5.1 Let 𝑓 be a 𝑝-ary function. Then

(𝑖) 0 ≤ 𝜔 𝑓 ≤ 𝑝𝑛;
(𝑖𝑖) 𝜔 𝑓 = 0 if and only if 𝑓 is perfect nonlinear;
(𝑖𝑖𝑖) 𝜔 𝑓 = 𝑝

𝑛 if and only if 𝑓 has a linear structure.

Corollary 3.5.1 follows the same argument as Theorem 3.5.6. We now provide an example.

Example 3.5.1 Let 𝑓 : F2
3 → F3 have an ANF of 𝑥2

1 + 𝑥2 with the following truth table:

𝑥2 𝑥1 𝑓

0 0 0
0 1 1
0 2 1
1 0 1
1 1 2
1 2 2
2 0 2
2 1 0
2 2 0

Table 3.3. Truth Table of a 𝑝-ary Function 𝑓
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The autocorrelation of 𝑓 at 𝒖 is complex valued function
∑
𝑥∈F2

3
𝑒(

2𝜋𝑖
3 ) ( 𝑓 (𝒙+𝒖)− 𝑓 (𝒙)) . Computing

the coefficients using the definition, we have

ℭ 𝑓 (00) = 9(𝑒( 2𝜋𝑖
3 ))0 = 9,

ℭ 𝑓 (01) = 6(𝑒( 2𝜋𝑖
3 ))0 + 3(𝑒( 2𝜋𝑖

3 ))1 =
9
2
+ 3

√
3

2
𝑖 ,

ℭ 𝑓 (02) = 3(𝑒( 2𝜋𝑖
3 ))0 + 6(𝑒( 2𝜋𝑖

3 ))1 = 3
√

3𝑖 ,

ℭ 𝑓 (10) = 9(𝑒( 2𝜋𝑖
3 ))1 = −9

2
+ 9

√
3

2
𝑖 ,

ℭ 𝑓 (11) = 6(𝑒( 2𝜋𝑖
3 ))1 + 3(𝑒( 2𝜋𝑖

3 ))2 = −9
2
+ 3

√
3

2
𝑖 ,

ℭ 𝑓 (12) = 3(𝑒( 2𝜋𝑖
3 ))1 + 6(𝑒( 2𝜋𝑖

3 ))2 = −9
2
− 3

√
3

2
𝑖 ,

ℭ 𝑓 (20) = 9(𝑒( 2𝜋𝑖
3 ))2 = −9

2
− 9

√
3

2
𝑖 ,

ℭ 𝑓 (21) = 3(𝑒( 2𝜋𝑖
3 ))0 + 6(𝑒( 2𝜋𝑖

3 ))2 = 3
√

3𝑖 ,

ℭ 𝑓 (22) = 6(𝑒( 2𝜋𝑖
3 ))0 + 3(𝑒( 2𝜋𝑖

3 ))2 =
9
2
− 3

√
3

2
𝑖 .

We need the complex absolute values of the coefficients before we can calculate 𝑓 ’s GAC.
These values are captured in Table 3.4. Recall the trivial coefficient at 𝒖 = 0 is included in
the sum of squares, but not the absolute indicator.
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𝑢 |ℭ 𝑓 (𝑢) |
00 9
01 3

√
3

02 3
√

3
10 9
11 3

√
3

12 3
√

3
20 9
21 3

√
3

22 3
√

3

Table 3.4. Complex Absolute Values of a 𝑝-ary Function’s Autocorrelation

We see from the table that 𝑓 has two linear structures, namely (10) and (20). Thus, the
absolute indicator of 𝑓 is 9 = 𝑝𝑛. For the sum of squares indicator, we simply square the
values in the table and sum.

Similar to the other properties explored, moving from the single output to the multi-output
functions we simply consider the autocorrelation coefficients of the component functions.
Thus, for GAC of a (𝑛, 𝑚, 𝑝)-function 𝐹, the absolute indicator, 𝜔𝐹 , is the largest absolute
indicator of the component functions.

Definition 3.5.7 Let 𝐹 be an (𝑛, 𝑚, 𝑝)-function, and ℭ𝐹 (𝒖, 𝒃) be the autocorrelation of 𝐹
at 𝒖 ∈ F𝑛𝑝, 𝒃 ∈ F𝑚𝑝 . The absolute indicator for 𝐹, 𝜔𝐹 , is

𝜔𝐹 = max
𝒖∈F𝑛𝑝 ,𝒖≠0
𝒃∈F𝑚𝑝 ,𝒃≠0

��ℭ𝐹 (𝒖, 𝒃)��. (3.8)

For the sum of squares indicator, there are a few options. The sum could include the entire
autocorrelation table, which contains the autocorrelation of each component function, or it
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could be defined as the largest sum of squares of any single component function. We choose
the latter, recalling that 𝒃 · 𝐹 is not a component function when 𝒃 = 0.

Definition 3.5.8 Let 𝐹 be an (𝑛, 𝑚, 𝑝)-function, and ℭ𝐹 (𝒖, 𝒃) be the autocorrelation of 𝐹
at 𝒖 ∈ F𝑛𝑝, 𝒃 ∈ F𝑚𝑝 . The sum of squares indicator for 𝐹, 𝜎𝐹 , is

𝜎𝐹 = max
𝒃∈F𝑚𝑝
𝒃≠0

( ∑︁
𝒖∈F𝑛𝑝 ,𝒃∈F𝑚𝑝

���ℭ𝐹 (𝒖, 𝒃)���2) . (3.9)

The component functions of any (𝑛, 𝑚, 𝑝)-function are 𝑝-ary functions, and thus the bounds
remain the same. We need to explore one more concept before generalizing GAC with the
𝑐-derivative.

3.5.1 𝑐-Linear Structures
Sections 3.2 and 3.3 discussed the optimal performance of a function under the 𝑐-differential
cryptographic properties, namely perfect 𝑐-nonlinearity and 𝑐-differential bentness. Next,
we consider the opposite. That is, the worst possible performance of a function’s 𝑐-
derivatives. In the case of 𝑐 = 1, we know if derivatives are constant in some direction
𝑎, that 𝑎 is a linear structure and represents a weakness. Even if other properties of the
function are good (e.g., high nonlinearity, algebraic degree), an undesirable linear structure
may still be present. If all 𝑎 ∈ F𝑝𝑛 are linear structures of a function, then the function
is affine, the weakest class of cryptographic functions. Consider the equivalent notions for
𝑐 ≠ 1. That is, if 𝐹 is an (𝑛, 𝑚, 𝑝)-function and 𝐹 (𝑥 + 𝑎) − 𝑐𝐹 (𝑥) is constant for all 𝑥 ∈ F𝑝𝑛 ,
then we call 𝑎 a 𝑐-linear structure. We now show that, while this definition of a 𝑐-linear
structure as an extension of linear structures makes sense, when 𝑐 ≠ 1 there are no linear
structures for non-constant (𝑛, 𝑚, 𝑝)-functions when 𝑝 = 2, or when 𝑝 > 2 and 𝑛 = 𝑚. In
other words, if 𝐹 is a non-constant univariate polynomial over a finite field, then it does not
have a 𝑐-linear structure. Of course, constant functions are not used in cryptography as they
do not depend on the input. We start by showing the case in binary.

Theorem 3.5.9 . Let 𝐹 : F2𝑛 → F2𝑚 be an (𝑛, 𝑚)-function, with 𝑎 ∈ F2𝑛 , 1 ≠ 𝑐 ∈ F2𝑚 . Then
the 𝑐-derivative of 𝐹, 𝐹 (𝑥 + 𝑎) − 𝑐𝐹 (𝑥), is constant if and only if 𝐹 is a constant function.
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In other words, only constant (𝑛, 𝑚)-functions have 𝑐-linear structures when 𝑐 ≠ 1.

Proof: Let 𝐹 (𝑥+𝑎)−𝑐𝐹 (𝑥) = 𝑏 for all 𝑥 ∈ F2𝑛 for some 𝑏 ∈ F2𝑚 . Then 𝐹 (𝑥+𝑎) = 𝑏+𝑐𝐹 (𝑥).
Now let 𝑥 :→ 𝑥 + 𝑎. Then we also have 𝐹 (𝑥) = 𝑏 + 𝑐𝐹 (𝑥 + 𝑎). Substituting, we see

𝐹 (𝑥) = 𝑏 + 𝑐(𝑏 + 𝑐𝐹 (𝑥)),

𝐹 (𝑥) − 𝑐2𝐹 (𝑥) = 𝑏 + 𝑐𝑏,

𝐹 (𝑥) = 𝑏(1 + 𝑐)
1 − 𝑐2 =

𝑏

1 + 𝑐 .

Thus, 𝐹 is a constant function. For the converse, if 𝐹 (𝑥) = 𝑘 , then the 𝑐-derivative is 𝑘 − 𝑐𝑘 ,
which is constant for fixed 𝑐.

In the more general case of odd characteristic we restrict the case to 𝑛 = 𝑚, where we know
there is a univariate polynomial representation for each function.

Theorem 3.5.10 Let 𝐹 be an (𝑛, 𝑛, 𝑝)-function, with 𝑎, 𝑐 ∈ F𝑝𝑛 with 𝑐 ≠ 1. Then the
𝑐-derivative of 𝐹, 𝐹 (𝑥 + 𝑎) − 𝑐𝐹 (𝑥), is constant if and only if 𝐹 is a constant function. In
other words, only constant (𝑛, 𝑛, 𝑝)-functions have 𝑐-linear structures when 𝑐 ≠ 1.

Proof: Let

𝐹 (𝑥) =
𝑡≤𝑝𝑛−2∑︁
𝑖=0

𝑑𝑖𝑥
𝑖 ,

where 𝑑𝑖 ∈ F𝑝𝑛 and 𝑑𝑡 ≠ 0 be the univariate polynomial representation of 𝐹. Then, if the
𝑐-derivative is constant, we have

𝐹 (𝑥 + 𝑎) − 𝑐𝐹 (𝑥) =
𝑡∑︁
𝑖=0

𝑑𝑖 (𝑥 + 𝑎)𝑖 − 𝑐
𝑡∑︁
𝑖=0

𝑑𝑖𝑥
𝑖 = 𝑏 ,

with 𝑏 ∈ F𝑝𝑛 . Expanding with the binomial theorem and moving 𝑏 to the other side of the
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equation, we arrive at

𝐹 (𝑥 + 𝑎) − 𝑐𝐹 (𝑥) =
𝑡∑︁
𝑖=0

𝑑𝑖

𝑖∑︁
𝑘=0

(
𝑖

𝑘

)
𝑥𝑘𝑎𝑖−𝑘 − 𝑐

𝑡∑︁
𝑖=0

𝑑𝑖𝑥
𝑖 − 𝑏 = 0 .

The degree of this polynomial is 𝑡, as the coefficient of 𝑥𝑡 is 𝑑𝑡 (1 − 𝑐), which is non-
zero. Since a polynomial of degree 𝑡 over a finite field can only have at most 𝑡 roots, and
𝑡 ≤ 𝑝𝑛 − 2 < 𝑝𝑛, we have fewer than 𝑝𝑛 solutions for 𝑥. However, for 𝑎 to be a linear
structure, the polynomial must vanish (evaluate to 0) at all 𝑝𝑛 values of 𝑥. Thus, we have
shown that 𝑎 is not a linear structure. For the converse, a constant function 𝐹 (𝑥) = 𝑘 has
the 𝑐-derivative 𝑘 − 𝑐𝑘 , which is constant and the theorem is shown.

We have demonstrated that 𝑐-linear structures in (𝑛, 𝑚, 𝑝)-functions only arise in constant
functions in even characteristic and when 𝑛 = 𝑚 in odd characteristic. However, an S-box’s
component functions may still have weaknesses obscured by the lack of a 𝑐-linear structure
from the finite field viewpoint. We can account for these with the notion of 𝑐-Global
Avalanche Characteristics.

3.5.2 𝑐-Global Avalanche Characteristics
With the 𝑐-autocorrelation, we return to finite fields and extend GAC by defining 𝑐-Global
Avalanche Characteristics (𝑐-GAC). As with our look at (𝑛, 𝑚, 𝑝)-function GAC, we define
the indicators based on the performance of the component functions.

Definition 3.5.11 Let 𝐹 be an (𝑛, 𝑚, 𝑝)-function, 𝑐 ∈ F𝑝𝑚 , and 𝑐ℭ𝐹 (𝑢, 𝑏) be the 𝑐-
autocorrelation of 𝐹 at 𝑢 ∈ F𝑝𝑛 , 𝑏 ∈ F𝑝𝑚 . The 𝑐-absolute indicator, 𝑐𝜔𝐹 , for 𝐹 is

𝑐𝜔𝐹 = max
𝑢∈F𝑝𝑛
𝑏∈F∗

𝑝𝑚

��
𝑐ℭ𝐹 (𝑢, 𝑏)

��. (3.10)

Definition 3.5.12 Let 𝐹 be an (𝑛, 𝑚, 𝑝)-function, 𝑐 ∈ F𝑝𝑚 , and 𝑐ℭ𝐹 (𝑢, 𝑏) be the 𝑐-
autocorrelation of 𝐹 at 𝑢 ∈ F𝑝𝑛 , 𝑏 ∈ F𝑝𝑚 . The 𝑐-sum of squares indicator, 𝑐𝜎𝐹 , for 𝐹
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is

𝑐𝜎𝐹 = max
𝑏∈F∗

𝑝𝑚

©­­­­«
∑︁
𝑢∈F𝑝𝑛
𝑏∈F𝑝𝑚

���𝑐ℭ𝐹 (𝑢, 𝑏)���2ª®®®®¬
. (3.11)

Continuing in the spirit of [30] and our extension of GAC to 𝑝-ary and (𝑛, 𝑚, 𝑝)-functions,
we capture bounds and properties of 𝑐-GAC for 𝑐 ≠ 1.

Theorem 3.5.13 Let 𝐹 be an (𝑛, 𝑚, 𝑝)-function and 𝑐 ≠ 1. Then

(𝑖) 𝑝2𝑛 ≤ 𝑐𝜎𝐹 ≤ 𝑝3𝑛;
(𝑖𝑖) 𝑐𝜎𝐹 = 𝑝2𝑛 if and only if 𝐹 is perfect 𝑐-nonlinear;
(𝑖𝑖𝑖) 𝑐𝜎𝐹 = 𝑝3𝑛 if and only if 𝐹 is constant.

Proof: For the lower bound in (𝑖), we note that the 𝑐-autocorrelation of 𝐹 is always 𝑝𝑛

when 𝑏 = 0. Therefore, the minimum is achieved when the rest of the values of the 𝑐-
autocorrelation spectrum are 0 and we have

𝑐𝜎𝐹 ≥ (𝑐ℭ𝐹 (𝑢, 0))2
= (𝑝𝑛)2 = 𝑝2𝑛. (3.12)

We previously classified these functions with non-trivial 𝑐-autocorrelation spectrum of
0 as perfect 𝑐-nonlinear, and we have (𝑖𝑖). For the upper bound in (𝑖), we note that
the 𝑐-autocorrelation spectrum is maximum when every 𝑢 is a linear structure of 𝐹 and
𝑐ℭ𝐹 (𝑢, 𝑏) = 𝑝𝑛. Thus, if all 𝑢 ∈ F𝑝𝑛 are linear structures, we have

𝑐𝜎𝐹 ≤ 𝑝𝑛 (𝑐ℭ𝐹 (𝑢, 𝑏))2
= 𝑝𝑛 (𝑝𝑛)2 = 𝑝3𝑛. (3.13)

We showed in Section 3.5.1 that only constant functions could have all 𝑐-linear structures,
and we have (𝑖𝑖𝑖).

The following corollary for the 𝑐-absolute indicator follows immediately.

Corollary 3.5.2 Let 𝐹 be an (𝑛, 𝑚, 𝑝)-function and 𝑐 ≠ 1. Then
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(𝑖) 0 ≤ 𝑐𝜔𝐹 ≤ 𝑝𝑛;
(𝑖𝑖) 𝑐𝜔𝐹 = 0 if and only if 𝐹 is perfect 𝑐-nonlinear;
(𝑖𝑖𝑖) 𝑐𝜔𝐹 = 𝑝𝑛 if and only if 𝐹 has a 𝑐-linear structure.

When 𝑐 = 1, we know the upper bounds of both indicators are determined by the perfor-
mance of affine functions, because all elements of the base vector space or finite field are
linear structures of affine functions. However, as we showed in Section 3.5.1, only constant
(𝑛, 𝑚, 𝑝)-functions have linear structures when 𝑐 ≠ 1. A natural question is how affine
functions perform when 𝑐 ≠ 1. In the univariate polynomial representation of an affine
function in a finite field, the powers of all monomials must 𝑝𝑘 for some integer 𝑘 . Consider
the affine function 𝐹 (𝑥) = 𝑑𝑥𝑝𝑘 + 𝑒 over F𝑝𝑛 with 𝑑, 𝑒 ∈ F𝑝𝑛 . Using a similar argument as
we did for Corollary 3.3.6, we have

Tr𝑛 (𝑏 (𝑐𝐷𝑎𝐹 (𝑥))) = Tr𝑛
(
𝑏(𝑑 (𝑥 + 𝑎)𝑝𝑘 + 𝑒 − 𝑐(𝑑𝑥𝑝𝑘 + 𝑒))

)
= Tr𝑛

(
𝑏(𝑑𝑥𝑝𝑘 + 𝑑𝑎𝑝𝑘 + 𝑒 − 𝑐𝑑𝑥𝑝𝑘 − 𝑐𝑒)

)
= Tr𝑛

(
𝑏𝑑 (1 − 𝑐)𝑥𝑝𝑘

)
+ Tr𝑛 (𝑏𝑑𝑎) + Tr𝑛 (𝑏(1 − 𝑐)𝑒)

= Tr𝑛
(
(𝑏𝑑 (1 − 𝑐))𝑝−𝑘𝑥)𝑝𝑘

)
+ Tr𝑛 (𝑏𝑑𝑎) + Tr𝑛 (𝑏(1 − 𝑐)𝑒)

= Tr𝑛
(
𝑏𝑑 (1 − 𝑐)𝑝−𝑘𝑥

)
+ Tr𝑛 (𝑏𝑑𝑎) + Tr𝑛 (𝑏(1 − 𝑐)𝑒),

which is balanced by the same argument as Corollary 3.3.6. Therefore, affine functions of
this type are P𝑐N, for 𝑐 ≠ 1. We know affine functions are the weakest class of functions to
use in a cryptographic transformation, and we arrive at a what may seem like a contradiction.
However, we submit that when considering the performance of a cryptographic (𝑛, 𝑚, 𝑝)-
function, multiple properties must be considered simultaneously and many potential values
of 𝑐 ∈ F𝑝𝑚 (including the obvious 𝑐 = 1) may need to be considered. Good performance
for some values 𝑐 may not shield a function from the threat of a differential attack based on
others.

3.6 Summary
In this chapter, we used the 𝑐-derivative introduced in [2] and a new autocorrelation func-
tion to generalize multiple cryptographic properties of (𝑛, 𝑚, 𝑝)-functions. We extended
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Nyberg’s notion of perfect nonlinearity, developed the notion of 𝑐-differential bentness
using a Walsh Transform product, and showed that the two are equivalent. Additionally, we
generalized avalanche characteristics with 𝑝-ary and 𝑐-GAC definitions, providing a broader
look into the diffusion properties of an S-box. In the next chapter, we continue our investi-
gations with an analysis of how functions perform with another generalized cryptographic
property, 𝑐-differential uniformity.
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CHAPTER 4:
𝑐-Differential Uniformity and the Inverse Function

In Chapter 3 we used 𝑐-derivatives and a new 𝑐-autocorrelation to define the ideas of perfect
𝑐-nonlinearity, 𝑐-differential bentness, and 𝑐-avalanche characteristics, all of which are
generalizations of the original notions. In [2], where the 𝑐-differential is first introduced as a
potential expansion of differential cryptanalysis, the authors also defined the corresponding
𝑐-differential uniformity (𝑐DU), generalizing the traditional notion of DU.

Definition 4.0.1 Let 𝐹 be an (𝑛, 𝑛, 𝑝)-function with 𝑎, 𝑏 ∈ F𝑝𝑛 , and let 𝑐Δ𝐹 (𝑎, 𝑏) = |𝑥 ∈
F𝑝𝑛 : 𝐹 (𝑥 + 𝑎) − 𝑐𝐹 (𝑥) = 𝑏 |. The quantity 𝑐𝛿𝐹 = max{𝑐Δ𝐹 (𝑎, 𝑏) : 𝑎, 𝑏 ∈ F𝑝𝑛 , 𝑎 ≠ 0 if
𝑐 = 1} is called the 𝑐-differential uniformity of 𝐹.

Maintaining the traditional equivalence of a PN function having a DU of 1, we see a P𝑐N
function (as introduced in Section 3.2) has a 𝑐DU of 1 because (𝑛, 𝑛, 𝑝)-functions that are
P𝑐N have balanced 𝑐-derivatives (see Lemma 3.2.2). A function with a 𝑐DU of 2 is called
almost perfect 𝑐-nonlinear (AP𝑐N).

The authors of [2] also investigated known perfect nonlinear functions (recall PN functions
do not exist when 𝑝 = 2) to determine their behavior under the new 𝑐DU property. The
introduction of the 𝑐DU concept sparked a large interest in the topic and multiple papers
have since been submitted; including considerations of traditional APN functions, power
functions, multinomials, constructions of functions with low 𝑐DU, and results on questions
of existence of P𝑐N and AP𝑐N functions under certain conditions. We compiled many of
their findings into Section 4.4, providing a state-of-the-art on the topic.

The primary result of this chapter is the analysis of the behavior of the inverse function
under certain extended affine (𝐸𝐴) equivalences in Section 4.2 and Section 4.3. Affine and
𝐸𝐴 transformations of the inverse function are common among S-boxes and we show that
small perturbations can increase the 𝑐DU significantly.
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4.1 The Multiplicative Inverse Function
The Advanced Encryption Standard (AES) became a symmetric block cipher standard of
the United States federal government in 2001 after a lengthy open competition process [31].
AES is a subset of the more general Rijndael family of ciphers, created by and named after
two Belgian cryptographers, Vincent Rijmen and Joan Daemen. The standard has proven
to be very successful in both implementation and resistance against public cryptanalysis
and is now in widespread use across the globe. Perhaps surprisingly, the only nonlinear
component of AES, and several other popular ciphers, is an affine transformation of the
so-called inverse function 𝐹 : F𝑝𝑛 → F𝑝𝑛

𝐹 (𝑥) =
{

1
𝑥

if 𝑥 ≠ 0
0 if 𝑥 = 0

. (4.1)

This function can be captured as a monomial in the form of 𝐹 (𝑥) = 𝑥𝑝
𝑛−2. To see this,

consider a finite field of order 𝑝𝑛 (with multiplicative group of order 𝑝𝑛 − 1). If 𝑥 = 0, then
obviously 𝐹 (𝑥) = 0. If 𝑥 ≠ 0, then, as a consequence of Lagrange’s theorem [32, Theorem
10.10] we have 𝑥𝑝𝑛−1 = 1. Thus 𝑥𝑝𝑛−2 = 𝑥−1 and 𝐹 (𝑥) earns its name as the inverse function.
In the AES S-box the inverse function is applied followed by an affine transformation. The
composition of these actions results in a function that is affine equivalent to the inverse
function. In the specific case of AES 𝑝 = 2 and 𝑛 = 8, but we treat the inverse function in
the more general 𝑝𝑛 setting in this chapter.

It is well known that differential uniformity is preserved under extended affine, and therefore,
affine equivalence. As demonstrated in [33], 𝑐-differential uniformity holds under affine
equivalences of the form 𝐹 ◦ 𝐴, where 𝐴 is an affine transformation of the input. To see
this, consider two functions 𝐹 and 𝐺 such that 𝐺 = 𝐹 ◦ 𝐴 and consider the equation
𝐺 (𝑥 + 𝑎) − 𝑐𝐺 (𝑥) = 𝑏. This is the same as (𝐹 ◦ 𝐴) (𝑥 + 𝑎) − 𝑐(𝐹 ◦ 𝐴) (𝑥) = 𝑏 or 𝐹 (𝐴(𝑥 +
𝑎)) − 𝑐𝐹 (𝐴(𝑥)) = 𝑏 where 𝐴 is an affine mapping of F𝑝𝑛 . Since 𝐴 is affine, the equation
becomes 𝐹 (𝐴(𝑥) + 𝐴(𝑎)) − 𝑐𝐹 (𝐴(𝑥)) = 𝑏. Now, if we let 𝐴(𝑥) = 𝑦 and 𝐴(𝑎) = 𝛼, then
we have 𝐹 (𝑦 + 𝛼) − 𝑐𝐹 (𝑦) = 𝑏. Because 𝑥, 𝑎, 𝑦, and 𝛼 are in F𝑝𝑛 and 𝐴 is invertible, we
can put solutions of 𝐹 (𝑦 + 𝛼) − 𝑐𝐹 (𝑦) = 𝑏 in one-to-one correspondence with solutions to
𝐺 (𝑥 + 𝑎) − 𝑐𝐺 (𝑥) = 𝑏. Therefore, the equations have the same number of solutions and
𝐹 and 𝐺 have the same 𝑐DU. However, 𝑐DU does not hold under the more general affine

58



equivalence 𝐵 ◦ 𝐹 ◦ 𝐴 from Subsection 2.4.4 and therefore does not hold under general
extended affine equivalence. This will be demonstrated in the following sections.

The differential uniformity of the inverse function over F2𝑛 is 2 for 𝑛 odd and 4 for 𝑛 even.
In [2], the authors investigated the 𝑐DU of the inverse function for all prime characteristics.
They proved the 𝑐DU of the inverse function in both even and odd characteristic is 1 for
𝑐 = 0 (that is, the inverse function is a permutation, see Section 3.3), 2, or 3, based on
the value of 𝑐 ≠ 1. In other words, the maximum 𝑐DU sometimes slightly decreases and
sometimes slightly increases for the inverse function from the original notion of DU. While
these changes are minimal in the case of the inverse function, later we will see in Section
4.4 that the 𝑐DU of other classes of functions can significantly increase from the original
DU. Additionally, we will demonstrate in Chapter 6 that for other functions the maximum
𝑐DU is achieved only when 𝑐 = 1 (i.e., traditional DU), and for 𝑐 ≠ 1 the differential count
decreases. It will become apparent that the 𝑐DU property can behave in some unexpected
ways. We demonstrate this in the next few sections by showing that small perturbations of
the inverse function can significantly increase the 𝑐DU. The material in Section 4.2 and
Section 4.3 is based on and expanded from Stănică and Geary [34].

4.1.1 Some Lemmas
The proofs of the theorems in the next section involve counting solutions of 𝑐-differential
equations. We will make use of Hilbert’s Theorem 90 and a few lemmas.

Theorem 4.1.1 Hilbert’s Theorem 90, see [35].

Let F ↩→ K be a cyclic Galois extension and let 𝜎 be a generator of the Galois group

Gal(K/F). Then for 𝑥 ∈ K, the relative trace TrK/F(𝑥) =
|Gal(K/F) |−1∑︁

𝑖=0
𝜎𝑖 (𝑥) = 0 if and only if

𝑥 = 𝜎(𝑦) − 𝑦, for some 𝑦 ∈ K.

The field extension that we will be working in, F𝑝 ↩→ F𝑝𝑛 , is a cyclic Galois extension with
𝜎 : 𝑥 → 𝑥𝑝 a generator of the Galois group. This will allow us to use Hilbert’s Theorem 90
as needed. We will also need the following lemmas.
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Lemma 4.1.2 Let 𝑛 be a positive integer. We have:

(𝑖) The equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, with 𝑎, 𝑏, 𝑐 ∈ F2𝑛 , 𝑎𝑏 ≠ 0, has two solutions in F2𝑛

if Tr
(
𝑎𝑐

𝑏2

)
= 0, and zero solutions, otherwise. If 𝑎 ≠ 0, 𝑏 = 0, the solution is unique

(see [36]).
(𝑖𝑖) The equation 𝑎𝑥2+𝑏𝑥+𝑐 = 0, with 0 ≠ 𝑎, 𝑏 ∈ F𝑝𝑛 , 𝑝 odd, has (two, respectively, one)

solutions in F𝑝𝑛 if and only if the discriminant 𝑏2 − 4𝑎𝑐 is a (nonzero, respectively,
zero) square in F𝑝𝑛 (see [2]).

(𝑖𝑖𝑖) (see [37]) The equation 𝑥3 + 𝑎𝑥 + 𝑏 = 0, with 𝑎, 𝑏 ∈ F2𝑛 , 𝑏 ≠ 0, has (denoting by 𝑡1, 𝑡2
the roots of 𝑡2 + 𝑏𝑡 + 𝑎3 = 0):
(𝑖) three solutions in F2𝑛 if and only if Tr(𝑎3/𝑏2) = Tr(1) and 𝑡1, 𝑡2 are cubes in
F2𝑛 for 𝑛 even, and in F22𝑛 for 𝑛 odd;

(𝑖𝑖) a unique solution in F2𝑛 if and only if Tr(𝑎3/𝑏2) ≠ Tr(1);
(𝑖𝑖𝑖) no solutions in F2𝑛 if and only if Tr(𝑎3/𝑏2) = Tr(1) and 𝑡1, 𝑡2 are not cubes in

F2𝑛 (𝑛 even), F22𝑛 (𝑛 odd).

Lemma 4.1.3 (see [2]) Let 𝑝, 𝑡, 𝑛 be integers greater than or equal to 1 (we take 𝑡 ≤ 𝑛,
though the result can be shown in general). Then

gcd(2𝑡 + 1, 2𝑛 − 1) = 2gcd(2𝑡,𝑛) − 1
2gcd(𝑡,𝑛) − 1

, and if 𝑝 > 2, then,

gcd(𝑝𝑡 + 1, 𝑝𝑛 − 1) = 2, if
𝑛

gcd(𝑛, 𝑡) is odd,

gcd(𝑝𝑡 + 1, 𝑝𝑛 − 1) = 𝑝gcd(𝑡,𝑛) + 1, if
𝑛

gcd(𝑛, 𝑡) is even.

Consequently, if either 𝑛 is odd, or 𝑛 ≡ 2 (mod 4) and 𝑡 is even, then gcd(2𝑡 +1, 2𝑛−1) = 1
and gcd(𝑝𝑡 + 1, 𝑝𝑛 − 1) = 2, if 𝑝 > 2.

4.2 The 𝑐-Differential Uniformity of an 𝐸𝐴-Perturbed In-
verse Function

As described in Section 4.1, the inverse function has a very low 𝑐DU, ranging from 1
(𝑐 = 0), to 4 (𝑐 = 1, even 𝑛). In our main result of this chapter, we see that performing a
simple modification of the inverse function significantly increases the maximum value in its

60



𝑐-differential spectrum size. The modification we investigate is the addition of a linearized
monomial of the form 𝑥𝑝

𝑡 . Recall that in characteristic 𝑝, (𝑎 + 𝑏)𝑝 = 𝑎𝑝 + 𝑏𝑝 by the identity
often known as the “freshman identity” or “freshman mistake.” Thus, if 𝑓 (𝑥) = 𝑥𝑝

𝑡 over
F𝑝𝑛 , then 𝑓 (𝑥 + 𝑦) = (𝑥 + 𝑦)𝑝𝑡 = 𝑥𝑝𝑡 + 𝑦𝑝𝑡 = 𝑓 (𝑥) + 𝑓 (𝑦) and we see 𝑓 (𝑥) = 𝑥𝑝𝑡 is a linear
function. Adding this linearized monomial to a function is an extended affine transformation
and is the focus of our exploration in this section.

In the following, we take 𝑛 ≥ 4 an integer and 1 ≤ 𝑡 < 𝑛 an integer such that gcd(𝑡, 𝑛) = 𝑑.
We show the significant change in maximum 𝑐DU will occur when 𝑎𝑝𝑡+1 + 1 = 0 has a root
(and consequently, gcd(𝑝𝑡 +1, 𝑝𝑛 −1) roots) in the field F𝑝𝑛 . This last condition will always
happen if 𝑝 = 2 or if 𝑛/𝑑 is even; this was shown in [38] using the fact that gcd(𝑝𝑡+1, 𝑝𝑛−1)
divides 𝑝𝑛−1

2 under these conditions.

Theorem 4.2.1 Let 𝑝 be a prime number, 𝑛 ≥ 4, 𝐹 (𝑥) = 𝑥𝑝𝑛−2 be the inverse function on
F𝑝𝑛 , and 1 ≠ 𝑐 ∈ F𝑝𝑛 . Then, the 𝑐-differential uniformity, 𝑐𝛿𝐺 , of𝐺 (𝑥) = 𝐹 (𝑥) +𝑥𝑝𝑡 satisfies
𝑝gcd(𝑛,𝑡) + 2 ≤ 𝑐𝛿𝐺 ≤ 𝑝𝑡 + 4, if 𝑝 = 2, or if 𝑝 > 2 and 𝑛

gcd(𝑛,𝑡) is even; and 4 ≤ 𝑐𝛿𝐺 ≤ 𝑝𝑡 + 4,
if 𝑝 > 2 and 𝑛

gcd(𝑛,𝑡) is odd.

Proof: The 𝑐-differential uniformity equation of 𝐺 (𝑥) for 𝑐 ∈ F𝑝𝑛 at (𝑎, 𝑏) ∈ F𝑝𝑛 × F𝑝𝑛 is

(𝑥 + 𝑎)𝑝𝑛−2 + (𝑥 + 𝑎)𝑝𝑡 − 𝑐(𝑥𝑝𝑛−2 + 𝑥𝑝𝑡 ) = 𝑏. (4.2)

We first assume that 𝑎 ≠ 0. We arrive at the upper bound by considering several cases.

Case (𝑖). Let 𝑥 = 0. Equation (4.2) becomes

1
𝑎
+ 𝑎𝑝𝑡 = 𝑏.

Thus, for any 𝑎 ≠ 0 and 𝑏 = 1
𝑎
+ 𝑎𝑝𝑡 , we have a solution of (4.2), for arbitrary 𝑐.

Case (𝑖𝑖). Let 𝑥 = −𝑎. Equation (4.2) becomes

𝑐

(
1
𝑎
+ 𝑎𝑝𝑡

)
= 𝑏,
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and we have another solution to (4.2), for a given 𝑐 by the above displayed equation. If 𝑎 is
such that 𝑎𝑝𝑡+1 + 1 = 0, then 1

𝑎
+ 𝑎𝑝𝑡 is 0 and therefore 𝑏 must be zero. In this case 𝑐 can

be taken arbitrary. Note there are gcd(𝑝𝑡 + 1, 𝑝𝑛 − 1) such 𝑎’s (which, by Lemma 4.1.2, is
gcd(2𝑡 + 1, 2𝑛 − 1) = 2gcd(2𝑡 ,𝑛)−1

2gcd(𝑡 ,𝑛)−1 if 𝑝 = 2, and if 𝑝 > 2, the number of such 𝑎’s is 2 when
𝑛

gcd(𝑛,𝑡) is odd, and 𝑝gcd(𝑛,𝑡) + 1, when 𝑛
gcd(𝑛,𝑡) is even, all if 𝑡 > 0; when 𝑡 = 0, the value of

gcd(𝑝𝑡 + 1, 𝑝𝑛 − 1) is 1, respectively, 2, for 𝑝 = 2, respectively, 𝑝 > 2).

We make an observation here: the two solutions from Cases (𝑖) and (𝑖𝑖) cannot be combined
for arbitrary 𝑐 unless 𝑏 = 0 and 𝑎𝑝𝑡+1 + 1 = 0. Or, if 𝑐 = 1, then 𝑏 = 1

𝑎
+ 𝑎𝑝𝑡 .

Case (𝑖𝑖𝑖). Let 𝑥 ≠ 0,−𝑎. Using the fact that any non-zero value raised to 𝑝𝑛 − 2 is its
inverse and that 𝑥𝑝𝑡 is linearized in F𝑝𝑛 , Equation (4.2) becomes

1
𝑥 + 𝑎 + (1 − 𝑐)𝑥𝑝𝑡 − 𝑐

𝑥
= 𝑏 − 𝑎𝑝𝑡 , that is,

𝑥 + (1 − 𝑐)𝑥𝑝𝑡+1(𝑥 + 𝑎) − 𝑐(𝑥 + 𝑎) = (𝑏 − 𝑎𝑝𝑡 )𝑥(𝑥 + 𝑎), or,

𝑥𝑝
𝑡+2 + 𝑎𝑥𝑝𝑡+1 + 𝑏 − 𝑎

𝑝𝑡

𝑐 − 1
𝑥2 + 𝑎𝑏 + 𝑐 − 𝑎

𝑝𝑡+1 − 1
𝑐 − 1

𝑥 + 𝑎𝑐

𝑐 − 1
= 0. (4.3)

Therefore, the maximum number of solutions to (4.2) for 𝑥 ≠ 0,−𝑎 is bounded by the degree
of this polynomial, 𝑝𝑡 + 2. Combining with the previous two solutions from Cases (𝑖) and
(𝑖𝑖), we can bound the total number of solutions (and thus the the 𝑐-differential uniformity)
by 2 + 𝑝𝑡 + 2 = 𝑝𝑡 + 4. That is, 𝑐𝛿𝐺 ≤ 𝑝𝑡 + 4 and we have our claimed upper bound.

The most straightforward method to show the lower bound of 𝑐𝛿𝐺 is to consider the case
of 𝑎 = 𝑏 = 0. However, there are many other values of (𝑎, 𝑏) ∈ F𝑝𝑛 × F𝑝𝑛 such that 𝑐𝛿𝐺 is
lower bounded by 𝑝gcd(𝑛,𝑡) + 2. We will start with the case of 𝑎 = 𝑏 = 0.

When 𝑎 = 0, Equation (4.2) becomes

𝑥𝑝
𝑛−2 + 𝑥𝑝𝑡 = 𝑏

1 − 𝑐 .

If 𝑏 = 0, this equation has 𝑥 = 0 as a root, and moreover, we can factor into

𝑥𝑝
𝑡 (𝑥𝑝𝑛−𝑝𝑡−2 + 1) = 0.
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Thus, when 𝑥 ≠ 0 we have 𝑥𝑝𝑛−𝑝𝑡−2 + 1 = 0, and when multiplied through by 𝑥𝑝𝑡+1 this is
equivalent to 𝑥𝑝𝑡+1 + 1 = 0. By [38], when 𝑛/𝑑 is even this always has a solution and by
Lemma 4.1.3 there are gcd (𝑝𝑡 + 1, 𝑝𝑛 − 1) = 𝑝gcd(𝑛,𝑡) + 1 solutions. Along with the 𝑥 = 0
solution, we arrive at the lower bound of 𝑝gcd(𝑛,𝑡) + 2 for 𝑛/𝑑 even.

We return to Case (𝑖𝑖𝑖) (𝑥 ≠ 0,−𝑎), and proceed to establish the lower bound for 𝑏 ≠ 0 for
𝑝 > 2. The case of 𝑝 = 2 will be handled afterward. From Equation (4.3) we let 𝑎 = 0,
obtaining

𝑥𝑝
𝑡+2 + 𝑏

𝑐 − 1
𝑥2 + 𝑥 = 0, (4.4)

with solution 𝑥 = 0 and cofactor

𝑥𝑝
𝑡+1 + 𝑏

𝑐 − 1
𝑥 + 1 = 0. (4.5)

We now move to put (4.5) into a form of which there are known results on the number of
solutions. First, relabel 𝑥 ↦→ 1−𝑐

𝑏
𝑥, for 𝑏 ≠ 0. Note if 𝑏 = 0, we return to 𝑥𝑝𝑡+1 + 1 = 0 and

our previous argument.

Next, after relabeling (4.5), we multiply by
(
𝑏
𝑐−1

) 𝑝𝑡+1
and obtain

𝑥𝑝
𝑡+1 − 𝐵𝑥 + 𝐵 = 0, (4.6)

where 𝐵 =

(
𝑏
𝑐−1

) 𝑝𝑡+1
and we can apply [39, Theorem 5.6]. Using the notations from [39],

we let F𝑄 = F𝑝𝑛 ∩ F𝑝𝑡 = F𝑝gcd(𝑛,𝑡) . Thus, 𝑄 = 𝑝gcd(𝑛,𝑡) . If we let 𝑚 = 𝑛
gcd(𝑛,𝑡) , [39, Theorem

5.6] tells us there are
𝑄𝑚−1 −𝑄
𝑄2 − 1

,
𝑄𝑚−1 − 1
𝑄2 − 1

, for 𝑚 even, respectively, odd, values of 𝐵 such

that Equation (4.5) has 𝑄 + 1 = 𝑝gcd(𝑛,𝑡) + 1 solutions. We let 𝑇 represent the set of 𝐵’s that

are these solutions. Thus, |𝑇 | = 𝑄𝑚−1 −𝑄
𝑄2 − 1

, for 𝑚 even, and |𝑇 | = 𝑄𝑚−1 − 1
𝑄2 − 1

, for 𝑚 odd.

To arrive at our claimed lower bound, we need to show we can find 𝑏, 𝑐 such that 𝐵 from (4.6)
is in 𝑇 . Start with 𝑝 > 2 and 𝑚 odd. Then by Lemma 4.1.3 we have gcd(𝑝𝑡 + 1, 𝑝𝑛 − 1) = 2.
We define 𝐵̃ as the square roots of 𝐵 ∈ 𝑇 , and we have 𝑏 = (𝑐 − 1)𝐵̃

2
𝑝𝑡+1 for any 𝑐 ≠ 1.

Such a 𝐵̃ always exists, for instance 𝐵̃ = 0. The number of solutions of (4.5) for these
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parameters is therefore𝑄 +1. For 𝑚 even, then by Lemma 4.1.3 gcd(𝑝𝑡 +1, 𝑝𝑛−1) = 𝑄 +1.
We again use [39], by taking 𝐵 = 𝐵̃𝑄+1 ∈ 𝑇 , and for a fixed 𝑐 we have 𝑏 = (𝑐 − 1)𝐵̃

𝑄+1
𝑝𝑡+1 .

Again, such a 𝐵̃ always exists, for instance 𝐵̃ = 0. The number of solutions of (4.5) for these
parameters is therefore 𝑄 + 1 = 𝑝gcd(𝑛,𝑡) + 1. Along with the previous solution of 𝑥 = 0, we
have 𝑐𝛿𝐺 ≥ 𝑝gcd(𝑛,𝑡) + 2. Although we cannot always guarantee a nonzero 𝐵̃, this argument
shows there are many potential values of 𝑏, 𝑐 that force the lower bound to 𝑝gcd(𝑛,𝑡) + 2.

For 𝑝 = 2, we use [40], where it was shown that an equation of the form 𝑥2𝑡+1 + 𝑥 + 𝐴 = 0
has 𝑄 + 1 zeros for 𝑄𝑚−1−1

𝑄2−1 , 𝑄
𝑚−1−𝑄
𝑄2−1 , for 𝑚 odd, respectively, even, values of the parameter

𝐴. Next, we multiply (4.5) by
(
𝑏
𝑐+1

) 1
2𝑡 , which always exists because gcd(2𝑛 − 1, 2) = 1 and

therefore we can take repeated square roots. If we perform the substitution 𝑥 ↦→ 𝑥

(
𝑏
𝑐+1

) 1
2𝑡 ,

we get the equation 𝑥2𝑡+1 + 𝑥 +
(
𝑐 + 1
𝑏

)1+ 1
2𝑡

= 0, and we can apply the same technique as

in the previous proof, though, the existence of values 𝑏, 𝑐 such that 𝐴 =

(
𝑐+1
𝑏

) 2𝑡+1
2𝑡 is not in

question anymore for any 𝐴 ≠ 0. Therefore, when 𝑝 = 2 and the conditions on 𝑛, 𝑡 are met,
we have 𝑐𝛿𝐺 ≥ 𝑝gcd(𝑛,𝑡) + 2. The theorem is shown.

The following corollary is immediate and implies a significant increase in the maximum
𝑐DU of the inverse function after a particular 𝐸𝐴 transformation.

Corollary 4.2.2 Let 𝑛 ≥ 4, 𝐹 (𝑥) = 𝑥𝑝𝑛−2 be the inverse function on F𝑝𝑛 , and 𝑡 | 𝑛 be the
largest divisor of 𝑛 such that 𝑛

gcd(𝑛,𝑡) is even, and 𝐺 (𝑥) = 𝐹 (𝑥) + 𝑥𝑝𝑡 . Then, there exists 𝑐
such that 𝑐𝛿𝐺 ≥ 𝑝𝑡 + 2.

4.2.1 Particular Case of an 𝐸𝐴 Perturbed Inverse Function Over F28

We now use Corollary 4.2.2 to investigate the maximum 𝑐DU of a particular inverse function
perturbed by a specific linearized monomial. We mentioned in Section 4.1 that in the case of
AES the nonlinear component is an affine transformation of the inverse function with 𝑝 = 2
and 𝑛 = 8. We use this as motivation to choose the inverse function 𝐹 (𝑥) = 𝑥28−2 = 𝑥254

over 𝐹28 to investigate.

Using Corollary 4.2.2 with 𝑡 = 4, let 𝐺 (𝑥) = 𝑥254 + 𝑥24 . Then, we have 𝑛
gcd(𝑛,𝑡) = 2, and
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the conditions of the corollary are met, guaranteeing there exists some 𝑐 such that 𝑐𝛿𝐺
is lower bounded by 𝑝gcd(𝑛,𝑡) + 2 = 24 + 2 = 18. In fact, we confirmed computationally
using SageMath that 𝑐𝛿𝐺 = 18. This maximum value occurs when 𝑐 = 0. In other words,
0𝛿𝐺 = 18.

After computational methods provide us with the specific 𝑐 = 0 that attains the maximum
𝑐DU, we can analytically pursue the results. With 𝐺 (𝑥) = 𝑥254 + 𝑥24 , the 𝑐-differential
equation becomes

(𝑥 + 𝑎)254 + (𝑥 + 𝑎)16 − 𝑐(𝑥254 + 𝑥16) = 𝑏. (4.7)

With 𝑐 = 0, and if 𝑥 ≠ 𝑎, then we have

(𝑥 + 𝑎)254 + (𝑥 + 𝑎)16 − 0(𝑥254 + 𝑥16) = 𝑏,
1

𝑥 + 𝑎 + 𝑥16 + 𝑎16 = 𝑏,

1 + 𝑥17 + 𝑎𝑥16 + 𝑎16𝑥 + 𝑎17 = 𝑏𝑥 + 𝑏𝑎,
𝑥17 + 𝑎𝑥16 + (𝑎16 + 𝑏)𝑥 + (𝑎17 + 𝑏𝑎 + 1) = 0.

For 𝑏 = 0, this polynomial has 17 roots for many values of 𝑎 ∈ F28 . Some examples found
in SageMath include 𝛼2, 𝛼4, where 𝛼 is a primitive element in the finite field. When 𝑥 = 𝑎,
we simply have 0254 + 016 = 0 = 𝑏, providing one additional solution and resulting in 18
total.

Thus we reach our theoretical 𝑐DU of 18 on this particular inverse function perturbed by
a specific linearized monomial. Recall that 𝑥254 over F28 has traditional DU of 4 and 𝑐DU
values of 1,2, or 3 for all 𝑐 ≠ 1. This demonstrates that performing a small extended affine
perturbation can cause a significant increase.

A similar analysis (both computationally and analytically) for 𝑛 = 10 and 𝑡 = 5 (respectively,
𝑛 = 12 and 𝑡 = 6) results in a maximum 𝑐DU of 34, (resp 66) achieved when 𝑐 = 0.

These examples reinforce our key point of this section: unlike classical DU, 𝑐DU is not in
general preserved by an extended affine transformation. Thus, if a real-world 𝑐-differential
attack is ever realized, an S-box that uses a function with low 𝑐DU as a primitive cannot
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be guaranteed to maintain low 𝑐DU after certain transformations. We compute the 𝑐DU
performance of AES’s actual S-box in Chapter 6.

4.2.2 Attaining the Upper or Lower Bounds on 𝑐DU
Next, we find some values of 𝑡 for which the upper bound 𝑝𝑡 + 4, or the lower bound
𝑝gcd(𝑡,𝑛) + 2 of Theorem 4.2.1 are attained by 𝑐𝛿𝐺 for some 𝑐. When 𝑝 = 2, we will show
that this happens for 𝑡 = 0 and 𝑛 even (upper) and 𝑛 odd (lower).

Theorem 4.2.3 Let 𝑛 ≥ 4, 𝐹 (𝑥) = 𝑥2𝑛−2 be the inverse function on F2𝑛 , and 1 ≠ 𝑐 ∈ F2𝑛 .
Then, if 𝑛 is even, the 𝑐-differential uniformity of 𝐺 (𝑥) = 𝐹 (𝑥) + 𝑥 is 𝑐𝛿𝐺 = 5, for some
𝑐; if 𝑛 is odd, there exists 𝑐 such that 𝑐𝛿𝐺 = 4. Moreover, if 𝐺 (𝑥) = 𝐹 (𝑥) + 𝑥2 and 𝑛 is
even, then there exists 𝑐 such that 𝑐𝛿𝐺 = 5; if 𝑛 is odd and there exists an 𝑎 such that
Tr

(
𝑎2

𝑎2+𝑎+1

)
= Tr

(
𝑎4

(𝑎+1)5

)
= 0, then 𝑐𝛿𝐺 = 5 for some 𝑐 (for example, 𝑐 = 1 + 1

(𝑎3+𝑎2+1)
1
2
).

Proof: We will not go through the corresponding Cases (𝑖) and (𝑖𝑖) as in Theorem 4.2.1
since these arguments are independent of 𝑡, but we will refer to them.

Let 𝐺 (𝑥) = 𝐹 (𝑥) + 𝑥 over F2𝑛 . We must investigate the equation

(𝑥 + 𝑎)𝑝𝑛−2 + (𝑥 + 𝑎) + 𝑐(𝑥𝑝𝑛−2 + 𝑥) = 𝑏. (4.8)

Using the same rearrangement techniques that we used to arrive at Equation (4.3), with
𝑡 = 0 we get

𝑥3 +
(
𝑎 + 𝑏 + 𝑎

1 + 𝑐

)
𝑥2 + 1 + 𝑐 + 𝑎𝑏 + 𝑎2

1 + 𝑐 𝑥 + 𝑎𝑐

1 + 𝑐 = 0. (4.9)

To achieve the maximum 5 number of solutions for 𝑥, we need 3 roots of this cubic combined
with the two solutions from Cases (𝑖) and (𝑖𝑖). That is, we need 𝑎20+1 + 1 = 𝑏 = 0, which
forces 𝑎 = 1, 𝑏 = 0, and the cubic becomes

𝑥3 + 𝑐

1 + 𝑐𝑥
2 + 𝑐

1 + 𝑐𝑥 +
𝑐

1 + 𝑐 = 0. (4.10)

Next, we use the substitution 𝑦 = 𝑥 + 𝑐
𝑐+1 in order to put the equation into a form where we
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can use Lemma 4.1.2, arriving at

𝑦3 + 𝑐

(𝑐 + 1)2 𝑦 +
𝑐

(𝑐 + 1)2 = 0. (4.11)

By Lemma 4.1.2, this last equation has three solutions if and only if 𝑐 ≠ 0 and Tr
(

𝑐

(𝑐+1)2

)
=

Tr(1) and the roots 𝑡1, 𝑡2 of 𝑡2 + 𝑐

(𝑐+1)2 𝑡 +
(

𝑐

(𝑐+1)2

)3
= 0 are cubes in F2𝑛 for 𝑛 even, F22𝑛 for

𝑛 odd.

Starting with 𝑛 even, we see that Tr
(

𝑐

(𝑐+1)2

)
= Tr

(
𝑐+1+1
(𝑐+1)2

)
= Tr

(
1
𝑐+1 + 1

(𝑐+1)2

)
. Using

Hilbert’s Theorem 90 with 𝜎 : 𝑥 → 𝑥2 and 𝑥 = 1
𝑐+1 , we have Tr

(
1
𝑐+1 + 1

(𝑐+1)2

)
= 0 = Tr(1).

Therefore, three solutions can only be potentially achieved if 𝑛 is even.

Next we need to show we can always find some 𝑐, such that the solutions to 𝑡2 + 𝑐

(𝑐+1)2 𝑡 +(
𝑐

(𝑐+1)2

)3
= 0 are cubes in F2𝑛 . The roots of this equation can be quickly found to be

𝑡1 =
𝑐

(𝑐 + 1)3 , 𝑡2 =
𝑐2

(𝑐 + 1)3 .

If we take 𝑐 to be a cube, then both of these roots are cubes, and consequently we have
three roots for (4.10). Next, we need to argue that they are not repeated roots. Since we are
working over binary, it is sufficient to check that the coefficient of 𝑥2 in (4.10) , that is 𝑐

𝑐+1 ,
is not a root, which is true because the left hand side of (4.10) at 𝑐

𝑐+1 is exactly 𝑐

(𝑐+1)2 ≠ 0,
because 𝑐 ≠ 0. We therefore have three solutions, and with the two solutions from Cases (𝑖)
and (𝑖𝑖), we have our claimed five solutions when 𝑛 is even.

For 𝑛 odd, we cannot combine Cases (𝑖) and (𝑖𝑖), but the same argument reveals four
solutions for (4.10) and our claims for 𝑥2𝑛−2 + 𝑥 are shown.

Let now 𝑡 = 1, that is, 𝐺 (𝑥) = 𝑥2𝑛−2 + 𝑥2. If 𝑏 = 0 Equation (4.3) becomes

𝑥4 + 𝑎𝑥3 + 𝑎2

1 + 𝑐𝑥
2 + 𝑐 + 𝑎

3 + 1
1 + 𝑐 𝑥 + 𝑎𝑐

1 + 𝑐 = 0.

As in the previous argument for 𝑡 = 0, we combine Cases (𝑖) and (𝑖𝑖) to arrive at our count,
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so we let 𝑎 = 1. Note for 𝑛 even we could also use 𝑎2 + 𝑎 + 1 = 0; for 𝑛 odd, we can only
have 𝑎 = 1. When 𝑎 = 1, the above equation becomes

𝑥4 + 𝑥3 + 1
𝑐 + 1

𝑥2 + 𝑐

1 + 𝑐𝑥 +
𝑐

1 + 𝑐 = 0,

which when multiplied through by 1 + 𝑐 becomes

(1 + 𝑐)𝑥4 + (1 + 𝑐)𝑥3 + 𝑥2 + 𝑐𝑥 + 𝑐.

This can be factored as
(𝑥2 + 𝑥 + 1) ((𝑐 + 1)𝑥2 + 𝑐) = 0.

For 𝑛 even, we get 2 roots from the first factor and another from the second. Therefore, we
get 3 roots for the above equation, which when combined with the 2 from Cases (𝑖) and (𝑖𝑖)
renders 5 altogether. There are many values of 𝑐 we can take: for example, for any 𝑥 ≠ 0, 1, 𝑎
not a root of 𝑥2 + 𝑥 + 1, then we take 𝑐 = 𝑥2

𝑥2+1 .

If 𝑛 is odd, then 𝑎 = 1 cannot give us more than 3 roots (when 𝑛 is odd 𝑥2 + 𝑥 + 1 ≠ 0,
denying us 2 possible roots of the 5 with 𝑛 even), so we assume that 𝑎 ≠ 1. Again, under 𝑛
odd, if 𝑏 = 0 and 𝑐 = 0, Equation (4.3) becomes

𝑥4 + 𝑎𝑥3 + 𝑎2𝑥2 + (1 + 𝑎3)𝑥 = 0,

with solutions 𝑥 = 0, 𝑎 + 1, and (𝑥 + 𝑎)2 + (𝑥 + 𝑎) + 1 = 0, but for 𝑛 odd the last equation
cannot hold. Next, we take 1

𝑎
+𝑎2𝑡 = 𝑏 (Case (𝑖)), and with 𝑏 = 0 we have 1

𝑎
= 𝑎2. Returning

to Equation (4.3) with 1
𝑎
= 𝑎2, we see

𝑥4 + 𝑎𝑥3 + 1
𝑎(𝑐 + 1) 𝑥

2 + 𝑐

𝑐 + 1
𝑥 + 𝑎𝑐

𝑐 + 1
= 0.

Next, we find some values of 𝑎, 𝑐 such that the above polynomial can be factored as

𝑥4 + 𝑎𝑥3 + 1
𝑎(𝑐 + 1) 𝑥

2 + 𝑐

𝑐 + 1
𝑥 + 𝑎𝑐

𝑐 + 1
= (𝑥2 + 𝐴𝑥 + 𝑎)

(
𝑥2 + 𝐵𝑥 + 𝑐

𝑐 + 1

)
.
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Solving the obtained system, we find that

𝐴 =
𝑎2(𝑐 + 1) + 𝑐
𝑎(𝑐 + 1) + 𝑐 , 𝐵 =

(𝑎 + 1)𝑐
𝑎(𝑐 + 1) + 𝑐 ,

when 𝑐 =
(
𝑎3 + 𝑎2

𝑎3 + 𝑎2 + 1

)1/2

= 1 + 1
(𝑎3 + 𝑎2 + 1) 1

2
.

Moreover, each factor in the factorization above has two distinct roots (when 𝐴𝐵 ≠ 0) if
Tr

(
𝑎

𝐴2

)
= Tr

(
𝑎2

𝑎2+𝑎+1

)
= 0 and Tr

(
𝑐

(𝑐+1)𝐵2

)
= Tr

(
𝑎4

(𝑎+1)5

)
= 0. Under the assumption that

there are values of 𝑎 ≠ 1 for 𝑛 odd such that both of these traces are 0 (computation reveals
that it always happens, but we have been unable to show that in general), the claim is shown.

Thus, when 𝑡 = 0 the upper bound determined by Theorem 4.2.1 of 20 + 4 = 5 is achieved.
When 𝑡 = 1, we do not know if 21 + 4 = 6 is achievable, but we showed there are multiple
values of 𝑐 such that, if 𝐺 (𝑥) = 𝑥2𝑛−2 + 𝑥2, then 𝑐𝛿𝐺 = 5 for 𝑛 both even and odd.

Summarizing this section, the linearized monomial has an interesting impact on the 𝑐DU
of the inverse function, causing a surprising increase under certain conditions. It is natural
to consider how other transformations might affect the 𝑐DU. Next, we investigate a more
general perturbation, a linearized polynomial.

4.3 𝐸𝐴 Transformation of the Inverse Function by a Lin-
earized Polynomial

The inverse function over finite fields is a popular block cipher primitive because it is a
balanced function with high nonlinearity and low differential uniformity, among other good
properties. As discussed previously in this chapter, the inverse function also performs well
under the new 𝑐-differential uniformity property, but sees a significant increase with the
addition of certain monomials. Here, we consider a natural continuation—how the inverse
function performs under the more general 𝐸𝐴 transformations by linearized polynomials.

Consider polynomials of the form 𝐿 (𝑥) = ∑𝑛−1
𝑖=0 𝑎𝑖𝑥

𝑝𝑖 over F𝑝𝑛 , with 𝑎𝑖 ∈ F𝑝𝑛 . The same
“freshman mistake” in characteristic 𝑝 described at the beginning of Section 4.2 for a
linearized monomial applies to these multinomials as well. Thus, if 𝐺 (𝑥) = 𝑥𝑝𝑛−2 + 𝐿 (𝑥),
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we have another 𝐸𝐴 transformation of the inverse function.

Counting solutions to the 𝑐-differential equations over F𝑝𝑛 that result from adding poly-
nomials is a more challenging task than the monomials considered in Section 4.2. While
the bounds we find are not as clean as in the case of the linearized monomial, we are able
to use [41] to find some meaningful results. First, we introduce the results of [41] on the
exponential sums of so-called Dembowski–Ostrom, or DO, polynomials.

In general, a DO polynomial, 𝐷 (𝑥), is of the form
∑𝑛
𝑖=1 𝑎𝑖𝑥

𝑝𝛼𝑖+𝑝𝛽𝑖 . If we let 𝛼𝑖 = 𝑖 and 𝛽𝑖 = 0,
the polynomial becomes

∑𝑛
𝑖=1 𝑎𝑖𝑥

𝑝𝑖+1. This is the form of polynomials we will encounter in
the proof of the bounds on the 𝑐DU of 𝐺 (𝑥).

Recall from Section 3.2 that 𝜒1(𝑎) = 𝜁Tr𝑛 (𝑎)
𝑞 = 𝑒

(
2𝜋𝑖Tr𝑛 (𝑎)

𝑞

)
is the canonical additive character

of F𝑞, with 𝑞 = 𝑝𝑛. A primary result of [41] tells us the number of solutions of the
exponential sum of this polynomial is������∑︁𝑥∈F𝑞 𝜒1

(
𝑛−1∑︁
𝑖=0

𝑎𝑖𝑥
𝑝𝑖+1

)������ = √︁
𝑞𝑁𝛼, (4.12)

where 𝑁𝛼 is the number of solutions for 𝑇𝑛 (𝑤) = 0, and

𝑇𝑛 (𝑤) = 2𝐴0𝑤 +
𝑛−1∑︁
𝑖=1

(
𝐴𝑖𝑤

𝑝𝑖 + (𝐴𝑖𝑤)𝑝
𝑛−𝑖

)
,

with 𝐴𝑖 = (𝛼𝑎𝑖)𝑝
𝑛−𝑖 .

While it may not seem that much progress has been made in arriving at a new polynomial
to solve, the author points out that 𝑇𝑛 acts as linear operator over F𝑝, and therefore finding
the number of solutions is equivalent to relatively easy task of finding the rank of an 𝑛 by 𝑛
matrix. In fact, if 𝑠1, . . . , 𝑠𝑘 are the indices 𝑖 where 𝑎𝑖 ≠ 0, and if 𝜖 = gcd1≤𝑖≤𝑛−1{2𝑠0, 𝑠0 +
𝑠𝑖, 𝑠0 + 𝑛 − 𝑠𝑖, 𝑛}, then the number of solutions to 𝑇𝑛 (𝑤) = 0 is 𝑝𝜖𝛾𝛼 , for some nonnegative
integer 𝛾𝛼. We also note that character sums such as Equation (4.12) over finite fields are
called Weil sums.

Before we proceed with our primary result of this section, we follow some of the notation
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in [41] and list some technical conditions in that apply to our lower bound.

𝑛 = 2𝑚; 𝑛/𝛿 is even; 2𝛿 | 𝑠𝑖 − 𝑠 𝑗 ; 4 < 𝑝𝛿 + 1 | 𝑝𝑠𝑖 + 1. (4.13)

Theorem 4.3.1 Let 𝑝 be an odd prime number, 𝑛 ≥ 4, 𝐹 (𝑥) = 𝑥𝑝𝑛−2 be the inverse function
on F𝑝𝑛 , and 1 ≠ 𝑐 ∈ F𝑝𝑛 . Let 𝐿 (𝑥) =

∑𝑛−1
𝑖=0 𝑎𝑖𝑥

𝑝𝑖 be a linearized polynomial. Then, the
𝑐-differential uniformity, 𝑐𝛿𝐺 , of 𝐺 (𝑥) = 𝐹 (𝑥) + 𝐿 (𝑥) satisfies

(𝑖) 𝑐𝛿𝐺 ≤ (𝑝𝑁) 𝑛
2 , where 𝑁 = max𝛼∈F𝑞 {𝑁𝛼}, and 𝑁𝛼 is the number of solutions 𝑤 to

𝑇𝑛 (𝑤) = 2𝛼𝑎0𝑤 +
𝑛−1∑︁
𝑖=1

(
(𝛼𝑎𝑖)𝑝

−𝑖
𝑤𝑝

𝑖 + (𝛼𝑎𝑖)𝑝
−2𝑖
𝑤𝑝

−𝑖
)
= 0. (4.14)

In fact, 𝑁𝛼 = 𝑝𝛿𝛾𝛼 , for some nonnegative integer 𝛾𝛼.

(𝑖𝑖) 𝑐𝛿𝐺 ≥ 1
𝑝𝑛

∑︁
𝛼∈F𝑞

𝜒1(𝛼)𝜇𝛼𝑝
𝛿𝛾𝛼

2 , under the conditions of (4.13), where 𝛾𝛼 is defined

in (𝑖) and 𝜇𝛼 = ±1 is the sign of the Weil sum from Equation (4.12). Even more
precisely,

𝑐𝛿𝐺 ≥ (−1) 𝑚
𝛿 𝑝−𝑚

∑︁
𝛼∈F𝑞
N𝛼=1

𝜒1(𝛼) + (−1) 𝑚
𝛿 𝑝−𝑚

∑︁
𝛼∈F𝑞
N𝛼>1

𝜒1(𝛼) (−1)
𝛾𝛼
2 𝑝

𝛿𝛾𝛼
2 .

Proof: We begin by following the same method of Theorem 4.2.1. Cases (𝑖) and (𝑖𝑖) will
be similar, but the method of Theorem 4.2.1 will fail after that. The 𝑐-differential equation
for the inverse function with a linearized polynomial is

(𝑥 + 𝑎)𝑝𝑛−2 + 𝐿 (𝑥 + 𝑎) − 𝑐𝑥𝑝𝑛−2 − 𝑐𝐿 (𝑥) = 𝑏. (4.15)

Case (𝑖). Let 𝑎 ≠ 0, 𝑥 = 0. Then Equation (4.15) becomes 𝑎−1 + 𝐿 (𝑎) = 𝑏. Therefore, for
any 𝑐, and 𝑏 = 𝑎−1 + 𝐿 (𝑎), we have a solution of (4.15).

Case (𝑖𝑖). If 𝑥 = −𝑎 ≠ 0, then Equation (4.15) transforms into 𝑐
(
𝑎−1 + 𝐿 (𝑎)

)
= 𝑏, which

gives us one more solution of (4.15), when 𝑎𝐿 (𝑎) + 1 = 0 and 𝑏 = 0 (𝑐 is arbitrary).
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Case (𝑖𝑖𝑖). If 0 ≠ 𝑥 ≠ −𝑎, then Equation (4.15) becomes

(1 − 𝑐)𝑥(𝑥 + 𝑎)𝐿 (𝑥) − (𝑏 − 𝐿 (𝑎))𝑥(𝑥 + 𝑎) + (1 − 𝑐)𝑥 − 𝑐𝑎 = 0,

which has at most deg 𝐿 + 2 solutions.

Take now 𝑎 = 0, and obtain

𝑥

(
𝑥𝐿 (𝑥) − 𝑏

1 − 𝑐𝑥 + 1
)
= 0. (4.16)

Unfortunately, this is the point where the method of Theorem 4.2.1 stops being useful,
since we do not have comparable methods to find the number of solutions of an equation
involving a more general Dembowski-Ostrom polynomial. However, using the results of [41]
highlighted before the theorem we can get meaningful results. First, we follow some of the
character theory, as done in [42].

Let 𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑏 be an equation with (𝑥1, . . . , 𝑥𝑛) ∈ F𝑛𝑞 and 𝑏 fixed. Then, as discussed
in [42], the number of solutions to this equation, call this value N𝑏, is

N𝑏 =
1
𝑞

∑︁
𝑥1,...,𝑥𝑛∈F𝑞

∑︁
𝛼∈F𝑞

𝜒1 (𝛼 ( 𝑓 (𝑥1, . . . , 𝑥𝑛) − 𝑏)) .

Thus, in addition to 𝑥 = 0, the number of solutions N𝑏;𝑐 of Equation (4.16) is given by

𝑞N𝑏;𝑐 =
∑︁
𝛼∈F𝑞

∑︁
𝑥∈F𝑞

𝜒1

(
𝛼(𝑥𝐿(𝑥) + 𝑏

𝑐 − 1
𝑥 + 1)

)
.

To arrive at our upper bound, we take 𝑏 = 0. The equation above becomes

𝑞N𝑏;𝑐 =
∑︁
𝛼∈F𝑞

𝜒1(𝛼)
∑︁
𝑥∈F𝑞

𝜒1 (𝛼𝑥𝐿 (𝑥)) .

We now use [41] as mentioned before the statement of our theorem and Equation (4.12).
Applying this to our DO polynomial 𝛼𝑥𝐿 (𝑥) we get our claimed upper bound. That is,
𝑐𝛿𝐺 ≤

√
𝑞𝑁 , 𝑁 = max𝛼∈F𝑞 {𝑁𝛼}.

For the lower bound, we assume that 𝐿 (𝑥) = ∑𝑛−1
𝑖=0 𝑎𝑖𝑥

𝑝𝑖 and conditions (4.13) hold. It was
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also shown in [41, Theorem 1.5] that if 𝑛 is even, 𝛿 = gcd(𝑠1, . . . , 𝑠𝑘 ) and 𝑝𝛿 + 1 = 𝑝 + 1
divides (𝑝𝑖 + 1), then the above Weil sum is real and consequently it is equal to 𝜇𝛼

√
𝑝𝑛+𝛾,

where 𝜇𝛼 = ±1 and 𝛾 is a nonnegative integer. Therefore,

𝑐𝛿𝐺 ≥ 1
𝑝𝑛

∑︁
𝛼∈F𝑞

𝜒1(𝛼)𝜇𝛼𝑝
𝛾𝛼
2 .

We can be more precise and describe 𝜇𝛼. Let 𝑆𝛼 =
∑
𝑥∈F𝑞 𝜒1

(∑𝑛−1
𝑖=0 𝑎𝑖𝑥

𝑝𝑖+1
)
. By [41,

Theorem 1.6], for every 𝛼, if 𝛾𝛼 = 0, then 𝑆𝛼 = (−1) 𝑚
𝛿 𝑝𝑚, and if 𝛾𝛼 > 0, then 𝛾𝛼 is even

and 𝑆𝛼 = (−1) 𝑚
𝛿
+ 𝛾𝛼

2 𝑝𝑚+
𝛿𝛾𝛼

2 . Thus,

𝑐𝛿𝐺 ≥ (−1) 𝑚
𝛿 𝑝−𝑚

∑︁
𝛼∈F𝑞 ,N𝛼=1

𝜒1(𝛼) + (−1) 𝑚
𝛿 𝑝−𝑚

∑︁
𝛼∈F𝑞 ,N𝛼>1

𝜒1(𝛼) (−1)
𝛾𝛼
2 𝑝

𝛿𝛾𝛼
2 .

Our theorem is shown.

Example 4.3.1 Similar to Subsection 4.2.1 in the case of monomials, we will use 𝑝 = 2 and
𝑛 = 8. We must add a polynomial of the form 𝐿 (𝑥) =

∑7
𝑖=0 𝑎𝑖𝑥

2𝑖 to 𝐹 (𝑥) = 𝑥28−2 = 𝑥254.
We note with 𝑎𝑖 ∈ F28 , there are (256)8 = 264 ≈ 1.845𝑒19 different potential polynomials
with which we could 𝐸𝐴 transform the inverse function. Recall the DU of the inverse
function over F28 is 4. Using SageMath, we computed the maximum 𝑐DU of 𝑥254 + 𝐿 (𝑥) for
several hundred variants. A majority returned a max 𝑐DU between 7 and 9, with a high of
12 (tripling traditional DU) and low of 6. An example of a polynomial resulting in 12 is
𝐿 (𝑥) = 𝑥24 + 𝑥25 + 𝑥26 . That is, if 𝐺 (𝑥) = 𝑥254 + 𝐿 (𝑥), then 𝑐𝛿𝐺 = 12.

While the theoretical results on polynomials do not provide us with as much insight as
results on monomials, we again see that 𝐸𝐴 transformations have the potential for large
changes to the 𝑐DU of an (𝑛, 𝑛, 𝑝)-function. This is in contrast with the regular DU that
remains invariant under 𝐸𝐴 transformations, and this observation concludes our look into
the 𝑐-differential uniformity of several 𝐸𝐴 transformations of the inverse function over
finite fields. Next, we survey the results of multiple research efforts into functions which
may prove most resilient against a potential 𝑐-differential attack.
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4.4 Summary of Results on 𝑐-Differential Uniformity
Since the introduction and publication of the 𝑐-differential and the corresponding 𝑐-
differential uniformity in 2020, there have been multiple papers written investigating the
𝑐DU properties of different classes of functions, mostly with the goal of finding functions
with low 𝑐DU. In this section, we compile and summarize findings to date in this emerging
area of cryptologic research. A table is provided for quick reference.

In [2], the article introducing the 𝑐-differential as a potential expansion of differential crypt-
analysis, the authors consider how known perfect nonlinear functions (recall PN functions
do not exist for 𝑝 = 2) and the inverse function perform under the 𝑐DU concept. Soon
after, multiple papers followed in quick succession. Power functions with low 𝑐DU of the
form 𝑥𝑑 for various 𝑐, 𝑑 are investigated in [43], [44] and [45]. Also in [45], the authors
investigate several classes of almost perfect nonlinear (differential uniformity of 2) functions
and demonstrate that the 𝑐DU increases significantly in some cases. The particular case of
𝑐 = −1 (also known as quasi-planar functions) is investigated in [33] and [46], and a detailed
look into a modified Gold function is done in [47]. Some construction and existence results
on P𝑐N and AP𝑐N functions are provided in [27], and different multinomial classes of such
functions are found in [48].

In Table 4.1, the maximum 𝑐-differential uniformity (𝑐𝛿𝐹) of 𝐹 : F𝑝𝑛 → F𝑝𝑛 is captured for
prime 𝑝 as indicated. The default is condition is 𝑐 ≠ 1, and anything additional is captured
in the “conditions” column.

Table 4.1. 𝑐𝛿𝐹 of Various Classes of Functions, 𝑐 ≠ 1

𝐹 (𝑥) F𝑝𝑛 𝑐𝛿𝐹 Conditions Ref
𝑥2 𝑝 > 2 2 (AP𝑐N) none [2]
𝑥10 − 𝑢𝑥6 − 𝑢2𝑥2 𝑝 = 3 ≥ 2 𝑢 ∈ F3𝑛 [2]
𝑥 (3

𝑘+1)/2 𝑝 = 3 1 (P𝑐N) 𝑐 = −1, 2𝑛
gcd(𝑘,2𝑛) is odd [2]

𝑥𝑝
𝑛−2 any 𝑝 1 (P𝑐N) 𝑐 = 0 [2]

𝑥2𝑛−2 𝑝 = 2 2 (AP𝑐N) 𝑐 ≠ 0, Tr(𝑐) = Tr(1/𝑐) = 1 [2]
𝑥2𝑛−2 𝑝 = 2 3 𝑐 ≠ 0, Tr(𝑐) = 0 or Tr(1/𝑐) = 0 [2]

Continued on next page
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Table 4.1 – continued from previous page
𝐹 (𝑥) F𝑝𝑛 𝑐𝛿𝐹 Conditions Ref
𝑥𝑝

𝑛−2 𝑝 > 2 2 (AP𝑐N) 𝑐 ≠ 0, (𝑐2−4𝑐) ∉ [F𝑝𝑛]2, (1−4𝑐) ∉
[F𝑝𝑛]2

[2]

𝑥𝑝
𝑛−2 𝑝 > 2 2 (AP𝑐N) 𝑐 = 4, 4−1 [2]

𝑥𝑝
𝑛−2 𝑝 > 2 3 𝑐 ≠ 0, 4, 4−1, (𝑐2 − 4𝑐) ∈ [F𝑝𝑛]2 or

(1 − 4𝑐) ∈ [F𝑝𝑛]2
[2]

𝑥2𝑘+1 𝑝 = 2 2gcd(2𝑘,𝑛)−1
2gcd(𝑘,𝑛)−1 𝑐 ∈ F2gcd(𝑛,𝑘) , 𝑛

gcd(𝑛,𝑘) ≥ 3(𝑛 ≥ 3) [45]
𝑥2𝑘+1 𝑝 = 2 2gcd(𝑛,𝑘) + 1 𝑐 ∈ F2𝑛 \ F2gcd(𝑛,𝑘) [45]
𝑥𝑝

𝑘+1 any 𝑝 gcd(𝑝𝑘 + 1, 𝑝𝑛 − 1) 𝑐 ∈ F𝑝gcd(𝑛,𝑘) [45]
𝑥 (𝑝

𝑘+1)/2 𝑝 > 2 𝑝gcd(𝑛,𝑘) + 1 𝑐 = −1 [45]
𝑥 (𝑝

𝑛+1)/2 𝑝 > 2 ≤ 4 𝑐 ≠ ±1 [45]
𝑥 (𝑝

𝑛+1)/2 𝑝 > 2 ≤ 2 𝑐 ≠ ±1, 𝜂
( 1−𝑐

1+𝑐
)
= 1 𝑝𝑛 ≡ 1 (mod 4) [45]

𝑥 (2𝑝
𝑛−1)/3 any ≤ 3 𝑝𝑛 ≡ 2 (mod 3) [45]

𝑥 (𝑝
𝑛+3)/2 𝑝 > 3 ≤ 3 𝑐 = −1, 𝑝𝑛 ≡ 3 (mod 4) [45]

𝑥 (𝑝
𝑛+3)/2 𝑝 > 3 ≤ 4 𝑐 = −1, 𝑝𝑛 ≡ 1 (mod 4) [45]

𝑥 (𝑝
𝑛−3)/2 𝑝 > 2 ≤ 4 𝑐 = −1 [45]

𝑥 (3
𝑛+3)/2 𝑝 = 3 2 (AP𝑐N) 𝑐 = −1, 𝑛 even [45]

𝑥 (3
𝑛−3) 𝑝 = 3 6 𝑐 = −1, 𝑛 = 0 (mod 4) [45]

𝑥 (3
𝑛−3) 𝑝 = 3 4 𝑐 = −1, 𝑛 ≠ 0 (mod 4) [45]

𝑥 (3
𝑛−3) 𝑝 = 3 2 (AP𝑐N) 𝑐 = 0, [45]

𝑥𝑑 𝑝 = 3 1 (P𝑐N) 𝑛, 𝑘 odd, 𝑐 = −1, gcd(𝑛, 𝑘) = 1,
𝑑 ≡ 3𝑛+1

4 · ( 3𝑘+1
4 )−1 (mod 3𝑛 − 1)

[43]

𝑥𝑑 𝑝 = 5 1 (P𝑐N) 𝑛, 𝑘 odd, 𝑐 = −1, gcd(𝑛, 𝑘) = 1,
𝑑 ≡ 5𝑛−1

2 + ( 5𝑘+1
2 )−1 (mod 5𝑛 − 1)

[43]

𝑥𝑑 𝑝 > 2 ≤ 6 𝑑 even, 𝑐 = −1, 𝑑 (𝑝𝑘 + 1) ≡ 𝑝𝑛+1
2

(mod 𝑝𝑛 − 1), 𝑝𝑛 ≡ 3 (mod 4)
[43]

𝑥𝑑 𝑝 > 2 ≤ 3 𝑑 odd, 𝑐 = −1, 𝑝𝑛 ≡ 3 (mod 4),
𝑑 (𝑝𝑘 + 1) ≡ 𝑝𝑛+1

2 (mod 𝑝𝑛 − 1)
[43]

𝑥
𝑝𝑛+1

4 + 𝑝𝑛−1
2 𝑝 > 2 ≤ 3 𝑐 = −1, 𝑝𝑛 ≡ 7 (mod 8) [43]

𝑥
𝑝𝑛−1

2 +𝑝𝑘+1 𝑝 > 2 ≤ 3 𝑐 = −1, 𝑛
gcd(𝑛,𝑘) odd, 𝑝𝑛 ≡ 3

(mod 4)
[43]

Continued on next page
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Table 4.1 – continued from previous page
𝐹 (𝑥) F𝑝𝑛 𝑐𝛿𝐹 Conditions Ref

𝑥
𝑝𝑛−1

2 +𝑝𝑘+1 𝑝 > 2 ≤ 6 𝑐 = −1, 𝑛
gcd(𝑛,𝑘) odd, 𝑝𝑛 ≡ 1

(mod 4)
[43]

𝑥
𝑝𝑙+1

2 𝑝 > 2 1 (P𝑐N) 𝑐 = −1, 𝑙 = 0 or 𝑙 even and 𝑛 odd,
or 𝑙, 𝑛 both even together with 𝑡2 ≥
𝑡1 + 1, where 𝑛 = 2𝑡1𝑢 and 𝑙 = 2𝑡2

such that 2 ̸ |𝑢, 𝑣

[33]

𝑥
𝑝𝑙+1

2 𝑝 > 2 𝑝+1
2 𝑐 = −1, gcd(𝑙, 2𝑛) = 1, 𝑝 ≡ 1

(mod 4) or 𝑝 ≡ 3 (mod 8)
[33]

𝑥
5𝑙+1

2 𝑝 = 5 3 𝑐 = −1, gcd(𝑙, 2𝑛) = 1 [33]

𝑥
3𝑙+1

2 𝑝 = 3 2 (AP𝑐N) 𝑐 = −1, gcd(𝑙, 2𝑛) = 1 [33]
𝑥𝑝

4+(𝑝−2) 𝑝2+(𝑝−1) 𝑝+1 𝑝 > 2 1 (P𝑐N) 𝑐 = −1, 𝑛 = 5 [33]

𝑥
𝑝5+1
𝑝+1 𝑝 > 2 1 (P𝑐N) 𝑐 = −1, 𝑛 = 5 [33]

𝑥𝑑 𝑝 > 2 1 (P𝑐N) 𝑐 = −1, 𝑑 = (𝑝 − 1)𝑝6 + 𝑝5 + (𝑝 −
2)𝑝3 + (𝑝 − 1)𝑝2 + 𝑝, 𝑛 = 7

[33]

𝑥
𝑝7+1
𝑝+1 𝑝 > 2 1 (P𝑐N) 𝑐 = −1, 𝑛 = 7 [33]

𝐿 (𝑥) (∑𝑙−1
𝑖=1 𝐿 (𝑥)

𝑝𝑛−1
𝑙

𝑖 + 𝑢) any 𝑝 ≤ 2 (AP𝑐N) 𝐿 (𝑥) a linearized polynomial,
𝑙 | (𝑝𝑛 − 1), 𝑢 ≠ 1, (1 − 𝑙) mod 𝑝,
1− 𝑙

(1−𝑐) (𝑢+𝑙−1) , 1+
𝑙

(1−𝑐) (𝑢−1) ∈ 𝐷0

[48]

(𝑥𝑝𝑘 − 𝑥)
𝑞−1

2 +1 + 𝑎1𝑥 +
𝑎2𝑥

𝑝𝑘 + 𝑎3𝑥
𝑝2𝑘

𝑝 = 3 ≤ 2 (AP𝑐N) 𝑐 = −1, 0 ≤ 𝑖 ≤ 2, 𝑎1, 𝑎2, 𝑎3 ∈ F3,
𝑎1 + 𝑎2 + 𝑎3 ≠ 0

[48]

𝑥
𝑝𝑛+7

2 𝑝 = 3 ≤ 2 (AP𝑐N) 𝑐 = −1, 𝑛 odd [48]
𝑓 (𝑥) (Tr𝑞1 (𝑥) + 1) + 𝑓 (𝑥 +
𝛾)Tr𝑞1 (𝑥)

𝑝 = 2 1 (P𝑐N) 𝑓 (𝑥) is P𝑐N, 𝛾 ∈ F∗𝑞 [48]

𝐿 (𝑥) + 𝐿 (𝛾)Tr𝑞
𝑛

𝑞 (𝑥)𝑞−1 any 𝑝 1 (P𝑐N) 𝐿 (𝑥) a linearized polynomial over
F𝑞, 𝛾 ∈ F∗𝑞, Tr𝑞

𝑛

𝑞 (𝛾) = 0
[48]

𝑢𝜙(𝑥) + 𝑔(Tr𝑞
𝑛

𝑞 (𝑥))𝑞 −
𝑔(Tr𝑞

𝑛

𝑞 (𝑥))
any 𝑝 1 (P𝑐N) 𝜙 an F𝑞 linear polynomial,

𝑔(𝑥) ∈ F𝑞𝑛 [𝑥], 𝑢 ∈ F∗𝑞, ker(𝜙)∩
ker(Tr𝑞

𝑛

𝑞 )={0}

[48]

𝑢(𝑥𝑞 − 𝑥) + 𝑔(Tr𝑞
𝑛

𝑞 (𝑥)) any 𝑝 1 (P𝑐N) 𝑔(𝑥) ∈ F𝑞𝑛 [𝑥] a permutation of F𝑞,
𝑢 ∈ F∗𝑞, 𝑝 ∤ 𝑛

[48]

Continued on next page
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Table 4.1 – continued from previous page
𝐹 (𝑥) F𝑝𝑛 𝑐𝛿𝐹 Conditions Ref
𝑥𝑑 𝑝 = 3 ≤ 2 (AP𝑐N) 𝑐 = −1, 𝑑 = (3 𝑛+1

2 −1)/2, 𝑛 ≡ 1
(mod 4)

[46]

𝑥𝑑 𝑝 = 3 ≤ 2 (AP𝑐N) 𝑐 = −1, 𝑑 = (3 𝑛+1
2 −1)/2+(3𝑛−1)/2,

𝑛 ≡ 3 (mod 4)
[46]

𝑥𝑑 𝑝 = 3 ≤ 2 (AP𝑐N) 𝑐 = −1, 𝑑 = (3𝑛+1 − 1)/8, 𝑛 ≡ 1
(mod 4)

[46]

𝑥𝑑 𝑝 = 3 ≤ 2 (AP𝑐N) 𝑐 = −1, 𝑑 = (3𝑛+1−1)/8+(3𝑛−1)/2,
𝑛 ≡ 3 (mod 4)

[46]

𝑥𝑑 𝑝 = 3 ≤ 4 𝑐 = −1, 𝑑 = (3 𝑛+1
4 − 1) (3 𝑛+1

2 + 1),
𝑛 ≡ 3 (mod 4)

[46]

𝑥𝑑 𝑝 = 3 ≤ 4 𝑐 = −1, 𝑑 = (3𝑛 +1)/4+ (3𝑛−1)/2,
𝑛 odd

[46]

𝑥𝑑
−1 any 𝑝 1 (P𝑐′N) 𝑥𝑑 is P𝑐N, 𝑐′ = 𝑐𝑑 , 𝑑−1 is the inverse

of 𝑑 (mod 𝑝𝑛 − 1)
[44]

𝑥𝑑 𝑝 = 2 1 (P𝑐N) 𝑑 = 2 𝑗 for 0 ≤ 𝑗 ≤ 𝑛 − 1, or 𝑑 ∈
{2 𝑗 (2𝑘 + 1), 0 ≤ 𝑗 ≤ 𝑛 − 1}, 𝑘 ∈ Z+

[44]

𝑥𝑑 𝑝 > 2 1 (P𝑐N) 𝑐 = −1, 𝑑 (𝑝𝑘+1) ≡ 2 (mod 𝑝𝑛−1),
𝑝𝑛 ≡ 3 (mod 4), 𝑑 odd

[44]

𝑥𝑑 𝑝 > 2 1 (P𝑐N) 𝑐 = −1, 𝑑 · 𝑝𝑘+1
2 ≡ 𝑝𝑛+1

2 (mod 𝑝𝑛 −
1), 𝑣2(𝑘) = 𝑣2(𝑛),𝑝𝑛 ≡ 1 (mod 4)

[44]

Many of the functions captured in Table 4.1 have low 𝑐DU under the specified conditions,
as most of the papers were interested in finding functions that are resistant to any potential
form differential cryptanalysis based on the 𝑐-differential. The exceptions are from [45],
where the authors demonstrated how several APN functions see their 𝑐DU increase from 2
when 𝑐 = 1 to a much larger number, depending on the conditions. Additionally, as we have
shown with the inverse function, certain transformations do not in general preserve the low
𝑐DU of a function. A potential area of future research is to consider certain transformations
of the functions captured in Table 4.1 and determine their performance.
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CHAPTER 5:
Higher Order 𝑐-Derivatives and Differentials

The derivatives of Boolean, 𝑝-ary, and vectorial functions defined in Chapter 2 are them-
selves functions which can be differentiated again. This leads to the concept of higher order
discrete derivatives and higher order differential cryptanalysis. Inspired by [20], in which
higher order derivatives of functions between Abelian groups are proposed and their appli-
cations to cryptography are discussed, in this chapter we extend the 𝑐-derivative into higher
order, derive some of its properties, and investigate second order 𝑐-differential uniformity
of the inverse function. Material in this chapter is based on Geary, Calderini, Riera, and
Stănică [49].

5.1 Definition and Some Properties
We naturally extend the 𝑐-derivative to higher order with the following definition:

Definition 5.1.1 Let 𝐹 : F𝑝𝑛 → F𝑝𝑚 be an (𝑛, 𝑚, 𝑝)-function. The 𝑖-th 𝑐-derivative of 𝐹 at
(𝑎1, 𝑎2, . . . , 𝑎𝑖) is

𝑐𝐷
(𝑖)
𝑎1,...,𝑎𝑖𝐹 (𝑥) = 𝑐𝐷𝑎𝑖 (𝑐𝐷

(𝑖−1)
𝑎1,...,𝑎𝑖−1𝐹 (𝑥))

where 𝑐𝐷
(𝑖−1)
𝑎1,...,𝑎𝑖−1𝐹 (𝑥) is the (𝑖 − 1)-th derivative of 𝐹 at (𝑎1, 𝑎2, . . . , 𝑎𝑖−1).

This implies the 0-th 𝑐-derivative is the function 𝐹 itself and the 1st 𝑐-derivative is the
𝑐-derivative defined in Chapter 3 and used to generalize multiple cryptographic properties
of vectorial Boolean and 𝑝-ary functions. Notice that when 𝑐 = 1, we recover the traditional
(𝑛, 𝑚, 𝑝)-function higher order derivative.

Before we explore these new higher order derivatives we need to ensure several basic
properties carry over from the traditional (i.e., 𝑐 = 1) case. First, we see that the sum rule
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holds. That is, that the 𝑐-derivative of a sum is a sum of the 𝑐-derivatives.

𝑐𝐷𝑎 (𝐹 + 𝐺) (𝑥) = 𝐹 (𝑥 + 𝑎) + 𝐺 (𝑥 + 𝑎) − 𝑐(𝐹 (𝑥) + 𝐺 (𝑥))
= 𝐹 (𝑥 + 𝑎) − 𝑐𝐹 (𝑥) + 𝐺 (𝑥 + 𝑎) − 𝑐𝐺 (𝑥)
= 𝑐𝐷𝑎𝐹 (𝑥) + 𝑐𝐷𝑎𝐺 (𝑥).

A product rule exists for the traditional derivative, 𝐷𝑎 (𝐹𝐺) (𝑥) = 𝐹 (𝑥 + 𝑎)𝐷𝑎𝐺 (𝑥) +
𝐷𝑎𝐹 (𝑥)𝐺 (𝑥). We find something similar with the 𝑐-derivative,

𝑐𝐷𝑎 (𝐹𝐺) (𝑥) = 𝐹 (𝑥 + 𝑎)𝐺 (𝑥 + 𝑎) − 𝑐𝐹 (𝑥)𝐺 (𝑥)
= 𝐹 (𝑥 + 𝑎) (𝐺 (𝑥 + 𝑎) − 𝑐𝐺 (𝑥)) + ((𝐹 (𝑥 + 𝑎) − 𝐹 (𝑥)) 𝑐𝐺 (𝑥)
= 𝐹 (𝑥 + 𝑎) 𝑐𝐷𝑎𝐺 (𝑥) + 𝑐𝐷𝑎𝐹 (𝑥) 𝑐 𝐺 (𝑥).

Now, we consider the higher order 𝑐-derivatives. When 𝑖 = 2 we have

𝑐𝐷
(2)
𝑎1,𝑎2𝐹 (𝑥) =𝑐𝐷𝑎2 (𝑐𝐷𝑎1𝐹 (𝑥))

=𝑐𝐷𝑎2 (𝐹 (𝑥 + 𝑎1) − 𝑐𝐹 (𝑥))
=𝐹 (𝑥 + 𝑎1 + 𝑎2) − 𝑐𝐹 (𝑥 + 𝑎2) − 𝑐(𝐹 (𝑥 + 𝑎1) − 𝑐𝐹 (𝑥))
=𝐹 (𝑥 + 𝑎1 + 𝑎2) − 𝑐𝐹 (𝑥 + 𝑎2) − 𝑐𝐹 (𝑥 + 𝑎1) + 𝑐2𝐹 (𝑥).

Taking another iteration, we have

𝑐𝐷
(3)
𝑎1,𝑎2,𝑎3𝐹 (𝑥) = 𝐹 (𝑥 + 𝑎1 + 𝑎2 + 𝑎3)

− 𝑐
[
𝐹 (𝑥 + 𝑎1 + 𝑎2) + 𝐹 (𝑥 + 𝑎1 + 𝑎3) + 𝐹 (𝑥 + 𝑎2 + 𝑎3)

]
+ 𝑐2 [𝐹 (𝑥 + 𝑎1) + 𝐹 (𝑥 + 𝑎2) + 𝐹 (𝑥 + 𝑎3)

]
− 𝑐3𝐹 (𝑥).

We see a similar pattern to Proposition 1 in [20], albeit with the additional complication of
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powers of 𝑐, and we find the following identity:

𝐹 (𝑥 + 𝑎1 + 𝑎2 + 𝑎3) = 𝑐𝐷
(3)
𝑎1,𝑎2,𝑎3𝐹 (𝑥)

+ 𝑐
[
𝑐
𝐷

(2)
𝑎1,𝑎2𝐹 (𝑥) +𝑐 𝐷

(2)
𝑎1,𝑎3𝐹 (𝑥) +𝑐 𝐷

(2)
𝑎2,𝑎3𝐹 (𝑥)

]
+ 𝑐2 [

𝑐
𝐷𝑎1 (𝐹 (𝑥)) +𝑐 𝐷𝑎2 (𝐹 (𝑥)) +𝑐 𝐷𝑎3 (𝐹 (𝑥))

]
+ 𝑐3𝐹 (𝑥).

The pattern holds in general, as we now show.

Theorem 5.1.2 Let 𝐹 be an (𝑛, 𝑚, 𝑝)-function with 𝑐𝐷
(𝑖)
𝑎1,...,𝑎𝑖𝐹 (𝑥) the 𝑖-th 𝑐-derivative of

𝐹 at (𝑎1, 𝑎2, . . . , 𝑎𝑖). Then

𝐹 (𝑥 + 𝑎1 + 𝑎2 + · · · + 𝑎𝑛) = 𝑐𝑛𝐹 (𝑥)

+ 𝑐𝑛−1

[
𝑛∑︁
𝑖=1

𝑐𝐷𝑎𝑖𝐹 (𝑥)
]

+ 𝑐𝑛−2


∑︁
1≤ 𝑗1< 𝑗2≤𝑛

𝑐𝐷
2
𝑎 𝑗1 ,𝑎 𝑗2

𝐹 (𝑥)


+ ...

+ 𝑐2


∑︁
1≤ 𝑗1<...< 𝑗𝑖≤𝑛

𝑐𝐷
(𝑛−2)
𝑎 𝑗1 ,...,𝑎 𝑗𝑖

𝐹 (𝑥)


+ 𝑐1


∑︁
1≤ 𝑗1<...< 𝑗𝑖≤𝑛

𝑐𝐷
(𝑛−1)
𝑎 𝑗1 ,...,𝑎 𝑗𝑖

𝐹 (𝑥)


+ 𝑐0
[
𝑐𝐷

(𝑛)
𝑎1,...,𝑎𝑛𝐹 (𝑥)

]
.

In other words,

𝐹 (𝑥 + 𝑎1 + 𝑎2 + · · · + 𝑎𝑛) =
𝑛∑︁
𝑖=0

∑︁
1≤ 𝑗1<...< 𝑗𝑖≤𝑛

𝑐𝑛−𝑖 𝑐𝐷
(𝑖)
𝑎 𝑗1 ,...,𝑎 𝑗𝑖

𝐹 (𝑥). (5.1)
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Proof: Equation 5.1 can also be written as

𝐹 (𝑥 + 𝑎1 + 𝑎2 + · · · + 𝑎𝑛) = 𝑐𝐷
(𝑛)
𝑎1,...,𝑎𝑛𝐹 (𝑥) +

𝑛−1∑︁
𝑖=0

∑︁
1≤ 𝑗1<...< 𝑗𝑖≤𝑛−1

𝑐𝑛−1−𝑖
𝑐𝐷

(𝑖)
𝑎 𝑗1 ,...,𝑎 𝑗𝑖

𝐹 (𝑥),

which implies

𝑐𝐷
(𝑛)
𝑎1,...,𝑎𝑛𝐹 (𝑥) = 𝐹 (𝑥 + 𝑎1 + 𝑎2 + · · · + 𝑎𝑛) −

𝑛−1∑︁
𝑖=0

∑︁
1≤ 𝑗1<...< 𝑗𝑖≤𝑛−1

𝑐𝑛−1−𝑖
𝑐𝐷

(𝑖)
𝑎 𝑗1 ,...,𝑎 𝑗𝑖

𝐹 (𝑥).

We proceed by induction. For 𝑛 = 1, we see (5.1) follows directly from the definition and
𝑛 = 2, 3 can be seen in the discussion before the theorem. Assuming Equation 5.1 holds for
𝑛 − 1, we have

𝑐𝐷
(𝑛)
𝑎1,...,𝑎𝑛𝐹 (𝑥) = 𝑐𝐷𝑎𝑛

(
𝑐𝐷

(𝑛−1)
𝑎1,...,𝑎𝑛−1𝐹 (𝑥)

)
= 𝑐𝐷𝑎𝑛

(
𝐹 (𝑥 + 𝑎1 + · · · + 𝑎𝑛−1) −

𝑛−2∑︁
𝑖=0

∑︁
1≤ 𝑗1<...< 𝑗𝑖≤𝑛−2

𝑐𝑛−2−𝑖
𝑐𝐷

(𝑖)
𝑎 𝑗1 ,...,𝑎 𝑗𝑖

𝐹 (𝑥)
)

= 𝐹 (𝑥 + 𝑎1 + · · · + 𝑎𝑛) − 𝑐𝐹 (𝑥 + 𝑎1 + · · · + 𝑎𝑛−1)

− 𝑐𝐷𝑎𝑛

( 𝑛−2∑︁
𝑖=0

∑︁
1≤ 𝑗1<...< 𝑗𝑖≤𝑛−2

𝑐𝑛−2−𝑖
𝑐𝐷

(𝑖)
𝑎 𝑗1 ,...,𝑎 𝑗𝑖

𝐹 (𝑥)
)
.

We apply the induction hypothesis to 𝑐𝐹 (𝑥 + 𝑎1 + · · · + 𝑎𝑛−1), and noticing the last double
sum is composed of all the 𝑐-derivatives that include 𝑎𝑛, we have

𝐹 (𝑥 + 𝑎1 + · · · + 𝑎𝑛) − 𝑐𝐹 (𝑥 + 𝑎1 + · · · + 𝑎𝑛−1)

− 𝑐𝐷𝑎𝑛

( 𝑛−2∑︁
𝑖=0

∑︁
1≤ 𝑗1<...< 𝑗𝑖≤𝑛−2

𝑐𝑛−2−𝑖
𝑐𝐷

(𝑖)
𝑎 𝑗1 ,...,𝑎 𝑗𝑖

𝐹 (𝑥)
)

= 𝐹 (𝑥 + 𝑎1 + · · · + 𝑎𝑛) − 𝑐
( 𝑛−2∑︁
𝑖=0

∑︁
1≤ 𝑗1<...< 𝑗𝑖≤𝑛−2

𝑐𝑛−2−𝑖
𝑐𝐷

(𝑖)
𝑎 𝑗1 ,...,𝑎 𝑗𝑖

𝐹 (𝑥)
)

−
( 𝑛−1∑︁
𝑖=0

∑︁
1≤ 𝑗1<...< 𝑗𝑖≤𝑛−1

𝑐𝑛−1−𝑖
𝑐𝐷

(𝑖)
𝑎 𝑗1 ,...,𝑎 𝑗𝑖

,𝑎𝑛𝐹 (𝑥)
)
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= 𝐹 (𝑥 + 𝑎1 + · · · + 𝑎𝑛) −
(( 𝑛−2∑︁

𝑖=0

∑︁
1≤ 𝑗1<...< 𝑗𝑖≤𝑛−2

𝑐𝑛−1−𝑖
𝑐𝐷

(𝑖)
𝑎 𝑗1 ,...,𝑎 𝑗𝑖

𝐹 (𝑥)
)

+
( 𝑛−1∑︁
𝑖=0

∑︁
1≤ 𝑗1<...< 𝑗𝑖≤𝑛−1

𝑐𝑛−1−𝑖
𝑐𝐷

(𝑖)
𝑎 𝑗1 ,...,𝑎 𝑗𝑖

,𝑎𝑛𝐹 (𝑥)
))

= 𝐹 (𝑥 + 𝑎1 + · · · + 𝑎𝑛) −
( 𝑛−1∑︁
𝑖=0

∑︁
1≤ 𝑗1<...< 𝑗𝑖≤𝑛−1

𝑐𝑛−1−𝑖
𝑐𝐷

(𝑖)
𝑎 𝑗1 ,...,𝑎 𝑗𝑖

𝐹 (𝑥)
)
.

The claim is shown.

In Corollary 3.3.5 of Chapter 3, we proved permutation polynomials are perfect 0-nonlinear
and vice versa. Now, with Theorem 5.1.2, we can improve upon this result, but first we need
to extend 𝑐-differential uniformity to higher order.

Definition 5.1.3 Let 𝐹 be an (𝑛, 𝑛, 𝑝)-function with 𝑎1, 𝑎2, . . . , 𝑎𝑘 , 𝑏, 𝑐 ∈ F𝑝𝑛 , and let

𝑐Δ𝐹 (𝑎1, 𝑎2, ..., 𝑎𝑘 , 𝑏) = |{𝑥 ∈ F𝑝𝑛 : 𝑐𝐷
(𝑘)
𝑎1,...,𝑎𝑘𝐹 (𝑥) = 𝑏}|. The quantity 𝑐𝛿

(𝑘)
𝐹

=

max{𝑐Δ𝐹 (𝑎1, 𝑎2, ..., 𝑎𝑘 , 𝑏)} is called the 𝑘-th order 𝑐-differential uniformity of 𝐹.

As in the case of first order 𝑐DU, the 𝑘-th order 𝑐DU is counting the maximum number
of solutions of a discrete 𝑐-differential equation, now in higher order: 𝑐𝐷 (𝑘)

𝑎1,...,𝑎𝑘𝐹 (𝑥) = 𝑏.
With this, we can improve upon Corollary 3.3.5.

Corollary 5.1.4 Let 𝐹 be an (𝑛, 𝑛, 𝑝)-function. Then 𝐹 is a 𝑘-th order perfect 0-nonlinear
function for all 𝑘 ≥ 0 if and only if 𝐹 is a permutation polynomial.

Proof: From Theorem 5.1.2 we see that the 𝑘-th 0-derivative of a function 𝐹 is 𝐹 (𝑥 +
𝑎1 + 𝑎2 + · · · + 𝑎𝑘 ), which is bijective if and only if 𝐹 is bijective. Thus permutations have
bijective 𝑘-th 𝑐-derivatives for all 𝑘 when 𝑐 = 0.

While we have shown several properties of the 𝑐-derivative closely align with the tradi-
tional derivative, one key property does not follow. A fundamental property of traditional
derivatives is that the degree of a polynomial function is reduced by at least one for every
derivative taken. That is, deg(𝐷𝑎𝐹 (𝑥)) ≤ deg(𝐹 (𝑥)) −1. This is not always true in the case
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of 𝑐-derivatives when 𝑐 ≠ 1. For example, consider the linearized monomial 𝐹 (𝑥) = 𝑥𝑝𝑘

over F𝑝𝑛 with 𝑘 an integer between 0 and 𝑛. This function has degree 1 (recall that the 𝑝-ary
weight of 𝑝𝑘 is 1) and the 𝑐-derivative of 𝐹 at 𝑎 is (𝑥+𝑎)𝑝𝑘 −𝑐𝑥𝑝𝑘 = (1−𝑐)𝑥𝑝𝑘 +𝑎𝑝𝑘 , which
is also of degree 1 for all 𝑐 ≠ 1. Thus, the reduction of degree is not a general property of
the 𝑐-derivative.

Next, we show that higher order 𝑐-derivatives are invariant under permutation of the 𝑎𝑖’s.

Proposition 5.1.5 Let 𝐹 : F𝑝𝑛 → F𝑝𝑛 , denote [𝑘] := {1, . . . , 𝑘}, and let |𝐼 | be the cardi-
nality of the subsets 𝐼 ⊆ [𝑘]. Then,

𝑐𝐷
(𝑘)
𝑎1,...,𝑎𝑡𝐹 (𝑥) =

∑︁
𝐼⊆[𝑘]

(−𝑐)𝑘−|𝐼 |𝐹
(
𝑥 +

∑︁
𝑖∈𝐼

𝑎𝑖

)
.

In particular, for any permutation 𝜋 of {1, . . . , 𝑘} we have

𝑐𝐷
(𝑘)
𝑎1,...,𝑎𝑘𝐹 (𝑥) = 𝑐𝐷

(𝑘)
𝑎𝜋 (1) ,...,𝑎𝜋 (𝑘)𝐹 (𝑥) .

Proof: Starting with 𝑘 = 2, the right-hand side is computed as follows:

𝐼 = ∅ → (−𝑐)2𝐹 (𝑥) = 𝑐2𝐹 (𝑥).

𝐼 = {1} → (−𝑐)2−1𝐹 (𝑥 + 𝑎1) = −𝑐𝐹 (𝑥 + 𝑎1).

𝐼 = {2} → (−𝑐)2−1𝐹 (𝑥 + 𝑎2) = −𝑐𝐹 (𝑥 + 𝑎2).

𝐼 = {1, 2} → (−𝑐)2−2𝐹 (𝑥 + 𝑎1 + 𝑎2) = 𝐹 (𝑥 + 𝑎1 + 𝑎2).

Summing together these terms is exactly 𝑐𝐷
(2)
𝑎1,𝑎2𝐹 (𝑥), and so we have 𝑐𝐷

(2)
𝑎1,𝑎2𝐹 (𝑥) =∑

𝐼⊆[2] (−𝑐)2−|𝐼 |𝐹 (𝑥 + ∑
𝑖∈𝐼 𝑎𝑖).
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Proceeding by induction, we get

𝑐𝐷
(𝑘)
𝑎1,...,𝑎𝑡𝐹 (𝑥) = 𝑐𝐷

(𝑘−1)
𝑎1,...,𝑎𝑘−1𝐹 (𝑥 + 𝑎𝑘 ) − 𝑐

(
𝑐𝐷

(𝑘−1)
𝑎1,...,𝑎𝑘−1𝐹

)
=

∑︁
𝐼⊆[𝑘−1]

(−𝑐) (𝑘−1)−|𝐼 |𝐹

(
𝑥 + 𝑎𝑘 +

∑︁
𝑖∈𝐼

𝑎𝑖

)
− 𝑐

∑︁
𝐼⊆[𝑘−1]

(−𝑐) (𝑘−1)−|𝐼 |𝐹

(
𝑥 +

∑︁
𝑖∈𝐼

𝑎𝑖

)
=

∑︁
𝐼 ′⊆[𝑘]
𝑘∈𝐼 ′

(−𝑐) (𝑘−1)−(|𝐼 ′ |−1)𝐹

(
𝑥 +

∑︁
𝑖∈𝐼 ′

𝑎𝑖

)
+

∑︁
𝐼 ′⊆[𝑘]
𝑘∉𝐼 ′

(−𝑐)𝑘−|𝐼 ′ |𝐹
(
𝑥 +

∑︁
𝑖∈𝐼 ′

𝑎𝑖

)

=
∑︁
𝐼⊆[𝑘]

(−𝑐)𝑘−|𝐼 |𝐹
(
𝑥 +

∑︁
𝑖∈𝐼

𝑎𝑖

)
.

From this, we can see that permuting the elements 𝑎𝑖 does not change the value of the higher
order 𝑐-derivative.

One of the key findings of higher order derivatives of binary functions is that if the 𝑖 inputs
are not linearly independent, then the 𝑖th derivative is exactly 0. That is, if 𝑎1, 𝑎2, . . . , 𝑎𝑖

are linearly dependent, then 𝐷 (𝑖)
𝑎1,...,𝑎𝑖𝐹 (𝑥) = 0. This limits the number of pairs that can

be attempted in a higher order differential attack to the dimension of the vector space and
reduces the combinations of differences that can be traced simultaneously. However, this
property, and therefore the limits, do not apply for higher order 𝑐-derivatives when 𝑐 ≠ 1,
which can be seen by considering the definition of the 𝑐-derivative. If we let 𝑎 = 0, then

𝑐𝐷0𝐹 (𝑥) = 𝐹 (𝑥 + 0) − 𝑐𝐹 (𝑥) = (1 − 𝑐)𝐹 (𝑥).

Thus, even in the extreme case of zero difference between the input pairs, the 𝑐-derivative
results in a nonzero function. In higher order 𝑐-derivatives this property remains true. For
example, the 2nd 𝑐-derivative has the form

𝑐𝐷
(2)
𝑎1,𝑎2𝐹 (𝑥) = 𝐹 (𝑥 + 𝑎1 + 𝑎2) − 𝑐𝐹 (𝑥 + 𝑎2) − 𝑐𝐹 (𝑥 + 𝑎1) + 𝑐2𝐹 (𝑥).

Even if 𝑎1 = 𝑎2 (and thus linearly dependent), the 2nd 𝑐-derivative is not identically zero due
to the introduction of the 𝑐 multiplier. This fact increases the input (or output) differences
that can be traced through an encryption scheme and potentially increases the vulnerability
of a cipher if a 𝑐-differential attack is realized in the future.
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The final property we show in this section is regarding the non-decreasing behavior of the
𝑡-order 𝑐DU.

Proposition 5.1.6 Let 𝐹 be an (𝑛, 𝑚, 𝑝)-function, 𝑡 ∈ Z+ (positive integers), and 𝑐 ≠ 1,
then the 𝑡-order 𝑐-differential uniformity of 𝐹 is greater than or equal to its (𝑡 − 1)-order
𝑐-differential uniformity, 𝑐𝛿(𝑡)𝐹 ≥ 𝑐𝛿

(𝑡−1)
𝐹

.

Proof: Let 𝑐𝛿(𝑡−1)
𝐹

= 𝛽 for an (𝑛, 𝑚, 𝑝)-function 𝐹 and any 𝑐 ≠ 1. By taking 𝑎𝑡 = 0, we have
𝑐𝐷

(𝑡)
𝑎1,𝑎2,...,𝑎𝑡−1,0𝐹 (𝑥) = (1− 𝑐) 𝑐𝐷 (𝑡−1)

𝑎1,𝑎2,...,𝑎𝑡−1𝐹 (𝑥). With 𝑐 ≠ 1, 𝑐𝛿(𝑡)𝐹 is equal to the maximum
number of solutions to 𝑐𝐷

(𝑡−1)
𝑎1,𝑎2,...,𝑎𝑡−1𝐹 (𝑥) = 𝑏

1−𝑐 . Because 𝑐𝛿
(𝑡−1)
𝐹

= 𝛽, we can always find 𝑏
such that 𝑏

1−𝑐 has 𝛽 solutions. Thus 𝑐𝛿(𝑡)𝐹 is bounded below by 𝛽.

5.2 Second Order 𝑐-Differential Spectrum of the Inverse
Function

Next, we consider an example of a higher order 𝑐-derivative and compare it to the traditional
higher order derivative (i.e., when 𝑐 = 1). The function we investigate is the multiplicative
inverse function over finite fields of characteristic 2, a popular function used in S-boxes
that was a primary motivator in Chapter 4. Recall this function can be represented by a
monomial 𝐹 : F2𝑛 → F2𝑛 , 𝐹 (𝑥) = 𝑥2𝑛−2. We know from Chapter 4 that the 𝑐DU of 𝐹 is 1
for 𝑐 = 0; and 2 or 3, based on the value of 𝑐 ≠ 1. In this section, we count solutions to the
second order 𝑐-differential equation 𝑐𝐷

(2)
𝑎1,𝑎2𝐹 (𝑥) = 𝑏 with 𝑐, 𝑎1, 𝑎2, 𝑏 ∈ F2𝑛 .

The traditional (𝑐 = 1) second order differential spectrum of the inverse function over F2𝑛

was recently investigated in [50]. It was shown that for 𝑛 ≥ 3 the number of solutions to
𝐷𝑎1,𝑎2𝑥

2𝑛−2 = 𝑏 is in the set {0, 4, 8} and that there are multiple 𝑎1, 𝑎2, 𝑏 that provide eight
solutions for 𝑛 ≥ 6.

With this understanding of the behavior of the second traditional derivative of the inverse
function, we now consider the second 𝑐-derivative of the inverse function and compare the
two. Starting with 𝑐𝐷

(2)
𝑎1,𝑎2𝐹 (𝑥) = 𝑏, we have

(𝑥 + 𝑎1 + 𝑎2)2𝑛−2 + 𝑐(𝑥 + 𝑎2)2𝑛−2 + 𝑐(𝑥 + 𝑎1)2𝑛−2 + 𝑐2𝑥2𝑛−2 = 𝑏. (5.2)
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It was shown in [2] that the inverse function has a bijective first 𝑐-derivative when 𝑐 = 0.
In Chapter 3, we showed that any permutation will have a bijective (i.e., balanced) first
𝑐-derivative when 𝑐 = 0. For the second 𝑐-derivative of the inverse function, when 𝑐 = 0,
we get (𝑥 + 𝑎1 + 𝑎2)2𝑛−2 = 𝑏. If 𝑏 = 0, 𝑥 = 𝑎1 + 𝑎2 is the only solution. If 𝑏 ≠ 0, then
𝑥 ≠ 𝑎1 + 𝑎2 and 1

𝑥+𝑎1+𝑎2
= 𝑏. Thus, 𝑥 = 1

𝑏
+ 𝑎1 + 𝑎2 is the only solution and we see when

𝑐 = 0 the second 𝑐-derivative of the inverse function is a bijection, as is in the case of the
first 𝑐-derivative when 𝑐 = 0. In fact, we know this is true for all higher orders as well from
Corollary 5.1.4. For 𝑐 ≠ 0, we consider multiple cases.

Case (𝑖). Let 𝑎1 = 𝑎2. Recall this leads to a trivial result in traditional derivatives. Equa-
tion (5.2) becomes 𝑥2𝑛−2 + 𝑐2𝑥2𝑛−2 = 𝑏, that is, (1 + 𝑐2)𝑥2𝑛−2 = 𝑏. When 𝑏 = 0, 𝑥 = 0 is the
only solution. If 𝑏 ≠ 0, then 𝑥 ≠ 0 and 1+𝑐2

𝑥
= 𝑏 gives us one solution 𝑥 = 1+𝑐2

𝑏
.

Case (𝑖𝑖). 𝑎1 ≠ 𝑎2, and 𝑥 = 𝑎1, 𝑎2, 𝑎1 + 𝑎2, or 0. Equation (5.2) becomes, respectively,

𝑎2𝑛−2
2 + 𝑐(𝑎1 + 𝑎2)2𝑛−2 + 𝑐2𝑎2𝑛−2

1 = 𝑏, or,

𝑎2𝑛−2
1 + 𝑐(𝑎1 + 𝑎2)2𝑛−2 + 𝑐2𝑎2𝑛−2

2 = 𝑏, or,

𝑐𝑎2𝑛−2
2 + 𝑐𝑎2𝑛−2

1 + 𝑐2(𝑎1 + 𝑎2)2𝑛−2 = 𝑏, or,

(𝑎1 + 𝑎2)2𝑛−2 + 𝑐𝑎2𝑛−2
2 + 𝑐𝑎2𝑛−2

1 = 𝑏.

When 𝑐 = 1 all four of these solutions are the same and can be true simultaneously. However,
when 𝑐 ≠ 1 we cannot combine all four of these solutions. In fact, the most that can be
combined are two. Consider the solutions for 𝑎1 and 𝑎2 (the first two above). If we could
combine these, then we would have,

𝑎2𝑛−2
2 + 𝑐(𝑎1 + 𝑎2)2𝑛−2 + 𝑐2𝑎2𝑛−2

1 = 𝑎2𝑛−2
1 + 𝑐(𝑎1 + 𝑎2)2𝑛−2 + 𝑐2𝑎2𝑛−2

2 ,

which simplifies to

𝑎2𝑛−2
2 + 𝑐2𝑎2𝑛−2

1 = 𝑎2𝑛−2
1 + 𝑐2𝑎2𝑛−2

2 , or,

(1 + 𝑐2)𝑎2𝑛−2
1 = (1 + 𝑐2)𝑎2𝑛−2

2 .

For 𝑐 ≠ 1 (which is an assumption throughout), 𝑎1 must equal 𝑎2 which is not true in this
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case. Therefore, the solutions cannot be combined, and we have that no more than three
solutions can be true simultaneously.

Now, we consider the possibility of combining 𝑥 = 0 with 𝑥 = 𝑎1 + 𝑎2. This gives us

𝑐𝑎2𝑛−2
2 + 𝑐𝑎2𝑛−2

1 + 𝑐2(𝑎1 + 𝑎2)2𝑛−2 = (𝑎1 + 𝑎2)2𝑛−2 + 𝑐𝑎2𝑛−2
2 + 𝑐𝑎2𝑛−2

1 ,

which simplifies to 𝑐2(𝑎1+𝑎2)2𝑛−2 = (𝑎1+𝑎2)2𝑛−2. This is only true when 𝑐 = 1 or 𝑎1 = 𝑎2,
neither of which are allowed in this case. From this we immediately see that we can combine
at most two of the solutions in Case (𝑖𝑖). There are only at most four values of 𝑐 that allow
the combination of two of these solutions. As we have seen, there are only four possible
combinations (which in some cases might be equal): 𝑥 = 0 and 𝑥 = 𝑎1, 𝑥 = 0 and 𝑥 = 𝑎2,
𝑥 = 𝑎1 + 𝑎2 and 𝑥 = 𝑎1, and 𝑥 = 𝑎1 + 𝑎2 and 𝑥 = 𝑎2.

Let 𝑥 = 0 and 𝑥 = 𝑎1 be both solutions of the equation above. Then,

(𝑎1 + 𝑎2)2𝑛−2 + 𝑐𝑎2𝑛−2
2 + 𝑐𝑎2𝑛−2

1 = 𝑎2𝑛−2
2 + 𝑐(𝑎1 + 𝑎2)2𝑛−2 + 𝑐2𝑎2𝑛−2

1 .

Rearranging terms, we arrive at (1 + 𝑐) (𝑎1 + 𝑎2)2𝑛−2 + (1 + 𝑐)𝑎2𝑛−2
2 + 𝑐(1 + 𝑐)𝑎2𝑛−2

1 = 0,
which, since 𝑐 ≠ 1, simplifies to (𝑎1 + 𝑎2)2𝑛−2 + 𝑎2𝑛−2

2 + 𝑐𝑎2𝑛−2
1 = 0.

If 𝑎1 = 0, then 𝑥 = 0 and 𝑥 = 𝑎1 are the same solution, so we can assume that 𝑎1 ≠ 0.
If 𝑎2 = 0, we arrive at the equation (1 + 𝑐)𝑎2𝑛−2

1 = 0, which only has the forbidden
solutions 𝑐 = 1 or 𝑎1 = 0. We can then assume that 𝑎1𝑎2 ≠ 0. The equation becomes then
𝑐(𝑎1 + 𝑎2)𝑎2 + 𝑎2

1 = 0, which has a single solution 𝑐0 =
𝑎2

1
(𝑎1+𝑎2)𝑎2

. It is easy to see that 𝑐0 = 0
if and only if 𝑎1 = 0. However, it is possible to obtain that 𝑐0 = 1 if 𝑎2

1 + 𝑎
2
2 + 𝑎1𝑎2 = 0,

which is achievable only if 𝑛 is even and 𝑎1 = 𝑎2𝜔 or 𝑎1 = 𝑎2𝜔
2, where F4 = {0, 1, 𝜔, 𝜔2}.

As long as 𝑛 ≥ 5, we can always choose valid 𝑎1, 𝑎2 to ensure that 𝑐0 ≠ 1. By symmetry,
𝑥 = 0 and 𝑥 = 𝑎2 give 𝑐1 =

𝑎2
2

(𝑎1+𝑎2)𝑎1
, with the same conditions as 𝑥 = 0 and 𝑥 = 𝑎1.

Now, 𝑥 = 𝑎1 + 𝑎2 and 𝑥 = 𝑎1 give

𝑐𝑎2𝑛−2
2 + 𝑐𝑎2𝑛−2

1 + 𝑐2(𝑎1 + 𝑎2)2𝑛−2 = 𝑎2𝑛−2
2 + 𝑐(𝑎1 + 𝑎2)2𝑛−2 + 𝑐2𝑎2𝑛−2

1 ,

which, by rearranging, becomes (1 + 𝑐)𝑎2𝑛−2
2 + 𝑐(1 + 𝑐)𝑎2𝑛−2

1 + 𝑐(1 + 𝑐) (𝑎1 + 𝑎2)2𝑛−2 = 0,
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and, since 𝑐 ≠ 1, this can be simplified to 𝑎2𝑛−2
2 + 𝑐𝑎2𝑛−2

1 + 𝑐(𝑎1 + 𝑎2)2𝑛−2 = 0. If 𝑎1 = 0,
then we have the case 𝑥 = 0, 𝑥 = 𝑎2. If 𝑎2 = 0, we do not have two different solutions.
We can then assume 𝑎1𝑎2 ≠ 0. Then, the equation is equivalent to (𝑎1 + 𝑎2)𝑎1 + 𝑐𝑎2

2 = 0,
which has the solution 𝑐2 =

𝑎1 (𝑎1+𝑎2)
𝑎2

2
. It is easy to see that 𝑐2 ≠ 0, and that 𝑐 ≠ 1 under

the same conditions as for 𝑥 = 0 and 𝑥 = 𝑎1. By symmetry, 𝑥 = 𝑎1 + 𝑎2 and 𝑥 = 𝑎1 gives
𝑐3 =

𝑎2 (𝑎1+𝑎2)
𝑎2

1
.

Case (𝑖𝑖𝑖). 𝑎1 ≠ 𝑎2, 𝑥 ≠ 𝑎1, 𝑎2, 𝑎1 + 𝑎2, or 0. Equation (5.2) becomes

1
𝑥 + 𝑎1 + 𝑎2

+ 𝑐

𝑥 + 𝑎1
+ 𝑐

𝑥 + 𝑎2
+ 𝑐

2

𝑥
= 𝑏.

Multiplying through by (𝑥 + 𝑎1 + 𝑎2) (𝑥 + 𝑎1) (𝑥 + 𝑎2)𝑥, collecting and rearranging terms,
we arrive at

𝑏𝑥4 + (1 + 𝑐2)𝑥3 + (𝑎2 + 𝑐𝑎2 + 𝑏𝑎2
2 + 𝑎1 + 𝑐𝑎1 + 𝑏𝑎2

1 + 𝑏𝑎1𝑎2)𝑥2

+ (𝑎1𝑎2 + 𝑐𝑎2
2 + 𝑐

2𝑎2
2 + 𝑐𝑎

2
1 + 𝑐

2𝑎2
1 + 𝑐

2𝑎1𝑎2 + 𝑏𝑎1𝑎
2
2 + 𝑏𝑎

2
1𝑎2)𝑥

+ 𝑐2𝑎1𝑎2(𝑎1 + 𝑎2) = 0. (5.3)

This quartic polynomial has at most four solutions when 𝑏 ≠ 0 and at most three when
𝑏 = 0. Without the four guaranteed solutions from Case (𝑖𝑖), we cannot reach the eight
solutions possible when 𝑐 = 1. This means that, as in the case of the first 𝑐-derivative of the
inverse function, when 𝑐 ≠ 1 the differential counts decreases from the traditional case. In
fact, when combining Cases (𝑖𝑖) and (𝑖𝑖𝑖), we see a maximum of six solutions is possible if
𝑐 ≠ 1.

We capture the preceding arguments in the following theorem.

Theorem 5.2.1 Let 𝐹 : F𝑝𝑛 → F𝑝𝑛 and 𝐹 (𝑥) = 𝑥2𝑛−2. Then, for any 𝑐 ∈ F2𝑛 \ {1}, we have

𝑐𝛿
(2)
𝐹

≤ 6.

Some computations to demonstrate our findings are listed in Table 5.1. From here, we see
that the maximum is attainable, at least for 𝑛 = 8, 9. We conjecture that it is attainable for
all 𝑛 ≥ 8.
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𝑛 𝑐 = 1 𝑐 ≠ 1 𝑐 = 0
4 4 5 1
5 4 5 1
6 8 5 1
7 8 5 1
8 8 6 1
9 8 6 1

Table 5.1. Maximum Number of Solutions to 𝑐𝐷
(2)
𝑎1,𝑎2𝑥

2𝑛−2 = 𝑏

5.3 Summary
In this chapter, we investigated higher order 𝑐-derivatives and differentials, noting that
traditional derivatives are a special case of our extension (i.e., when 𝑐 = 1). We demon-
strated some properties of these higher order derivatives and compared them to the original
higher order derivatives of (𝑛, 𝑚, 𝑝)-functions. We also looked at the specific case of the
inverse function over fields of even characteristic. While many properties of higher order
𝑐-differentials are preserved from the traditional higher order derivative, a key difference
arises in that the higher order 𝑐-derivatives do not require linearly independent input dif-
ferences. Thus, the higher order 𝑐-derivatives we have introduced could potentially allow
the use of more input pairs (for encryption or decryption), which in turn could lead to
differentials with higher probabilities than traditional higher order differential attacks or the
new 𝑐-differential attack using one derivative.
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CHAPTER 6:
Analysis of Known Substitution Boxes

Chapter 4 explored the new 𝑐-differential uniformity property of vectorial Boolean and 𝑝-ary
functions and demonstrated how, when we move from the classical case of 𝑐 = 1 to the more
general case of 𝑐 ∈ F𝑝𝑚 , the differential count can change significantly. In this chapter, we
use the SageMath mathematical software system to explore the 𝑐DU properties of some real-
world cipher substitution boxes in their published form, and also under certain extended
affine equivalences. The resulting data, summarized at the end of the chapter, provides
insight into how the S-boxes of ciphers currently in use perform against 𝑐-differentials.
Similar to our investigation into particular 𝐸𝐴 equivalent inverse functions in Chapter 4,
we add linearized monomials of the form 𝑥𝑝

𝑡 to the univariate polynomial representation of
each substitution box (S-box) and document how the 𝑐DU changes.

The S-boxes we analyze are binary (𝑛, 𝑛)-functions, with sizes of 4, 5, 6, and 8 bits. In
addition to computing the maximum 𝑐DU of S-boxes in the encryption process, we also
compute the maximum 𝑐DU of the S-box decryption process, as a differential attack could
be conducted with chosen ciphertexts in addition to the usual chosen plaintext method.
We demonstrate that most ciphers perform well under 𝑐-differential analysis. However, in
some cases moving from 𝑐 = 1 to a general 𝑐 in F2𝑛 increases the differential uniformity a
significant amount, while in other cases it stays the same or even decreases. We highlight the
most interesting results after the data and computations have been presented. Throughout
the chapter, we use 𝑆(𝑥) to represent the forward (encryption) action of an S-box and 𝑆−1(𝑥)
to represent the reverse (decryption) action.

6.1 4-bit S-boxes
For all 4-bit S-boxes, we use the finite field F24 represented by F2 [𝑥]/⟨𝑥4 + 𝑥 + 1⟩ with “𝑎”
a root of 𝑥4 + 𝑥 + 1.
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6.1.1 PRESENT
PRESENT is a 64-bit block cipher and was adopted as an International Organization for
Standardization/International Electrotechnical Commission (ISO/IEC) lightweight cryptog-
raphy standard in 2012 [51]. The nonlinear component is based on a 4-bit S-box, presented
in hexadecimal format as:

𝑥 0 1 2 3 4 5 6 7 8 9 A B C D E F
𝑆(𝑥) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 6.1. The S-box of PRESENT

SageMath computations
Univariate polynomials:

𝑆(𝑥) =
(
𝑎3 + 𝑎2 + 1

)
𝑥14 +

(
𝑎3 + 𝑎2 + 1

)
𝑥13 +

(
𝑎3 + 𝑎2) 𝑥12 +

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥11 +(

𝑎3 + 1
)
𝑥10 +

(
𝑎3 + 1

)
𝑥9 +

(
𝑎2 + 𝑎 + 1

)
𝑥8 + 𝑎2𝑥7 +

(
𝑎3 + 𝑎2) 𝑥6 +

(
𝑎3 + 𝑎

)
𝑥5 +(

𝑎3 + 𝑎2 + 𝑎
)
𝑥4 +

(
𝑎2 + 𝑎 + 1

)
𝑥3 +

(
𝑎2 + 𝑎 + 1

)
𝑥2 + 𝑎3 + 𝑎2

𝑆−1(𝑥) =
(
𝑎3 + 𝑎2 + 1

)
𝑥14 + (𝑎 + 1) 𝑥13 +

(
𝑎3 + 𝑎

)
𝑥12 +

(
𝑎3 + 1

)
𝑥11 +

(
𝑎2 + 1

)
𝑥10 +

(𝑎 + 1) 𝑥9+
(
𝑎3 + 1

)
𝑥7+

(
𝑎3 + 1

)
𝑥5+𝑎𝑥4+

(
𝑎3 + 𝑎2 + 1

)
𝑥3+

(
𝑎3 + 𝑎

)
𝑥2+

(
𝑎2 + 1

)
𝑥+𝑎2+1

𝑆(𝑥) 𝑆−1(𝑥)
DU 4 4
max 𝑐DU 4 6
max 𝑐DU with
linearized
monomial 𝑥2𝑡 ,
0 ≤ 𝑡 ≤ 3

5 6

Table 6.2. 𝑐DU of PRESENT

6.1.2 RECTANGLE
RECTANGLE is another 64-bit lightweight block cipher [52]. The 4-bit S-box that provides
the nonlinear component is presented in hexadecimal format as:
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𝑥 0 1 2 3 4 5 6 7 8 9 A B C D E F
𝑆(𝑥) 6 5 C A 1 E 7 9 B 0 3 D 8 F 4 2

Table 6.3. The S-box of RECTANGLE

SageMath computations
Univariate polynomials:

𝑆(𝑥) =
(
𝑎3 + 𝑎2 + 𝑎

)
𝑥14 +

(
𝑎3 + 𝑎2 + 1

)
𝑥13 +

(
𝑎3 + 1

)
𝑥12 + 𝑥11 +

(
𝑎3 + 𝑎2 + 1

)
𝑥10 + 𝑎2𝑥9 +(

𝑎2 + 𝑎
)
𝑥7 + 𝑎3𝑥6 +

(
𝑎3 + 𝑎2) 𝑥5 + 𝑎𝑥4 + 𝑎3𝑥3 +

(
𝑎3 + 𝑎2 + 1

)
𝑥2 + 𝑎2𝑥 + 𝑎2 + 𝑎

𝑆−1(𝑥) =
(
𝑎3 + 𝑎2 + 𝑎

)
𝑥14 +

(
𝑎2 + 𝑎 + 1

)
𝑥13 +

(
𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥12 + 𝑥11 + 𝑥10 + 𝑎3𝑥9 +(

𝑎2 + 𝑎 + 1
)
𝑥8 +

(
𝑎3 + 1

)
𝑥7 +

(
𝑎3 + 𝑎

)
𝑥6 +

(
𝑎3 + 𝑎2) 𝑥5 +

(
𝑎3 + 1

)
𝑥4 +

(
𝑎2 + 𝑎

)
𝑥3 + 𝑥2 +(

𝑎2 + 1
)
𝑥 + 𝑎3 + 1

𝑆(𝑥) 𝑆−1(𝑥)
DU 4 4
max 𝑐DU 5 5
max 𝑐DU with
linearized
monomial 𝑥2𝑡 ,
0 ≤ 𝑡 ≤ 3

7 7

Table 6.4. 𝑐DU of RECTANGLE

6.1.3 SERPENT
SERPENT, a 128-bit block cipher, was a finalist in the AES selection contest [53], finishing
second only to Rijndael. The nonlinear component contains eight separate 4-bit S-boxes.

93



𝑥 0 1 2 3 4 5 6 7 8 9 A B C D E F
𝑆0(𝑥) 3 8 F 1 A 6 5 B E D 4 2 7 0 9 C
𝑆1(𝑥) F C 2 7 9 0 5 A 1 B E 8 6 D 3 4
𝑆2(𝑥) 8 6 7 9 3 C A F D 1 E 4 0 B 5 2
𝑆3(𝑥) 0 F B 8 C 9 6 3 D 1 2 4 A 7 5 E
𝑆4(𝑥) 1 F 8 3 C 0 B 6 2 5 4 A 9 E 7 D
𝑆5(𝑥) F 5 2 B 4 A 9 C 0 3 E 8 D 6 7 1
𝑆6(𝑥) 7 2 C 5 8 4 6 B E 9 1 F D 3 A 0
𝑆7(𝑥) 1 D F 0 E 8 2 B 7 4 C A 9 3 5 6

Table 6.5. The S-boxes of SERPENT

SageMath computations
Univariate polynomials:

𝑆0(𝑥) =
(
𝑎3 + 𝑎2) 𝑥14 +

(
𝑎3 + 1

)
𝑥13 +

(
𝑎2 + 1

)
𝑥12 +

(
𝑎3 + 1

)
𝑥11 +

(
𝑎3 + 𝑎2 + 1

)
𝑥10 + 𝑎3𝑥8 +(

𝑎3 + 𝑎 + 1
)
𝑥7 + 𝑥6 +

(
𝑎2 + 𝑎 + 1

)
𝑥5 +

(
𝑎3 + 1

)
𝑥4 + 𝑥3 +

(
𝑎3 + 𝑎 + 1

)
𝑥2 +

(
𝑎3 + 1

)
𝑥 + 𝑎 + 1

𝑆−1
0 (𝑥) =

(
𝑎3 + 𝑎2) 𝑥14+

(
𝑎3 + 1

)
𝑥13+𝑎𝑥12+

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥11+(𝑎 + 1) 𝑥10+

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥9

+ 𝑎3𝑥8 +
(
𝑎3 + 𝑎 + 1

)
𝑥7 +

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥6 +

(
𝑎2 + 1

)
𝑥5 + 𝑎𝑥4 +

(
𝑎2 + 1

)
𝑥3 + (𝑎 + 1) 𝑥2 +(

𝑎2 + 𝑎
)
𝑥 + 𝑎3 + 𝑎2 + 1

𝑆1(𝑥) =
(
𝑎3 + 𝑎2) 𝑥13 +

(
𝑎3 + 𝑎 + 1

)
𝑥12 + 𝑥11 +

(
𝑎2 + 𝑎 + 1

)
𝑥10 +

(
𝑎3 + 𝑎

)
𝑥9 +(

𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥8 +

(
𝑎3 + 𝑎2 + 1

)
𝑥7 +

(
𝑎3 + 𝑎2 + 1

)
𝑥6 +

(
𝑎3 + 1

)
𝑥5 +

(
𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥4

+
(
𝑎2 + 1

)
𝑥2 + 𝑎2𝑥 + 𝑎3 + 𝑎2 + 𝑎 + 1

𝑆−1
1 (𝑥) =

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥13 +

(
𝑎3 + 𝑎

)
𝑥12 + 𝑥11 +

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥10 +

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥9 +(

𝑎3 + 𝑎 + 1
)
𝑥8 + 𝑎3𝑥7 + 𝑎2𝑥6 +

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥5 +

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥4 + 𝑎𝑥3 +

(
𝑎3 + 𝑎 + 1

)
𝑥2 +(

𝑎2 + 𝑎
)
𝑥 + 𝑎2 + 1

𝑆2(𝑥) = 𝑎3𝑥14+
(
𝑎2 + 1

)
𝑥12+

(
𝑎3 + 𝑎 + 1

)
𝑥11+𝑎𝑥10+𝑎3𝑥9+

(
𝑎2 + 1

)
𝑥8+

(
𝑎3 + 1

)
𝑥7+𝑎3𝑥6+(

𝑎3 + 𝑎2 + 1
)
𝑥5+

(
𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥4+

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥3+

(
𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥2+

(
𝑎2 + 1

)
𝑥+𝑎3

𝑆−1
2 (𝑥) = 𝑎3𝑥14 +

(
𝑎3 + 𝑎2 + 1

)
𝑥13 +

(
𝑎3 + 𝑎2 + 1

)
𝑥11 +

(
𝑎2 + 𝑎

)
𝑥10 +

(
𝑎3 + 𝑎

)
𝑥9 + 𝑎𝑥8 +(

𝑎3 + 𝑎
)
𝑥6 +

(
𝑎2 + 𝑎 + 1

)
𝑥5 +

(
𝑎2 + 𝑎

)
𝑥3 + 𝑥2 +

(
𝑎3 + 1

)
𝑥 + 𝑎3 + 𝑎2
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𝑆3(𝑥) =
(
𝑎2 + 1

)
𝑥14 +

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥13 +

(
𝑎3 + 𝑎2) 𝑥12 +

(
𝑎3 + 𝑎

)
𝑥11 + 𝑎3𝑥10 + 𝑎𝑥9 + 𝑥8 +(

𝑎3 + 𝑎2 + 1
)
𝑥7 +

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥6 +

(
𝑎3 + 𝑎2) 𝑥5 +

(
𝑎3 + 1

)
𝑥4 +

(
𝑎3 + 𝑎

)
𝑥3 + (𝑎 + 1) 𝑥2 +(

𝑎2 + 𝑎
)
𝑥

𝑆−1
3 (𝑥) =

(
𝑎2 + 1

)
𝑥14+

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥13+𝑥12+

(
𝑎3 + 𝑎2) 𝑥11+

(
𝑎2 + 𝑎 + 1

)
𝑥9+

(
𝑎3 + 𝑎 + 1

)
𝑥8+(

𝑎3 + 𝑎2 + 1
)
𝑥7 +

(
𝑎2 + 𝑎

)
𝑥6 + (𝑎 + 1) 𝑥5 +

(
𝑎3 + 𝑎 + 1

)
𝑥4 + 𝑎𝑥3 +

(
𝑎3 + 𝑎

)
𝑥2 + 𝑎3𝑥

𝑆4(𝑥) = 𝑥14 +
(
𝑎3 + 𝑎2) 𝑥13 +

(
𝑎2 + 𝑎

)
𝑥12 +

(
𝑎2 + 𝑎

)
𝑥10 + 𝑎𝑥9 + (𝑎 + 1) 𝑥8 +

(
𝑎3 + 1

)
𝑥7 +(

𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥6 +

(
𝑎3 + 𝑎

)
𝑥5 + 𝑎3𝑥3 +

(
𝑎3 + 1

)
𝑥2 +

(
𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥 + 1

𝑆−1
4 (𝑥) = 𝑥14 +

(
𝑎3 + 𝑎2 + 1

)
𝑥13 +

(
𝑎2 + 1

)
𝑥12 +

(
𝑎3 + 𝑎

)
𝑥10 +

(
𝑎3 + 𝑎

)
𝑥9 +

(
𝑎3 + 𝑎2) 𝑥8 +

𝑎3𝑥7 +
(
𝑎3 + 𝑎2 + 1

)
𝑥6 + (𝑎 + 1) 𝑥5 +

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥3 + (𝑎 + 1) 𝑥2 +

(
𝑎3 + 𝑎 + 1

)
𝑥 + 𝑎2 + 1

𝑆5(𝑥) = 𝑎3𝑥14 + 𝑥13 +
(
𝑎3 + 𝑎

)
𝑥12 +

(
𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥11 + 𝑥10 +

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥9 +(

𝑎3 + 𝑎2 + 𝑎
)
𝑥7 +

(
𝑎3 + 𝑎 + 1

)
𝑥6 +

(
𝑎3 + 1

)
𝑥5 +

(
𝑎3 + 1

)
𝑥4 +

(
𝑎3 + 𝑎

)
𝑥2 +

(
𝑎2 + 𝑎

)
𝑥 +

𝑎3 + 𝑎2 + 𝑎 + 1

𝑆−1
5 (𝑥) = 𝑎3𝑥14 +

(
𝑎3 + 𝑎 + 1

)
𝑥13 +

(
𝑎3 + 𝑎

)
𝑥12 + 𝑎3𝑥11 + 𝑎𝑥9 + 𝑎3𝑥8 + 𝑥7 + 𝑎3𝑥6 +(

𝑎3 + 𝑎2 + 𝑎
)
𝑥5 + 𝑎2𝑥4 + 𝑎2𝑥3 +

(
𝑎3 + 𝑎2 + 1

)
𝑥2 +

(
𝑎2 + 𝑎

)
𝑥 + 𝑎3

𝑆6(𝑥) = 𝑎3𝑥14 + 𝑥13 + 𝑎3𝑥12 + 𝑎3𝑥11 + 𝑎3𝑥10 +
(
𝑎2 + 𝑎

)
𝑥9 + (𝑎 + 1) 𝑥8 +

(
𝑎3 + 𝑎2) 𝑥7 +(

𝑎3 + 𝑎2 + 1
)
𝑥6 +

(
𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥5 +

(
𝑎3 + 𝑎2) 𝑥4 +

(
𝑎3 + 𝑎 + 1

)
𝑥3 +

(
𝑎3 + 𝑎2 + 1

)
𝑥2 +(

𝑎2 + 1
)
𝑥 + 𝑎2 + 𝑎 + 1

𝑆−1
6 (𝑥) = 𝑎3∗𝑥14+(𝑎3+𝑎2+𝑎+1)∗𝑥13+(𝑎+1)∗𝑥12+(𝑎3+𝑎2+𝑎+1)∗𝑥11+(𝑎3+𝑎2+𝑎+1)∗𝑥10+
(𝑎3+𝑎2+𝑎)∗𝑥8+𝑥7+𝑎3∗𝑥6+(𝑎3+1)∗𝑥5+(𝑎3+𝑎)∗𝑥4+𝑎3∗𝑥3+(𝑎3+𝑎2+1)∗𝑥2+𝑎3+𝑎2+𝑎+1

𝑆7(𝑥) = 𝑎𝑥14 +
(
𝑎3 + 𝑎2) 𝑥13 + 𝑎2𝑥12 +

(
𝑎2 + 1

)
𝑥11 +

(
𝑎3 + 1

)
𝑥10 +

(
𝑎3 + 𝑎 + 1

)
𝑥9 +(

𝑎3 + 𝑎2) 𝑥8 +
(
𝑎2 + 𝑎 + 1

)
𝑥7 + 𝑎3𝑥6 + 𝑥5 +

(
𝑎3 + 𝑎

)
𝑥4 + 𝑎𝑥3 +

(
𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥2 + 𝑎2𝑥 + 1

𝑆−1
7 (𝑥) = 𝑎𝑥14 +

(
𝑎2 + 𝑎

)
𝑥13 + 𝑎2𝑥11 +

(
𝑎3 + 𝑎 + 1

)
𝑥10 + 𝑎𝑥9 +

(
𝑎3 + 𝑎

)
𝑥8 + 𝑎3𝑥7 +(

𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥6 +

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥5 +

(
𝑎3 + 1

)
𝑥3 +

(
𝑎3 + 𝑎 + 1

)
𝑥2 +

(
𝑎3 + 𝑎 + 1

)
𝑥 + 𝑎 + 1
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𝑆0(𝑥) 𝑆−1
0 (𝑥) 𝑆1(𝑥) 𝑆−1

1 (𝑥) 𝑆2(𝑥) 𝑆−1
2 (𝑥) 𝑆3(𝑥) 𝑆−1

3 (𝑥)
DU 4 4 4 4 4 4 4 4
max 𝑐DU 5 4 4 5 5 5 6 5
max 𝑐DU with
linearized
monomial 𝑥2𝑡 ,
0 ≤ 𝑡 ≤ 3

6 6 6 6 5 5 5 6

Table 6.6. 𝑐DU of SERPENT S-boxes 𝑆0 − 𝑆3

𝑆4(𝑥) 𝑆−1
4 (𝑥) 𝑆5(𝑥) 𝑆−1

5 (𝑥) 𝑆6(𝑥) 𝑆−1
6 (𝑥) 𝑆7(𝑥) 𝑆−1

7 (𝑥)
DU 4 4 4 4 4 4 4 4
max 𝑐DU 5 4 5 5 5 5 5 4
max 𝑐DU with
linearized
monomial 𝑥2𝑡 ,
0 ≤ 𝑡 ≤ 3

6 5 5 5 5 5 5 6

Table 6.7. 𝑐DU of SERPENT S-boxes 𝑆4 − 𝑆7

6.1.4 SC2000 4
SC2000 is a 128-bit block cipher that utilizes 3 S-boxes: one 4-bit, one 5-bit and one
6-bit [54]. The 4-bit S-box has the following hexadecimal format:

𝑥 0 1 2 3 4 5 6 7 8 9 A B C D E F
𝑆(𝑥) 2 5 A C 7 F 1 B D 6 0 9 4 8 3 E

Table 6.8. The S-box of SC2000 4

SageMath computations
Univariate polynomials:
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𝑆(𝑥) =
(
𝑎3 + 1

)
𝑥12 + 𝑎𝑥11 +

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥10 +

(
𝑎3 + 𝑎 + 1

)
𝑥9 +

(
𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥8 + 𝑥7 +(

𝑎3 + 1
)
𝑥6 +

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥5 +

(
𝑎3 + 𝑎2) 𝑥4 +

(
𝑎2 + 𝑎

)
𝑥3 + 𝑎2𝑥2 +

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥 + 𝑎

𝑆−1(𝑥) = 𝑥13+ (𝑎 + 1) 𝑥11+𝑎𝑥10+𝑎2𝑥9+
(
𝑎3 + 𝑎2) 𝑥8+𝑎3𝑥6+

(
𝑎2 + 𝑎 + 1

)
𝑥5+

(
𝑎2 + 𝑎

)
𝑥4+(

𝑎3 + 𝑎2 + 1
)
𝑥3 + 𝑎𝑥2 + 𝑎𝑥 + 𝑎3 + 𝑎

𝑆(𝑥) 𝑆−1(𝑥)
DU 4 4
max 𝑐DU 5 5
max 𝑐DU with
linearized
monomial 𝑥2𝑡 ,
0 ≤ 𝑡 ≤ 3

6 5

Table 6.9. 𝑐DU of SC2000 4

6.1.5 PRINCE
PRINCE is a block cipher that is optimized with respect to latency when implemented in
hardware [55]. The 4-bit S-box in hexadecimal format is:

𝑥 0 1 2 3 4 5 6 7 8 9 A B C D E F
𝑆(𝑥) B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

Table 6.10. The S-box of PRINCE

SageMath computations
Univariate polynomials:

𝑆(𝑥) =
(
𝑎2 + 𝑎 + 1

)
𝑥14 +

(
𝑎3 + 𝑎

)
𝑥13 + 𝑎3𝑥12 +

(
𝑎2 + 𝑎 + 1

)
𝑥11 +

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥10 + 𝑎3𝑥9 +(

𝑎2 + 𝑎 + 1
)
𝑥8 + 𝑥7 +

(
𝑎2 + 𝑎 + 1

)
𝑥6 +

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥5 +

(
𝑎2 + 𝑎 + 1

)
𝑥4 +

(
𝑎3 + 𝑎 + 1

)
𝑥3 +

𝑎𝑥2 + 𝑥 + 𝑎3 + 𝑎 + 1
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𝑆−1(𝑥) =
(
𝑎2 + 𝑎 + 1

)
𝑥14 + 𝑥13 + 𝑎3𝑥12 +

(
𝑎2 + 𝑎 + 1

)
𝑥11 +

(
𝑎3 + 𝑎

)
𝑥10 +

(
𝑎2 + 𝑎

)
𝑥9 +(

𝑎2 + 𝑎 + 1
)
𝑥8+

(
𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥7+

(
𝑎3 + 1

)
𝑥6+

(
𝑎3 + 𝑎2) 𝑥5+𝑥4+

(
𝑎3 + 𝑎

)
𝑥3+(𝑎 + 1) 𝑥2+(

𝑎3 + 𝑎2) 𝑥 + 𝑎3 + 𝑎 + 1

𝑆(𝑥) 𝑆−1(𝑥)
DU 4 4
max 𝑐DU 5 5
max 𝑐DU with
linearized
monomial 𝑥2𝑡 ,
0 ≤ 𝑡 ≤ 3

5 7

Table 6.11. 𝑐DU of PRINCE

6.2 5-bit S-boxes
For all 5-bit S-boxes, we use the finite field F25 represented by F2 [𝑥]/⟨𝑥5 + 𝑥2 + 1⟩ with “𝑎”
a root of 𝑥5 + 𝑥2 + 1.

6.2.1 FIDES 5
FIDES is lightweight authenticated cipher optimized for hardware implementations [56]. It
uses a 5-bit S-box in the 80-bit version and a 6-bit S-box in the 96-bit version. The 5-bit
S-box in integer format is:

𝑥 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝑆(𝑥) 1 0 25 26 17 29 21 27 20 5 4 23 14 18 2 28

𝑥 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
𝑆(𝑥) 15 8 6 3 13 7 24 16 30 9 31 10 22 12 11 19

Table 6.12. The S-box of FIDES 5
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SageMath computations
Univariate polynomials:

𝑆(𝑥) =
(
𝑎4 + 𝑎2 + 𝑎 + 1

)
𝑥24 +

(
𝑎3 + 𝑎 + 1

)
𝑥20 +

(
𝑎4 + 𝑎

)
𝑥18 + (𝑎 + 1) 𝑥17 +(

𝑎4 + 𝑎3 + 𝑎 + 1
)
𝑥16 +

(
𝑎3 + 𝑎

)
𝑥12 +

(
𝑎4 + 𝑎3 + 𝑎

)
𝑥10 +

(
𝑎4 + 𝑎 + 1

)
𝑥9 +

(
𝑎3 + 𝑎

)
𝑥5 +(

𝑎4 + 𝑎2 + 𝑎 + 1
)
𝑥4 +

(
𝑎4 + 𝑎3 + 𝑎

)
𝑥3 +

(
𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥2 +

(
𝑎3 + 𝑎2 + 1

)
𝑥 + 1

𝑆−1(𝑥) =
(
𝑎2 + 𝑎

)
𝑥26 + 𝑥22 +

(
𝑎4 + 𝑎 + 1

)
𝑥21 +

(
𝑎4 + 1

)
𝑥13 + 𝑎2𝑥11 + 1

𝑆(𝑥) 𝑆−1(𝑥)
DU 2 2
max 𝑐DU 3 6
max 𝑐DU with
linearized
monomial 𝑥2𝑡 ,
0 ≤ 𝑡 ≤ 4

7 7

Table 6.13. 𝑐DU of FIDES 5

6.2.2 DryGASCON
DryGASCON is a 128-bit or 256-bit authenticated encryption with associated data (AEAD)
and hashing algorithm [57]. The 128-bit version includes a 5-bit S-box, presented in integer
format as:

𝑥 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝑆(𝑥) 4 15 27 1 11 0 23 13 31 28 2 16 18 17 12 30

𝑥 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
𝑆(𝑥) 26 25 20 6 21 22 24 10 5 14 9 19 8 3 7 29

Table 6.14. The S-box of DryGASCON

SageMath computations
Univariate polynomials:
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𝑆(𝑥) =
(
𝑎4 + 𝑎3 + 𝑎2) 𝑥24 +

(
𝑎3 + 𝑎 + 1

)
𝑥20 +

(
𝑎4 + 𝑎3 + 𝑎

)
𝑥18 + 𝑎3𝑥17 +

(
𝑎2 + 𝑎

)
𝑥16 +(

𝑎4 + 𝑎3 + 1
)
𝑥12 +

(
𝑎3 + 𝑎2) 𝑥10 + 𝑎𝑥9 +

(
𝑎4 + 𝑎2) 𝑥8 +

(
𝑎4 + 𝑎2 + 𝑎 + 1

)
𝑥6 +(

𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥4 +

(
𝑎3 + 1

)
𝑥3 + 𝑎3𝑥2 +

(
𝑎4 + 𝑎

)
𝑥 + 𝑎2

𝑆−1(𝑥) =
(
𝑎4 + 𝑎2 + 𝑎 + 1

)
𝑥28 +

(
𝑎3 + 1

)
𝑥26 +

(
𝑎4 + 𝑎2) 𝑥25 +

(
𝑎2 + 1

)
𝑥24 +(

𝑎4 + 𝑎3 + 𝑎 + 1
)
𝑥22 +

(
𝑎2 + 𝑎

)
𝑥21 +

(
𝑎4 + 𝑎2 + 𝑎

)
𝑥20 +

(
𝑎4 + 𝑎3 + 𝑎

)
𝑥19 + (𝑎 + 1) 𝑥18 +(

𝑎4 + 𝑎2) 𝑥17 + 𝑎𝑥16 + 𝑎𝑥14 +
(
𝑎3 + 𝑎2 + 1

)
𝑥13 +

(
𝑎3 + 𝑎 + 1

)
𝑥12 +

(
𝑎4 + 𝑎2 + 𝑎

)
𝑥11 +(

𝑎4 + 𝑎3 + 𝑎 + 1
)
𝑥10 + 𝑎4𝑥9 + 𝑎𝑥8 +

(
𝑎4 + 𝑎2) 𝑥6 +

(
𝑎4 + 𝑎2) 𝑥5 +

(
𝑎3 + 𝑎

)
𝑥3 + 𝑎3𝑥2 +(

𝑎4 + 𝑎2) 𝑥 + 𝑎2 + 1

𝑆(𝑥) 𝑆−1(𝑥)
DU 8 8
max 𝑐DU 5 6
max 𝑐DU with
linearized
monomial 𝑥2𝑡 ,
0 ≤ 𝑡 ≤ 4

7 6

Table 6.15. 𝑐DU of DryGASCON

6.2.3 SC2000 5
The 4-bit S-box of SC2000 was analyzed in the previous section. We now consider the 5-bit
S-box of SC2000, presented in integer format as:

𝑥 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝑆(𝑥) 20 26 7 31 19 12 10 15 22 30 13 14 4 24 9 18

𝑥 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
𝑆(𝑥) 27 11 1 21 6 16 2 28 23 5 8 3 0 17 29 25

Table 6.16. The S-box of SC2000 5

SageMath computations
Univariate polynomials:
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𝑆(𝑥) =
(
𝑎4 + 𝑎2 + 𝑎

)
𝑥28+

(
𝑎4 + 𝑎 + 1

)
𝑥25+

(
𝑎4 + 𝑎2 + 𝑎

)
𝑥19+

(
𝑎4 + 𝑎3 + 𝑎2 + 1

)
𝑥14+𝑎4+𝑎2

𝑆−1(𝑥) = 𝑎3𝑥24 + 𝑎3𝑥20 +
(
𝑎4 + 𝑎 + 1

)
𝑥18 +

(
𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥17 +

(
𝑎3 + 𝑎2 + 1

)
𝑥16 + 𝑥12 +(

𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥10+

(
𝑎3 + 𝑎2 + 1

)
𝑥9+

(
𝑎3 + 𝑎2) 𝑥8+𝑎𝑥6+𝑥5+(𝑎 + 1) 𝑥4+

(
𝑎2 + 1

)
𝑥3+(

𝑎3 + 𝑎2 + 1
)
𝑥2 + 𝑎3𝑥 + 𝑎4 + 𝑎3 + 𝑎2

𝑆(𝑥) 𝑆−1(𝑥)
DU 2 2
max 𝑐DU 6 3
max 𝑐DU with
linearized
monomial 𝑥2𝑡 ,
0 ≤ 𝑡 ≤ 4

6 5

Table 6.17. 𝑐DU of SC2000 5

6.2.4 Shamash
Shamash is a 128-bit authenticated cipher [58] with a 5-bit S-box in integer format as:

𝑥 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝑆(𝑥) 16 14 13 2 11 17 21 30 7 24 18 28 26 1 12 6

𝑥 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
𝑆(𝑥) 31 25 0 23 20 22 8 27 4 3 19 5 9 10 29 15

Table 6.18. The S-box of Shamash

SageMath computations
Univariate polynomials:

𝑆(𝑥) =
(
𝑎3 + 𝑎2 + 𝑎

)
𝑥24 +

(
𝑎2 + 1

)
𝑥20 +

(
𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥18 +

(
𝑎3 + 1

)
𝑥17 +

(
𝑎4 + 1

)
𝑥16 +(

𝑎2 + 𝑎
)
𝑥12 +

(
𝑎4 + 𝑎3 + 𝑎 + 1

)
𝑥10 +

(
𝑎2 + 𝑎

)
𝑥9 +

(
𝑎3 + 𝑎2) 𝑥8 +

(
𝑎3 + 𝑎

)
𝑥5 +(

𝑎4 + 𝑎2 + 1
)
𝑥4 +

(
𝑎4 + 1

)
𝑥3 +

(
𝑎4 + 𝑎2 + 1

)
𝑥2 +

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥 + 𝑎4
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𝑆−1(𝑥) =
(
𝑎4 + 𝑎2 + 1

)
𝑥28 +

(
𝑎4 + 𝑎2 + 1

)
𝑥26 +

(
𝑎3 + 𝑎2 + 1

)
𝑥25 + (𝑎 + 1) 𝑥24 +(

𝑎4 + 𝑎3 + 𝑎2 + 1
)
𝑥22 + 𝑎3𝑥21 +

(
𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥20 +

(
𝑎4 + 𝑎 + 1

)
𝑥19 +(

𝑎4 + 𝑎3 + 𝑎2 + 1
)
𝑥18 + 𝑎𝑥17 +

(
𝑎2 + 𝑎 + 1

)
𝑥16 + 𝑎3𝑥14 +

(
𝑎4 + 𝑎2) 𝑥13 +

(
𝑎4 + 𝑎3 + 𝑎2) 𝑥12 +(

𝑎4 + 𝑎2 + 1
)
𝑥11 +

(
𝑎4 + 𝑎3) 𝑥10 +

(
𝑎4 + 𝑎 + 1

)
𝑥9 + 𝑥8 +

(
𝑎4 + 𝑎2 + 𝑎

)
𝑥7 +(

𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥6 +

(
𝑎4 + 𝑎

)
𝑥5 + 𝑥4 +

(
𝑎4 + 𝑎2) 𝑥3 + 𝑎3𝑥2 +

(
𝑎4 + 𝑎3 + 1

)
𝑥 + 𝑎4 + 𝑎

𝑆(𝑥) 𝑆−1(𝑥)
DU 2 2
max 𝑐DU 6 7
max 𝑐DU with
linearized
monomial 𝑥2𝑡 ,
0 ≤ 𝑡 ≤ 4

6 6

Table 6.19. 𝑐DU of Shamash

6.3 6-bit S-boxes
For all 6-bit S-boxes, we use the finite field F26 represented by F2 [𝑥]/⟨𝑥6 + 𝑥4 + 𝑥3 + 𝑥 + 1⟩
with “𝑎” a root of 𝑥6 + 𝑥4 + 𝑥3 + 𝑥 + 1.

6.3.1 FIDES 6
The 5-bit S-box of the 80-bit version FIDES of was analyzed in the previous section. Next
we consider the 6-bit S-box of the 96-bit version of FIDES, presented in integer format as:
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𝑥 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝑆(𝑥) 54 0 48 13 15 18 35 53 63 25 45 52 3 20 33 41

𝑥 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
𝑆(𝑥) 8 10 57 37 59 36 34 2 26 50 58 24 60 19 14 42

𝑥 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
𝑆(𝑥) 46 61 5 49 31 11 28 4 12 30 55 22 9 6 32 23

𝑥 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
𝑆(𝑥) 27 39 21 17 16 29 62 1 40 47 51 56 7 43 38 44

Table 6.20. The S-box of FIDES 6

SageMath computations
Univariate polynomials:

𝑆(𝑥) =
(
𝑎3 + 𝑎 + 1

)
𝑥60 +

(
𝑎5 + 𝑎4 + 𝑎3) 𝑥58 + 𝑎5𝑥57 +

(
𝑎5 + 𝑎3 + 𝑎2) 𝑥56 + 𝑥54 +(

𝑎5 + 𝑎2 + 1
)
𝑥53 +

(
𝑎4 + 𝑎2 + 𝑎 + 1

)
𝑥52 +

(
𝑎5 + 𝑎4 + 𝑎2) 𝑥51 +

(
𝑎5 + 𝑎4 + 𝑎2 + 𝑎

)
𝑥50 +(

𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 1
)
𝑥49 +

(
𝑎5 + 𝑎4 + 𝑎3 + 𝑎 + 1

)
𝑥48 +

(
𝑎5 + 𝑎4 + 𝑎2 + 𝑎 + 1

)
𝑥46 +(

𝑎5 + 𝑎3 + 𝑎 + 1
)
𝑥45 +

(
𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥44 +

(
𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥43 +(

𝑎4 + 𝑎3 + 𝑎2 + 1
)
𝑥42 +

(
𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥41 +

(
𝑎2 + 𝑎 + 1

)
𝑥40 +

(
𝑎3 + 𝑎2 + 1

)
𝑥39 +(

𝑎3 + 𝑎2) 𝑥38 +
(
𝑎4 + 𝑎3) 𝑥37 + (𝑎 + 1) 𝑥36 +

(
𝑎5 + 𝑎

)
𝑥35 + 𝑎4𝑥34 +

(
𝑎5 + 𝑎4) 𝑥33 +(

𝑎5 + 𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥32 +

(
𝑎2 + 1

)
𝑥30 +

(
𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥29 +(

𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 1
)
𝑥28 +

(
𝑎3 + 𝑎 + 1

)
𝑥27 +

(
𝑎5 + 𝑎3) 𝑥26 +

(
𝑎5 + 𝑎3 + 𝑎

)
𝑥25 +(

𝑎3 + 𝑎
)
𝑥24 +

(
𝑎5 + 𝑎3 + 𝑎

)
𝑥23 +

(
𝑎5 + 1

)
𝑥22 +

(
𝑎3 + 𝑎 + 1

)
𝑥21 +

(
𝑎4 + 𝑎3) 𝑥20 +(

𝑎5 + 𝑎3 + 𝑎
)
𝑥19 +

(
𝑎5 + 𝑎4 + 𝑎2) 𝑥18 + 𝑎5𝑥17 +

(
𝑎5 + 𝑎4 + 𝑎3 + 1

)
𝑥16 +(

𝑎5 + 𝑎4 + 𝑎3 + 𝑎2) 𝑥15 +
(
𝑎4 + 1

)
𝑥14 +

(
𝑎5 + 𝑎4 + 𝑎3 + 1

)
𝑥13 +

(
𝑎5 + 𝑎4 + 𝑎2 + 1

)
𝑥12 +(

𝑎3 + 𝑎
)
𝑥11 +

(
𝑎4 + 𝑎3 + 1

)
𝑥10 +

(
𝑎5 + 𝑎3 + 𝑎 + 1

)
𝑥9 +

(
𝑎5 + 𝑎4 + 𝑎2 + 𝑎 + 1

)
𝑥8 +(

𝑎5 + 𝑎2 + 𝑎
)
𝑥7 +

(
𝑎4 + 𝑎2) 𝑥5 +

(
𝑎5 + 𝑎3 + 𝑎2) 𝑥4 +

(
𝑎3 + 𝑎

)
𝑥3 +

(
𝑎5 + 1

)
𝑥2 +

(
𝑎4 + 1

)
𝑥 +

𝑎5 + 𝑎4 + 𝑎2 + 𝑎

𝑆−1(𝑥) =
(
𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥60 +

(
𝑎4 + 𝑎3 + 𝑎2 + 1

)
𝑥58 +

(
𝑎4 + 𝑎

)
𝑥57 +(

𝑎2 + 𝑎 + 1
)
𝑥56 +

(
𝑎4 + 𝑎3 + 𝑎2 + 1

)
𝑥54 +

(
𝑎5 + 𝑎2 + 1

)
𝑥53 +

(
𝑎5 + 𝑎4 + 𝑎2) 𝑥52 +(

𝑎3 + 𝑎2 + 𝑎
)
𝑥51 +

(
𝑎4 + 𝑎3 + 𝑎 + 1

)
𝑥50 +

(
𝑎5 + 𝑎3 + 𝑎 + 1

)
𝑥49 +

(
𝑎5 + 𝑎4 + 𝑎 + 1

)
𝑥48 +(

𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥46 +

(
𝑎3 + 𝑎 + 1

)
𝑥45 +

(
𝑎2 + 1

)
𝑥44 +

(
𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥43 +
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(
𝑎3 + 𝑎

)
𝑥42 +

(
𝑎5 + 𝑎4 + 𝑎2) 𝑥41 + 𝑎2𝑥40 +

(
𝑎5 + 𝑎4 + 𝑎2 + 𝑎

)
𝑥39 +

(
𝑎4 + 𝑎3 + 1

)
𝑥38 +(

𝑎3 + 1
)
𝑥37+

(
𝑎4 + 𝑎2 + 𝑎 + 1

)
𝑥36+

(
𝑎5 + 𝑎4 + 𝑎2) 𝑥35+

(
𝑎5 + 1

)
𝑥34+

(
𝑎5 + 𝑎2 + 𝑎 + 1

)
𝑥33

+ 𝑎4𝑥32 +
(
𝑎5 + 𝑎4 + 𝑎3 + 𝑎2) 𝑥30 + 𝑎3𝑥29 +

(
𝑎5 + 𝑎4 + 𝑎3 + 1

)
𝑥28 +

(
𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥27 +(

𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥26 +

(
𝑎5 + 𝑎4 + 𝑎3 + 𝑎 + 1

)
𝑥25 +

(
𝑎3 + 𝑎2) 𝑥24 +

(
𝑎5 + 𝑎4) 𝑥23 +(

𝑎5 + 𝑎4 + 𝑎3) 𝑥22 +
(
𝑎4 + 𝑎2 + 1

)
𝑥21 +

(
𝑎3 + 𝑎2) 𝑥20 +

(
𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥19 +

(
𝑎5 + 𝑎4) 𝑥18

+ 𝑎2𝑥17 +
(
𝑎5 + 𝑎4 + 1

)
𝑥16 +

(
𝑎5 + 𝑎4 + 𝑎2) 𝑥15 +

(
𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥14 +

(
𝑎4 + 𝑎

)
𝑥13 +

𝑎3𝑥12+
(
𝑎3 + 𝑎 + 1

)
𝑥11+

(
𝑎2 + 𝑎

)
𝑥10+

(
𝑎5 + 1

)
𝑥9+

(
𝑎5 + 𝑎2 + 𝑎 + 1

)
𝑥8+

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥7+(

𝑎5 + 𝑎4 + 𝑎2 + 1
)
𝑥6 +

(
𝑎4 + 𝑎3) 𝑥5 +

(
𝑎5 + 𝑎2) 𝑥4 +

(
𝑎2 + 1

)
𝑥3 +

(
𝑎5 + 𝑎4 + 𝑎3 + 1

)
𝑥2 +(

𝑎4 + 𝑎2 + 𝑎
)
𝑥 + 1

𝑆(𝑥) 𝑆−1(𝑥)
DU 2 2
max 𝑐DU 7 6
max 𝑐DU with
linearized
monomial 𝑥2𝑡 ,
0 ≤ 𝑡 ≤ 5

7 8

Table 6.21. 𝑐DU of FIDES 6

6.3.2 SC2000 6
The 4 and 5-bit S-boxes of SC2000 were analyzed in the previous sections. The 6-bit S-box
has the following integer format:
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𝑥 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝑆(𝑥) 47 59 25 42 15 23 28 39 26 38 36 19 60 24 29 56

𝑥 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
𝑆(𝑥) 37 63 20 61 55 2 30 44 9 10 6 22 53 48 51 11

𝑥 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
𝑆(𝑥) 62 52 35 18 14 46 0 54 17 40 27 4 31 8 5 12

𝑥 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
𝑆(𝑥) 3 16 41 34 33 7 45 49 50 58 1 21 43 57 32 13

Table 6.22. The S-box of SC2000 6

SageMath computations
Univariate polynomials: 𝑆(𝑥) =

(
𝑎2 + 1

)
𝑥62 +

(
𝑎2 + 𝑎 + 1

)
𝑥61 +

(
𝑎5 + 𝑎

)
𝑥60 +(

𝑎4 + 𝑎3 + 𝑎2 + 1
)
𝑥59 +

(
𝑎5 + 1

)
𝑥57 + 𝑎5𝑥56 +

(
𝑎4 + 𝑎 + 1

)
𝑥55 +

(
𝑎4 + 𝑎3 + 𝑎2 + 1

)
𝑥54 +(

𝑎5 + 𝑎2 + 𝑎 + 1
)
𝑥53 +

(
𝑎4 + 𝑎 + 1

)
𝑥52 + 𝑎4𝑥51 +

(
𝑎5 + 𝑎3) 𝑥50 +

(
𝑎3 + 𝑎2) 𝑥49 + 𝑎3𝑥48 +(

𝑎5 + 𝑎4 + 𝑎2) 𝑥47 +
(
𝑎5 + 𝑎3 + 1

)
𝑥46 +

(
𝑎5 + 𝑎3 + 1

)
𝑥45 +

(
𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥44 +(

𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥43 +

(
𝑎5 + 𝑎

)
𝑥42 +

(
𝑎5 + 𝑎3 + 𝑎2) 𝑥41 +

(
𝑎5 + 𝑎3 + 𝑎2) 𝑥40 +(

𝑎3 + 𝑎2 + 𝑎
)
𝑥39 +

(
𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥38 +

(
𝑎5 + 𝑎4 + 𝑎 + 1

)
𝑥37 +

(
𝑎5 + 𝑎2 + 1

)
𝑥36 +(

𝑎5 + 𝑎4 + 𝑎3 + 𝑎
)
𝑥35 +

(
𝑎4 + 𝑎3 + 𝑎

)
𝑥34 +

(
𝑎2 + 1

)
𝑥33 +

(
𝑎5 + 𝑎 + 1

)
𝑥32 +

(
𝑎2 + 𝑎 + 1

)
𝑥31

+
(
𝑎5 + 𝑎4 + 𝑎 + 1

)
𝑥30 +

(
𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥29 +

(
𝑎5 + 𝑎2 + 𝑎

)
𝑥28 +

(
𝑎4 + 𝑎2 + 1

)
𝑥27 +(

𝑎5 + 1
)
𝑥26 +

(
𝑎3 + 1

)
𝑥25 +

(
𝑎5 + 𝑎2 + 1

)
𝑥24 +

(
𝑎3 + 𝑎2 + 𝑎

)
𝑥23 +(

𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥22 +

(
𝑎5 + 𝑎4 + 𝑎 + 1

)
𝑥21 +

(
𝑎4 + 𝑎3) 𝑥20 + 𝑎3𝑥19 +(

𝑎4 + 𝑎3 + 1
)
𝑥18 +

(
𝑎4 + 𝑎3 + 𝑎2) 𝑥17 +

(
𝑎4 + 𝑎3 + 𝑎2) 𝑥16 +

(
𝑎4 + 𝑎2 + 1

)
𝑥15 + (𝑎 + 1) 𝑥14 +(

𝑎5 + 𝑎3 + 𝑎2) 𝑥13 +
(
𝑎4 + 𝑎2 + 1

)
𝑥12 +

(
𝑎5 + 𝑎3 + 𝑎2) 𝑥11 +

(
𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥10 +(

𝑎5 + 𝑎4 + 𝑎2 + 1
)
𝑥9 +

(
𝑎5 + 𝑎4 + 𝑎3 + 𝑎2) 𝑥8 +

(
𝑎4 + 𝑎 + 1

)
𝑥7 +

(
𝑎4 + 𝑎

)
𝑥6 +(

𝑎5 + 𝑎4 + 𝑎
)
𝑥5+

(
𝑎4 + 1

)
𝑥4+

(
𝑎4 + 𝑎3 + 𝑎2) 𝑥3+

(
𝑎5 + 𝑎3 + 𝑎2) 𝑥2+𝑎4𝑥+𝑎5+𝑎3+𝑎2+𝑎+1

𝑆−1(𝑥) =
(
𝑎2 + 1

)
𝑥62 +

(
𝑎4 + 𝑎2 + 1

)
𝑥61 +

(
𝑎5 + 𝑎3) 𝑥60 +

(
𝑎5 + 𝑎 + 1

)
𝑥59 +(

𝑎5 + 𝑎4 + 𝑎3 + 1
)
𝑥58 +

(
𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥57 +

(
𝑎5 + 𝑎2 + 𝑎

)
𝑥56 + 𝑎2𝑥55 +(

𝑎5 + 𝑎3) 𝑥54 +
(
𝑎4 + 𝑎2 + 1

)
𝑥53 +

(
𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 1

)
𝑥52 +

(
𝑎5 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥51 +(

𝑎4 + 𝑎2) 𝑥50 +
(
𝑎4 + 𝑎2 + 𝑎

)
𝑥49 +

(
𝑎5 + 𝑎3 + 𝑎2) 𝑥48 +

(
𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥47 +(

𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎
)
𝑥46 +

(
𝑎5 + 𝑎3 + 𝑎2 + 1

)
𝑥45 +

(
𝑎5 + 𝑎4 + 1

)
𝑥44 +

(
𝑎4 + 𝑎3) 𝑥43 +
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(
𝑎5 + 𝑎4 + 𝑎3 + 1

)
𝑥41 +

(
𝑎4 + 𝑎2) 𝑥40 +

(
𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥39 +

(
𝑎5 + 𝑎2) 𝑥38 +(

𝑎5 + 𝑎4 + 𝑎2 + 𝑎 + 1
)
𝑥37 +

(
𝑎5 + 𝑎2) 𝑥36 +

(
𝑎5 + 𝑎

)
𝑥35 +

(
𝑎4 + 1

)
𝑥34 +

(
𝑎5 + 𝑎4 + 1

)
𝑥33 +(

𝑎5 + 𝑎2 + 𝑎
)
𝑥32 +

(
𝑎5 + 𝑎4 + 1

)
𝑥31 +

(
𝑎5 + 𝑎3 + 𝑎

)
𝑥30 +

(
𝑎3 + 𝑎

)
𝑥29 + 𝑎2𝑥28 + 𝑎2𝑥27 +(

𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥26 +

(
𝑎3 + 𝑎2) 𝑥25 +

(
𝑎3 + 𝑎2 + 1

)
𝑥23 +

(
𝑎5 + 𝑎4 + 𝑎3) 𝑥22 +(

𝑎5 + 𝑎4 + 𝑎3 + 𝑎
)
𝑥21 +

(
𝑎5 + 𝑎4 + 𝑎2 + 𝑎 + 1

)
𝑥20 +

(
𝑎5 + 𝑎4 + 𝑎 + 1

)
𝑥19 +(

𝑎5 + 𝑎4 + 𝑎 + 1
)
𝑥18 +

(
𝑎4 + 𝑎3 + 𝑎2 + 1

)
𝑥17 +

(
𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥16 + 𝑎4𝑥15 +(

𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥14 +

(
𝑎5 + 𝑎3 + 1

)
𝑥13 + 𝑎4𝑥12 +

(
𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥11 +(

𝑎5 + 𝑎2 + 𝑎 + 1
)
𝑥10 +

(
𝑎2 + 𝑎

)
𝑥9 +

(
𝑎4 + 𝑎2 + 𝑎 + 1

)
𝑥8 +

(
𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 1

)
𝑥7 +(

𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥6 +

(
𝑎3 + 𝑎2 + 1

)
𝑥5 +

(
𝑎4 + 𝑎

)
𝑥4 +

(
𝑎4 + 𝑎3 + 1

)
𝑥3 +

(
𝑎4 + 𝑎3 + 𝑎 + 1

)
𝑥2

+
(
𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥 + 𝑎5 + 𝑎2 + 𝑎

𝑆(𝑥) 𝑆−1(𝑥)
DU 4 4
max 𝑐DU 6 6
max 𝑐DU with
linearized
monomial 𝑥2𝑡 ,
0 ≤ 𝑡 ≤ 5

7 7

Table 6.23. 𝑐DU of SC2000 6

6.4 8-bit S-boxes
For all 8-bit S-boxes, we use the finite field F28 represented by F2 [𝑥]/⟨𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1⟩
with “𝑎” a root of 𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1. Due to the length of the univariate polynomials for
the 8-bit S-boxes, they are not listed in this section, but a few examples are included in the
Appendix.

6.4.1 AES
As described in Chapter 4, AES is a 128-bit U.S. federal government block cipher standard.
The nonlinear component is an 8-bit S-box based off the inverse function over F28 , shown
in hexadecimal format in Table 6.24. The column of the table is determined by the right
four bits and the row is determined by the left 4 bits.
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00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Table 6.24. The S-box of AES

SageMath computations
Univariate polynomials are listed in the Appendix.

𝑆(𝑥) 𝑆−1(𝑥)
DU 4 4
max 𝑐DU 9 8
max 𝑐DU with
linearized
monomial 𝑥2𝑡 ,
0 ≤ 𝑡 ≤ 7

9 9

Table 6.25. 𝑐DU of AES

6.4.2 Twofish
Twofish was another 128-bit block cipher finalist in the AES competition [59]. The nonlinear
component is based on four 8-bit key dependent S-box (KDSB). The main building blocks
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of these KDSBs are two 8-bit S-boxes, called 𝑞0 and 𝑞1, which we analyze for 𝑐-differential
uniformity.

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 a9 67 b3 e8 4 fd a3 76 9a 92 80 78 e4 dd d1 38
10 d c6 35 98 18 f7 ec 6c 43 75 37 26 fa 13 94 48
20 f2 d0 8b 30 84 54 df 23 19 5b 3d 59 f3 ae a2 82
30 63 1 83 2e d9 51 9b 7c a6 eb a5 be 16 c e3 61
40 c0 8c 3a f5 73 2c 25 b bb 4e 89 6b 53 6a b4 f1
50 e1 e6 bd 45 e2 f4 b6 66 cc 95 3 56 d4 1c 1e d7
60 fb c3 8e b5 e9 cf bf ba ea 77 39 af 33 c9 62 71
70 81 79 9 ad 24 cd f9 d8 e5 c5 b9 4d 44 8 86 e7
80 a1 1d aa ed 6 70 b2 d2 41 7b a0 11 31 c2 27 90
90 20 f6 60 ff 96 5c b1 ab 9e 9c 52 1b 5f 93 a ef
a0 91 85 49 ee 2d 4f 8f 3b 47 87 6d 46 d6 3e 69 64
b0 2a ce cb 2f fc 97 5 7a ac 7f d5 1a 4b e a7 5a
c0 28 14 3f 29 88 3c 4c 2 b8 da b0 17 55 1f 8a 7d
d0 57 c7 8d 74 b7 c4 9f 72 7e 15 22 12 58 7 99 34
e0 6e 50 de 68 65 bc db f8 c8 a8 2b 40 dc fe 32 a4
f0 ca 10 21 f0 d3 5d f 0 6f 9d 36 42 4a 5e c1 e0

Table 6.26. The 𝑞0 S-box of Twofish

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 75 f3 c6 f4 db 7b fb c8 4a d3 e6 6b 45 7d e8 4b
10 d6 32 d8 fd 37 71 f1 e1 30 f f8 1b 87 fa 6 3f
20 5e ba ae 5b 8a 0 bc 9d 6d c1 b1 e 80 5d d2 d5
30 a0 84 7 14 b5 90 2c a3 b2 73 4c 54 92 74 36 51
40 38 b0 bd 5a fc 60 62 96 6c 42 f7 10 7c 28 27 8c
50 13 95 9c c7 24 46 3b 70 ca e3 85 cb 11 d0 93 b8
60 a6 83 20 ff 9f 77 c3 cc 3 6f 8 bf 40 e7 2b e2
70 79 c aa 82 41 3a ea b9 e4 9a a4 97 7e da 7a 17
80 66 94 a1 1d 3d f0 de b3 b 72 a7 1c ef d1 53 3e
90 8f 33 26 5f ec 76 2a 49 81 88 ee 21 c4 1a eb d9
a0 c5 39 99 cd ad 31 8b 1 18 23 dd 1f 4e 2d f9 48
b0 4f f2 65 8e 78 5c 58 19 8d e5 98 57 67 7f 5 64
c0 af 63 b6 fe f5 b7 3c a5 ce e9 68 44 e0 4d 43 69
d0 29 2e ac 15 59 a8 a 9e 6e 47 df 34 35 6a cf dc
e0 22 c9 c0 9b 89 d4 ed ab 12 a2 d 52 bb 2 2f a9
f0 d7 61 1e b4 50 4 f6 c2 16 25 86 56 55 9 be 91

Table 6.27. The 𝑞1 S-box of Twofish
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SageMath computations

𝑆0(𝑥) 𝑆−1
0 (𝑥)

DU 10 10
max 𝑐DU 8 8
max 𝑐DU with
linearized
monomial 𝑥2𝑡 ,
0 ≤ 𝑡 ≤ 7

9 8

Table 6.28. 𝑐DU of Twofish 𝑞0

𝑆1(𝑥) 𝑆−1
1 (𝑥)

DU 10 10
max 𝑐DU 7 8
max 𝑐DU with
linearized
monomial 𝑥2𝑡 ,
0 ≤ 𝑡 ≤ 7

10 8

Table 6.29. 𝑐DU of Twofish 𝑞1

6.4.3 CLEFIA
CLEFIA is a 128-bit block cipher developed by the Sony Corporation [60]. Two different
types of 8-bit S-boxes are employed. 𝑆0 is based on combinations of 4-bit S-boxes, while
𝑆1, similar to the AES S-box, is an affine transformation of the inverse function over F28 .
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00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 57 49 d1 c6 2f 33 74 fb 95 6d 82 ea 0e b0 a8 1c
10 28 d0 4b 92 5c ee 85 b1 c4 0a 76 3d 63 f9 17 af
20 bf a1 19 65 f7 7a 32 20 06 ce e4 83 9d 5b 4c d8
30 42 5d 2e e8 d4 9b 0f 13 3c 89 67 c0 71 aa b6 f5
40 a4 be fd 8c 12 00 97 da 78 e1 cf 6b 39 43 55 26
50 30 98 cc dd eb 54 b3 8f 4e 16 fa 22 a5 77 09 61
60 d6 2a 53 37 45 c1 6c ae ef 70 08 99 8b 1d f2 b4
70 e9 c7 9f 4a 31 25 fe 7c d3 a2 bd 56 14 88 60 0b
80 cd e2 34 50 9e dc 11 05 2b b7 a9 48 ff 66 8a 73
90 03 75 86 f1 6a a7 40 c2 b9 2c db 1f 58 94 3e ed
a0 fc 1b a0 04 b8 8d e6 59 62 93 35 7e ca 21 df 47
b0 15 f3 ba 7f a6 69 c8 4d 87 3b 9c 01 e0 de 24 52
c0 7b 0c 68 1e 80 b2 5a e7 ad d5 23 f4 46 3f 91 c9
d0 6e 84 72 bb 0d 18 d9 96 f0 5f 41 ac 27 c5 e3 3a
e0 81 6f 07 a3 79 f6 2d 38 1a 44 5e b5 d2 ec cb 90
f0 9a 36 e5 29 c3 4f ab 64 51 f8 10 d7 bc 02 7d 8e

Table 6.30. The 𝑆0 S-box of CLEFIA

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 6c da c3 e9 4e 9d 0a 3d b8 36 b4 38 13 34 0c d9
10 bf 74 94 8f b7 9c e5 dc 9e 07 49 4f 98 2c b0 93
20 12 eb cd b3 92 e7 41 60 e3 21 27 3b e6 19 d2 0e
30 91 11 c7 3f 2a 8e a1 bc 2b c8 c5 0f 5b f3 87 8b
40 fb f5 de 20 c6 a7 84 ce d8 65 51 c9 a4 ef 43 53
50 25 5d 9b 31 e8 3e 0d d7 80 ff 69 8a ba 0b 73 5c
60 6e 54 15 62 f6 35 30 52 a3 16 d3 28 32 fa aa 5e
70 cf ea ed 78 33 58 09 7b 63 c0 c1 46 1e df a9 99
80 55 04 c4 86 39 77 82 ec 40 18 90 97 59 dd 83 1f
90 9a 37 06 24 64 7c a5 56 48 08 85 d0 61 26 ca 6f
a0 7e 6a b6 71 a0 70 05 d1 45 8c 23 1c f0 ee 89 ad
b0 7a 4b c2 2f db 5a 4d 76 67 17 2d f4 cb b1 4a a8
c0 b5 22 47 3a d5 10 4c 72 cc 00 f9 e0 fd e2 fe ae
d0 f8 5f ab f1 1b 42 81 d6 be 44 29 a6 57 b9 af f2
e0 d4 75 66 bb 68 9f 50 02 01 3c 7f 8d 1a 88 bd ac
f0 f7 e4 79 96 a2 fc 6d b2 6b 03 e1 2e 7d 14 95 1d

Table 6.31. The 𝑆1 S-box of CLEFIA
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SageMath computations

𝑆0(𝑥) 𝑆−1
0 (𝑥)

DU 10 10
max 𝑐DU 8 7
max 𝑐DU with
linearized
monomial 𝑥2𝑡 ,
0 ≤ 𝑡 ≤ 7

9 9

Table 6.32. 𝑐DU of CLEFIA 𝑆0

𝑆1(𝑥) 𝑆−1
1 (𝑥)

DU 4 4
max 𝑐DU 9 8
max 𝑐DU with
linearized
monomial 𝑥2𝑡 ,
0 ≤ 𝑡 ≤ 7

9 9

Table 6.33. 𝑐DU of CLEFIA 𝑆1

6.4.4 SM4
SM4 (formally named SMS4) is a 128-bit Chinese Government block cipher standard [61].
Similar to AES, the nonlinear component is an 8-bit S-box based off the inverse function
over F28 , in hexadecimal format as:
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00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 D6 90 E9 FE CC E1 3D B7 16 B6 14 C2 28 FB 2C 05
10 2B 67 9A 76 2A BE 04 C3 AA 44 13 26 49 86 06 99
20 9C 42 50 F4 91 EF 98 7A 33 54 0B 43 ED CF AC 62
30 E4 B3 1C A9 C9 08 E8 95 80 DF 94 FA 75 8F 3F A6
40 47 07 A7 FC F3 73 17 BA 83 59 3C 19 E6 85 4F A8
50 68 6B 81 B2 71 64 DA 8B F8 EB 0F 4B 70 56 9D 35
60 1E 24 0E 5E 63 58 D1 A2 25 22 7C 3B 01 21 78 87
70 D4 00 46 57 9F D3 27 52 4C 36 02 E7 A0 C4 C8 9E
80 EA BF 8A D2 40 C7 38 B5 A3 F7 F2 CE F9 61 15 A1
90 E0 AE 5D A4 9B 34 1A 55 AD 93 32 30 F5 8C B1 E3
a0 1D F6 E2 2E 82 66 CA 60 C0 29 23 AB 0D 53 4E 6F
b0 D5 DB 37 45 DE FD 8E 2F 03 FF 6A 72 6D 6C 5B 51
c0 8D 1B AF 92 BB DD BC 7F 11 D9 5C 41 1F 10 5A D8
d0 0A C1 31 88 A5 CD 7B BD 2D 74 D0 12 B8 E5 B4 B0
e0 89 69 97 4A 0C 96 77 7E 65 B9 F1 09 C5 6E C6 84
f0 18 F0 7D EC 3A DC 4D 20 79 EE 5F 3E D7 CB 39 48

Table 6.34. The S-box of SM4

SageMath computations

𝑆(𝑥) 𝑆−1(𝑥)
DU 4 4
max 𝑐DU 9 8
max 𝑐DU with
linearized
monomial 𝑥2𝑡 ,
0 ≤ 𝑡 ≤ 7

9 9

Table 6.35. 𝑐DU of SM4

6.5 Summary of Results
In this chapter, we evaluated S-boxes from multiple real-world ciphers and documented
their 𝑐DU performance both as published and with certain extended affine transformations.
We now highlight some of the findings.
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We analyzed 12 different 4-bit S-boxes from five different ciphers. The largest change from
traditional DU to 𝑐DU was from 4 to 6, which occurred both in PRESENT’s S-box and
SERPENT’s 𝑆6 S-box. The other 10 4-bit S-boxes analyzed remained the same or saw an
increase of only 1. With the addition of linearized monomials, two S-boxes (RECTANGLE
and PRINCE) had an increase of 𝑐DU to 7.

The 5-bit S-boxes produce more interesting results. FIDES 5, Shamash, and SC2000 all have
almost perfect nonlinear (APN) S-boxes. That is, DU = 2 when 𝑐 = 1. In the Shamash S-box
we see an increase from 2 to 7 in 𝑐DU, more than tripling the traditional DU value. For the
FIDES 5 and SC2000 S-boxes, the maximum 𝑐DU triples to 6. For SC2000 this happens
in the forward direction (encryption), for FIDES this happens in the reverse direction
(decryption). Thus, the chances of finding large differential characteristics could potential
increase significantly in these three cases. Adding a linearized monomial to FIDES bumps
the maximum up to 7, while SC2000 stays at a maximum 𝑐DU of 6. DryGASCON128,
on the other hand, has a DU of 8, and a maximum 𝑐DU of 6. The linearized monomial
only increases the 𝑐DU to 7. Thus, 𝑐 = 1 results in the highest value and the multiplicative
differential decreases the chance of a finding a high differential characteristic with the
DryGASCON S-box, even with the 𝐸𝐴 transformations we analyzed.

We encounter both FIDES and SC2000 again the in case of 6-bit S-boxes. The 6-bit S-box
of FIDES, like the 5-bit version, is APN. This is noteworthy in that to date there is only one
known APN permutation, up to affine equivalence, in any even dimension [62]. Therefore,
the FIDES 6-bit S-box must be affine equivalent to the APN permutation presented by
Dillon et al in [63]. The maximum 𝑐DU of the FIDES 6 S-box is 7 and increases slightly
to 8 with a linearized monomial. The 6-bit S-box of SC2000 moves from a DU of 4 to a
maximum 𝑐DU of 6 and with a linearized monomial to 7.

While none of the 8-bit S-boxes we analyzed had the 𝑐DU triple in value from DU as we
saw in the 5-bit case, several S-boxes saw more than doubling. The S-boxes of AES, SM4,
and CLEFIA’s 𝑆1 are all affine equivalent to the inverse function and have DU of 4. The
max 𝑐DU of all three is 9. If we let 𝐹 be the inverse function over F28 and 𝐴 be an affine
transformation of F28 , then this implies that the affine transformations of these S-boxes
must be of the form 𝐴(𝐹 (𝑥)) as we showed earlier transformations of the form 𝐹 (𝐴(𝑥))
preserve 𝑐DU. Although 9

256 is still a small differential, it could potentially result in a higher
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differential characteristic of the cipher as a whole. Perhaps surprisingly, considering the
results in Chapter 4, the maximum 𝑐DU of these three S-boxes did not increase from 9
when adding a linearized monomial. The Twofish building blocks 𝑞0 and 𝑞1 and CLEFIA’s
𝑆0 saw a decrease in their differential uniformity from a traditional DU of 10, even when
adding linearized monomials.

We conclude this computational analysis by noting that even a relatively high maximum
𝑐DU value would only be the starting point for a potential 𝑐-differential attack and each
cipher would need to be considered holistically to determine any future vulnerabilities.
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CHAPTER 7:
Conclusion and Future Research

7.1 Conclusion
The goal of this research has been to further the theoretical and practical understanding of the
newly proposed 𝑐-differential, which has the potential to expand differential cryptanalysis
against block ciphers. Using the 𝑐-derivative, we modified the autocorrelation function and
generalized multiple cryptographic properties of vectorial Boolean and 𝑝-ary functions
to account for the new differential. This led to the new notions of perfect 𝑐-nonlinearity,
𝑐-differential bentness, and 𝑐-avalanche characteristics, which we investigated in Chapter
3. We showed that our balanced derivative, 0-valued autocorrelation definition of perfect
𝑐-nonlinearity is equivalent to our Walsh-Hadamard transform product definition of 𝑐-
differential bentness, maintaining the traditional equivalence between perfect nonlinearity
and bent functions. Our extension of avalanche characteristics includes the notion of 𝑐-
global avalanche characteristics, where we capture bounds on this new property and expand
the idea of how diffusion looks in a substitution box.

Returning to the primary reason the 𝑐-differential was introduced in the first place, we
explored the 𝑐-differential uniformity of the multiplicative inverse function, a popular sub-
stitution box primitive, in Chapter 4. We found certain extended affine transformations that,
unlike in the case of traditional differential uniformity, significantly increase the maximum
value in the 𝑐DU spectrum. Thus, if a 𝑐-differential attack is ever realized, a cryptographic
designer will not be able to substitute certain 𝐸𝐴 equivalent functions without increasing
the vulnerability of an exploitation. The specific 𝐸𝐴 transformations that resulted in the
largest increases were in the form of a linearized monomials, but we also showed there are
more general linearized polynomials that can cause large increases in the maximum 𝑐DU
value.

We then extended 𝑐-derivatives and differentials into higher order in Chapter 5, demonstrat-
ing several properties and discussing where they diverge from traditional higher derivatives.
We returned to the multiplicative inverse function to conduct an analysis of its second order
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𝑐-differential spectrum and showed that it is lower valued than the traditional second order
differential count.

Finally, we used the SageMath mathematical software system to compute the maximum 𝑐DU
of many real-world cipher substitution boxes both as published and with the addition of
the linearized monomials in Chapter 6. We end with the observation that, if a 𝑐-differential
attack comes to fruition, the differential characteristics and susceptibility of a cipher to
attack will have to be reevaluated using analysis and computations similar to our work in
this dissertation.

7.2 Future Research
We see the following lines as potential continuations of this research:

• The 𝑐DU of the inverse function significantly increased under certain 𝐸𝐴 transfor-
mations. How do the 𝑐DU spectrums of other functions behave under 𝐸𝐴 transfor-
mations?

• The real-world substitution boxes we analyzed for 𝑐-differential uniformity were all 𝑛
by 𝑛. However, some popular S-boxes use Feistel network designs that employ 𝑛 by 𝑚
S-boxes. How do the differential counts of these functions change with a 𝑐 multiplier?

• The work in this dissertation focuses on one S-box at a time. How does tracing the
resulting 𝑐DU through multiple rounds and multiple S-boxes affect the differential
characteristics of some recognizable ciphers? In other words, will the linear (diffusion)
layers of a cipher allow for a 𝑐 other than ±1?

• We analyzed the second order 𝑐DU of the inverse function, but how do third and higher
orders perform? How do other functions perform with higher order 𝑐-differentials?

• We have investigated what happens when we take the 𝑐-derivative of a function, but
can we go the other way? That is, is there a technique to “integrate” with respect to
the 𝑐-derivative?
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APPENDIX: Univariate Polynomials and 
SageMath Code

This appendix has two sections. The first section includes a few of the univariate polynomials
of 8-bit S-boxes from Chapter 6 that were not displayed due to their length. These examples
are provided to demonstrate how complex S-box polynomials can be over finite fields. For
this reason and the fact that all values of 𝑐 ∈ F𝑝𝑛 must be evaluated to compute maximum
𝑐DU, computations for 8-bit S-boxes proved very time consuming. In the second section,
we provide most of the code we used for computations of examples and our analysis of
S-boxes.

A.1 8-bit Polynomials: AES
AES is one of the 8-bit S-boxes analyzed in Chapter 6. Recall in SageMath we compute
over the finite field F28 represented by F2 [𝑥]/⟨𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1⟩ with “𝑎” a root
of 𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1. Both forward (encryption) and reverse (decryption) univariate
polynomials are provided below.

𝑆(𝑥) = (𝑎 + 1) 𝑥254+
(
𝑎6 + 𝑎5 + 𝑎2) 𝑥253+

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎

)
𝑥252+

(
𝑎7 + 𝑎5 + 𝑎3 + 𝑎 + 1

)
𝑥251

+
(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎3 + 𝑎

)
𝑥250 +

(
𝑎7 + 𝑎2 + 1

)
𝑥249 +

(
𝑎4 + 𝑎3 + 𝑎2 + 1

)
𝑥248

+
(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎

)
𝑥247 +

(
𝑎4 + 1

)
𝑥246 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎3) 𝑥245 +

(
𝑎5 + 1

)
𝑥244 +(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎 + 1
)
𝑥243 +

(
𝑎7 + 𝑎5 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥242 +

(
𝑎7 + 𝑎6 + 𝑎4) 𝑥241 +(

𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎
)
𝑥240+

(
𝑎6 + 𝑎4 + 𝑎3 + 1

)
𝑥239+

(
𝑎7 + 𝑎6 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥238

+
(
𝑎7 + 𝑎6 + 𝑎3 + 𝑎

)
𝑥237 +

(
𝑎7 + 𝑎6 + 𝑎4 + 𝑎 + 1

)
𝑥236 +

(
𝑎4 + 𝑎3 + 𝑎 + 1

)
𝑥235 +(

𝑎7 + 𝑎4 + 𝑎2 + 𝑎
)
𝑥234+

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4) 𝑥233+

(
𝑎7 + 𝑎6) 𝑥232+

(
𝑎7 + 𝑎6 + 𝑎4 + 𝑎3 + 𝑎

)
𝑥231

+
(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎3 + 𝑎2 + 1

)
𝑥230 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎2 + 𝑎

)
𝑥229 +

(
𝑎6 + 𝑎5 + 𝑎

)
𝑥228 +(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎3) 𝑥227 +
(
𝑎7 + 𝑎6 + 𝑎

)
𝑥226 +

(
𝑎5 + 𝑎3 + 𝑎2) 𝑥225 +(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎3 + 𝑎2 + 1
)
𝑥224 +

(
𝑎7 + 𝑎5 + 𝑎3 + 𝑎

)
𝑥223 +

(
𝑎5 + 𝑎3) 𝑥222 +(

𝑎7 + 𝑎6 + 𝑎3 + 𝑎 + 1
)
𝑥221+

(
𝑎5 + 𝑎4 + 𝑎 + 1

)
𝑥220+

(
𝑎5 + 𝑎4 + 𝑎2) 𝑥219+

(
𝑎6 + 𝑎3 + 𝑎2) 𝑥218+(

𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 1
)
𝑥217 +

(
𝑎7 + 𝑎5 + 𝑎2 + 1

)
𝑥216 +

(
𝑎7 + 𝑎6 + 𝑎4 + 𝑎3 + 1

)
𝑥215 +(

𝑎6 + 𝑎4 + 𝑎3) 𝑥214 +
(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎2) 𝑥213 +

(
𝑎6 + 𝑎4 + 𝑎 + 1

)
𝑥212 +

(
𝑎5 + 𝑎

)
𝑥211 +(

𝑎5 + 𝑎4) 𝑥210 +
(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎2 + 𝑎 + 1

)
𝑥209 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎3) 𝑥208 +
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(
𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥207+

(
𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥206+

(
𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 1

)
𝑥205+(

𝑎7 + 𝑎4 + 𝑎3 + 1
)
𝑥204 +

(
𝑎5 + 𝑎3 + 𝑎

)
𝑥203 +

(
𝑎7 + 𝑎4 + 𝑎3 + 𝑎

)
𝑥202 +

(
𝑎6 + 𝑎5 + 𝑎3) 𝑥201 +(

𝑎7 + 𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥200 +

(
𝑎5 + 𝑎 + 1

)
𝑥199 +

(
𝑎7 + 𝑎6 + 𝑎5) 𝑥198 +(

𝑎7 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥197 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥196 +

(
𝑎5 + 𝑎3) 𝑥195 +(

𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎
)
𝑥194 +

(
𝑎6 + 𝑎2 + 𝑎

)
𝑥193 +

(
𝑎6 + 𝑎3 + 𝑎 + 1

)
𝑥192 +

(
𝑎4 + 1

)
𝑥191 +(

𝑎4 + 𝑎 + 1
)
𝑥190 +

(
𝑎7 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥189 +

(
𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥188 +(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎2 + 𝑎
)
𝑥187 +

(
𝑎6 + 𝑎5 + 𝑎3 + 𝑎

)
𝑥186 +

(
𝑎5 + 𝑎4 + 𝑎2 + 1

)
𝑥185 + 𝑎7𝑥184 +(

𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 1
)
𝑥183 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎3) 𝑥182 +

(
𝑎7 + 𝑎6 + 𝑎4 + 𝑎2) 𝑥181 +(

𝑎7 + 𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥180 +

(
𝑎7 + 𝑎2 + 𝑎

)
𝑥179 + 𝑎7𝑥178 +

(
𝑎7 + 𝑎6 + 𝑎4 + 𝑎3 + 𝑎 + 1

)
𝑥177 +(

𝑎6 + 𝑎5 + 𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥176 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥175 +

(
𝑎3 + 1

)
𝑥174 +(

𝑎7 + 𝑎6 + 𝑎3 + 𝑎2 + 1
)
𝑥173 + 𝑎6𝑥172 +

(
𝑎7 + 𝑎4 + 1

)
𝑥171 + 𝑎2𝑥169 +

(
𝑎7 + 1

)
𝑥168 +(

𝑎7 + 𝑎4 + 𝑎2 + 𝑎
)
𝑥167+𝑎𝑥166+

(
𝑎7 + 𝑎4 + 𝑎

)
𝑥165+

(
𝑎5 + 𝑎3 + 𝑎

)
𝑥164+

(
𝑎6 + 𝑎4 + 𝑎 + 1

)
𝑥163

+
(
𝑎7 + 𝑎5 + 1

)
𝑥162 +

(
𝑎7 + 𝑎6 + 𝑎4 + 1

)
𝑥161 +

(
𝑎6 + 𝑎5 + 𝑎2 + 𝑎 + 1

)
𝑥160 +(

𝑎6 + 𝑎5 + 𝑎3 + 𝑎
)
𝑥159 +

(
𝑎6 + 𝑎4 + 𝑎2) 𝑥158 +

(
𝑎7 + 𝑎4) 𝑥157 +

(
𝑎5 + 1

)
𝑥156 +(

𝑎7 + 𝑎5 + 𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥155 +

(
𝑎7 + 𝑎5 + 𝑎3) 𝑥154 +

(
𝑎7 + 𝑎5 + 𝑎4 + 𝑎3) 𝑥153 +(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎
)
𝑥152 +

(
𝑎4 + 𝑎3 + 𝑎

)
𝑥151 +

(
𝑎6 + 𝑎4 + 𝑎2 + 1

)
𝑥150 +

(
𝑎3 + 𝑎

)
𝑥149 +(

𝑎5 + 𝑎4 + 𝑎3 + 𝑎
)
𝑥148 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥147 +

(
𝑎7 + 𝑎5 + 𝑎3 + 𝑎

)
𝑥146 +

𝑥145 +
(
𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2) 𝑥144 + 𝑎𝑥143 +

(
𝑎7 + 𝑎6 + 𝑎3 + 𝑎2 + 1

)
𝑥142 +(

𝑎7 + 𝑎6 + 𝑎4 + 𝑎2 + 𝑎 + 1
)
𝑥141 +

(
𝑎7 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎 + 1

)
𝑥140 +

(
𝑎6 + 𝑎5 + 𝑎3) 𝑥139 +(

𝑎6 + 𝑎5 + 𝑎4 + 𝑎2 + 𝑎 + 1
)
𝑥138 +

(
𝑎5 + 𝑎4 + 𝑎3 + 𝑎

)
𝑥137 +

(
𝑎7 + 𝑎6 + 𝑎2 + 1

)
𝑥136 +(

𝑎5 + 𝑎4 + 𝑎3 + 1
)
𝑥135+

(
𝑎7 + 𝑎4 + 𝑎2) 𝑥134+

(
𝑎7 + 𝑎6 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥133+

(
𝑎6 + 𝑎

)
𝑥132

+
(
𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 1

)
𝑥131 +

(
𝑎5 + 𝑎2 + 𝑎

)
𝑥130 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎2 + 𝑎 + 1

)
𝑥129 +(

𝑎6 + 𝑎5 + 𝑎4 + 𝑎3) 𝑥128 +
(
𝑎7 + 𝑎6 + 𝑎4 + 𝑎3 + 𝑎 + 1

)
𝑥127 +

(
𝑎4 + 𝑎2 + 𝑎 + 1

)
𝑥126 +(

𝑎7 + 𝑎2 + 1
)
𝑥125 +

(
𝑎6 + 1

)
𝑥124 +

(
𝑎7 + 𝑎5 + 𝑎3 + 1

)
𝑥123 +

(
𝑎7 + 𝑎6 + 𝑎

)
𝑥122 +(

𝑎7 + 𝑎5 + 𝑎3 + 𝑎2 + 1
)
𝑥121 +

(
𝑎7 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥120 +

(
𝑎7 + 𝑎6 + 𝑎4) 𝑥119 +(

𝑎5 + 𝑎4 + 𝑎3 + 𝑎
)
𝑥118 +

(
𝑎6 + 𝑎5 + 𝑎3 + 𝑎2 + 1

)
𝑥117 +

(
𝑎5 + 𝑎4 + 𝑎2 + 1

)
𝑥116 +(

𝑎7 + 𝑎5 + 𝑎3 + 𝑎2) 𝑥115 +
(
𝑎6 + 𝑎5 + 𝑎4 + 𝑎2 + 𝑎

)
𝑥114 +

(
𝑎6 + 𝑎5 + 𝑎4 + 𝑎2 + 𝑎 + 1

)
𝑥113 +(

𝑎7 + 𝑎6 + 𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥112+

(
𝑎5 + 𝑎4 + 𝑎2 + 𝑎 + 1

)
𝑥111+

(
𝑎7 + 𝑎6 + 𝑎4 + 𝑎3 + 𝑎

)
𝑥110+(

𝑎6 + 𝑎5 + 𝑎4 + 1
)
𝑥109+

(
𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥108+

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎 + 1

)
𝑥107+(

𝑎6 + 𝑎5 + 𝑎2 + 𝑎
)
𝑥106 +

(
𝑎7 + 𝑎6 + 𝑎4) 𝑥105 +

(
𝑎7 + 𝑎5 + 𝑎3) 𝑥104 +

(
𝑎7 + 𝑎3 + 1

)
𝑥103 +(

𝑎4 + 𝑎
)
𝑥102 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎3 + 1

)
𝑥101 +

(
𝑎5 + 𝑎4 + 𝑎3) 𝑥100 +(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎 + 1
)
𝑥99 +

(
𝑎7 + 𝑎5 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥98 +

(
𝑎6 + 𝑎5 + 𝑎3 + 𝑎2 + 1

)
𝑥97 +(

𝑎4 + 𝑎3 + 𝑎 + 1
)
𝑥96 +

(
𝑎4 + 𝑎3 + 𝑎 + 1

)
𝑥95 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎

)
𝑥94 +
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(
𝑎6 + 𝑎5 + 𝑎2 + 𝑎

)
𝑥93 +

(
𝑎6 + 𝑎5 + 𝑎4 + 𝑎 + 1

)
𝑥92 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎

)
𝑥91 +(

𝑎6 + 𝑎4 + 𝑎3 + 1
)
𝑥90 +

(
𝑎7 + 𝑎6 + 1

)
𝑥89 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎2 + 𝑎

)
𝑥88 +

(
𝑎7 + 𝑎

)
𝑥87 +(

𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎
)
𝑥86 +

(
𝑎7 + 𝑎5 + 𝑎3 + 𝑎2 + 1

)
𝑥85 +

(
𝑎7 + 𝑎2 + 𝑎 + 1

)
𝑥84 +(

𝑎7 + 𝑎5 + 𝑎4 + 𝑎
)
𝑥83 +

(
𝑎6 + 1

)
𝑥82 + 𝑥81 +

(
𝑎7 + 𝑎3 + 𝑎2 + 1

)
𝑥80 +(

𝑎7 + 𝑎6 + 𝑎4 + 𝑎2 + 1
)
𝑥79 +

(
𝑎7 + 𝑎5 + 𝑎2) 𝑥78 +

(
𝑎5 + 𝑎3 + 𝑎2) 𝑥77 +(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 1
)
𝑥76 +

(
𝑎7 + 𝑎6 + 𝑎4 + 𝑎3 + 1

)
𝑥75 +

(
𝑎7 + 𝑎6 + 𝑎2 + 1

)
𝑥74 +(

𝑎6 + 𝑎2 + 1
)
𝑥73 +

(
𝑎7 + 𝑎4 + 𝑎2) 𝑥72 +

(
𝑎6 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥71 +

(
𝑎7 + 𝑎6 + 𝑎3 + 𝑎

)
𝑥70 +(

𝑎7 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎
)
𝑥69 +

(
𝑎5 + 𝑎3 + 𝑎 + 1

)
𝑥68 +

(
𝑎5 + 𝑎 + 1

)
𝑥67 +

(
𝑎2 + 𝑎

)
𝑥66 +(

𝑎6 + 𝑎5 + 𝑎3 + 1
)
𝑥65 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 1

)
𝑥64 +

(
𝑎6 + 𝑎4 + 𝑎 + 1

)
𝑥63 +(

𝑎5 + 𝑎2 + 1
)
𝑥62 +

(
𝑎6 + 𝑎5 + 𝑎4 + 𝑎2) 𝑥61 +

(
𝑎4 + 𝑎3) 𝑥60 +

(
𝑎6 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥59 +(

𝑎7 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥58 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎2 + 𝑎 + 1

)
𝑥57 +

(
𝑎5 + 𝑎4 + 𝑎3 + 𝑎2) 𝑥56 +(

𝑎3 + 1
)
𝑥55 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎3) 𝑥54 +

(
𝑎7 + 𝑎4 + 𝑎 + 1

)
𝑥53 +(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎2 + 𝑎 + 1
)
𝑥52 +

(
𝑎6 + 𝑎4 + 𝑎 + 1

)
𝑥51 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎

)
𝑥50 +(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥49 +

(
𝑎7 + 𝑎6 + 𝑎4 + 𝑎2) 𝑥48 +(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 1
)
𝑥47+

(
𝑎5 + 𝑎3 + 𝑎2 + 1

)
𝑥46+

(
𝑎5 + 𝑎3 + 𝑎

)
𝑥45+

(
𝑎7 + 𝑎3) 𝑥44+(

𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎 + 1
)
𝑥43 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎2) 𝑥41 +

(
𝑎6 + 𝑎5 + 𝑎3 + 1

)
𝑥40 +(

𝑎6 + 𝑎5 + 𝑎3 + 𝑎2 + 1
)
𝑥39 +

(
𝑎7 + 𝑎5 + 𝑎3 + 𝑎2 + 1

)
𝑥38 +

(
𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥37 +(

𝑎7 + 𝑎6 + 𝑎3 + 𝑎 + 1
)
𝑥36 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎

)
𝑥35 +

(
𝑎7 + 𝑎5 + 𝑎3) 𝑥34 +(

𝑎7 + 𝑎6 + 𝑎4 + 𝑎3 + 𝑎
)
𝑥33 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2) 𝑥32 +

(
𝑎6 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥31 +(

𝑎7 + 𝑎6 + 𝑎4 + 𝑎3 + 𝑎2 + 1
)
𝑥30+

(
𝑎6 + 𝑎5 + 𝑎2 + 𝑎

)
𝑥29+

(
𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥28+(

𝑎5 + 𝑎3 + 𝑎2) 𝑥27 +
(
𝑎5 + 𝑎4 + 𝑎3 + 𝑎 + 1

)
𝑥26 +

(
𝑎7 + 𝑎3) 𝑥25 +

(
𝑎7 + 𝑎4 + 𝑎2 + 1

)
𝑥24 +(

𝑎3 + 𝑎2 + 1
)
𝑥23 +

(
𝑎7 + 𝑎6 + 𝑎

)
𝑥22 +

(
𝑎6 + 𝑎2 + 1

)
𝑥21 +

(
𝑎7 + 𝑎3 + 1

)
𝑥20 +

(
𝑎4 + 1

)
𝑥19 +(

𝑎7 + 𝑎4 + 𝑎3 + 1
)
𝑥18 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎2 + 𝑎 + 1

)
𝑥17 +

(
𝑎5 + 𝑎3 + 1

)
𝑥16 +(

𝑎5 + 𝑎4 + 𝑎 + 1
)
𝑥15 +

(
𝑎7 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 1

)
𝑥14 +

(
𝑎5 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥13 +(

𝑎5 + 𝑎3 + 𝑎2) 𝑥12+
(
𝑎7 + 𝑎5 + 𝑎3 + 𝑎

)
𝑥11+

(
𝑎5 + 𝑎4 + 𝑎3 + 𝑎

)
𝑥10+

(
𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥9

+
(
𝑎6 + 𝑎5 + 𝑎4) 𝑥8+

(
𝑎7 + 𝑎5 + 𝑎4 + 𝑎2 + 𝑎

)
𝑥7+

(
𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 1

)
𝑥6+

(
𝑎7 + 𝑎4 + 1

)
𝑥5

+
(
𝑎6 + 𝑎5 + 𝑎3 + 𝑎2) 𝑥4 +

(
𝑎6 + 𝑎4 + 𝑎3 + 𝑎2) 𝑥3 +

(
𝑎6 + 𝑎5) 𝑥2 +

(
𝑎4 + 𝑎3) 𝑥 + 𝑎6 + 𝑎5 + 𝑎 +1

𝑆−1(𝑥) = (𝑎 + 1) 𝑥254 +
(
𝑎7 + 𝑎2 + 𝑎

)
𝑥253 +

(
𝑎6 + 𝑎4 + 𝑎3 + 𝑎 + 1

)
𝑥252 +(

𝑎6 + 𝑎3 + 𝑎2 + 1
)
𝑥251 +

(
𝑎5 + 𝑎3 + 𝑎2 + 1

)
𝑥250 +

(
𝑎6 + 𝑎5 + 𝑎4 + 𝑎 + 1

)
𝑥249 +

(
𝑎7 + 𝑎

)
𝑥248

+
(
𝑎7 + 𝑎5 + 𝑎2 + 1

)
𝑥247 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎2 + 1

)
𝑥246 +

(
𝑎7 + 𝑎5 + 𝑎4 + 𝑎2 + 𝑎 + 1

)
𝑥245 +(

𝑎7 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2) 𝑥244 +
(
𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥243 +(

𝑎7 + 𝑎6 + 𝑎4 + 𝑎2) 𝑥242 +
(
𝑎5 + 𝑎4 + 𝑎2) 𝑥241 +

(
𝑎7 + 𝑎4 + 𝑎2) 𝑥240 +

(
𝑎7 + 𝑎6 + 1

)
𝑥239 +
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(
𝑎4 + 𝑎3 + 𝑎 + 1

)
𝑥238 +

(
𝑎6 + 1

)
𝑥237 +

(
𝑎7 + 𝑎6 + 𝑎3 + 𝑎

)
𝑥236 +(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎
)
𝑥235 +

(
𝑎6 + 𝑎3 + 1

)
𝑥234 +

(
𝑎6 + 𝑎4 + 𝑎2 + 𝑎

)
𝑥233 +(

𝑎7 + 𝑎4 + 𝑎3) 𝑥232 +
(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎2 + 𝑎

)
𝑥231 +

(
𝑎7 + 𝑎6 + 𝑎 + 1

)
𝑥230 +(

𝑎7 + 𝑎3 + 𝑎2 + 𝑎
)
𝑥229 +

(
𝑎7 + 𝑎4 + 𝑎

)
𝑥228 +

(
𝑎7 + 𝑎6 + 𝑎4 + 𝑎2) 𝑥227 + 𝑎5𝑥226 +(

𝑎5 + 𝑎3 + 𝑎2 + 𝑎
)
𝑥225 +

(
𝑎4 + 𝑎2 + 𝑎

)
𝑥224 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎3 + 𝑎 + 1

)
𝑥223 +(

𝑎6 + 𝑎2 + 𝑎 + 1
)
𝑥222 +

(
𝑎6 + 𝑎4 + 𝑎2) 𝑥221 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 1

)
𝑥220 +(

𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 1
)
𝑥219 +

(
𝑎5 + 𝑎3) 𝑥218 +

(
𝑎7 + 𝑎6 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥217 +(

𝑎5 + 𝑎4 + 𝑎2) 𝑥216 +
(
𝑎6 + 𝑎5 + 𝑎4 + 𝑎3) 𝑥215 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎3) 𝑥214 +(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎3 + 𝑎 + 1
)
𝑥213 +

(
𝑎3 + 𝑎 + 1

)
𝑥212 +

(
𝑎4 + 𝑎3 + 𝑎2) 𝑥211 +

(
𝑎4 + 1

)
𝑥210 +(

𝑎7 + 𝑎3 + 𝑎2) 𝑥209 +
(
𝑎6 + 𝑎5 + 𝑎2 + 1

)
𝑥208 +

(
𝑎5 + 𝑎3 + 𝑎2) 𝑥207 +

(
𝑎5 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥206 +(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎3 + 𝑎2) 𝑥205+
(
𝑎7 + 𝑎4 + 𝑎

)
𝑥204+

(
𝑎6 + 𝑎5 + 𝑎4) 𝑥203+

(
𝑎5 + 𝑎4 + 𝑎2) 𝑥202+(

𝑎5 + 𝑎3 + 1
)
𝑥201 +

(
𝑎7 + 𝑎6 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥200 +

(
𝑎7 + 𝑎5 + 𝑎4 + 𝑎3 + 1

)
𝑥199 +(

𝑎7 + 𝑎6 + 1
)
𝑥198+

(
𝑎7 + 𝑎4 + 1

)
𝑥197+

(
𝑎7 + 𝑎4 + 𝑎 + 1

)
𝑥196+

(
𝑎7 + 𝑎4 + 𝑎3 + 𝑎2 + 1

)
𝑥195+(

𝑎7 + 𝑎6 + 𝑎4 + 𝑎3 + 𝑎2) 𝑥194 +
(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎2 + 𝑎

)
𝑥193 +

(
𝑎6 + 𝑎5 + 𝑎3 + 1

)
𝑥192 +(

𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎 + 1
)
𝑥191+

(
𝑎7 + 1

)
𝑥190+

(
𝑎7 + 𝑎4 + 𝑎2 + 𝑎

)
𝑥189+

(
𝑎5 + 𝑎2 + 1

)
𝑥188+(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎2 + 𝑎
)
𝑥187 +

(
𝑎5 + 𝑎4) 𝑥186 +

(
𝑎6 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥185 +(

𝑎7 + 𝑎6 + 𝑎4 + 𝑎3 + 𝑎2) 𝑥184 +
(
𝑎7 + 𝑎5 + 1

)
𝑥183 +

(
𝑎7 + 𝑎4 + 𝑎3 + 𝑎2 + 1

)
𝑥182 +(

𝑎7 + 𝑎5 + 𝑎4 + 1
)
𝑥181 +

(
𝑎7 + 𝑎6 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥180 +

(
𝑎6 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥179 +(

𝑎5 + 𝑎3 + 1
)
𝑥178+

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 1

)
𝑥177+

(
𝑎6 + 𝑎4 + 𝑎

)
𝑥176+

(
𝑎6 + 𝑎5 + 𝑎

)
𝑥175

+
(
𝑎7 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥174 +

(
𝑎7 + 𝑎6 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥173 +(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎 + 1
)
𝑥172 +

(
𝑎6 + 𝑎5 + 𝑎4 + 𝑎

)
𝑥171 +

(
𝑎5 + 1

)
𝑥170 +(

𝑎7 + 𝑎2 + 𝑎 + 1
)
𝑥169 +

(
𝑎7 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎

)
𝑥168 +

(
𝑎6 + 𝑎4 + 𝑎3 + 𝑎

)
𝑥167 +(

𝑎5 + 𝑎4 + 1
)
𝑥166 +

(
𝑎6 + 𝑎5 + 𝑎2 + 𝑎

)
𝑥165 +

(
𝑎4 + 𝑎2) 𝑥164 +

(
𝑎7 + 𝑎3 + 𝑎 + 1

)
𝑥163 +(

𝑎4 + 𝑎2 + 1
)
𝑥162 +

(
𝑎7 + 𝑎6 + 𝑎3 + 𝑎2 + 1

)
𝑥161 +

(
𝑎6 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥160 +(

𝑎4 + 𝑎2 + 1
)
𝑥159 +

(
𝑎6 + 𝑎3 + 𝑎

)
𝑥158 +

(
𝑎5 + 𝑎2 + 𝑎 + 1

)
𝑥157 +

(
𝑎6 + 𝑎5 + 𝑎3 + 𝑎

)
𝑥156 +(

𝑎6 + 𝑎5 + 𝑎2 + 1
)
𝑥155 +

(
𝑎7 + 𝑎4 + 𝑎3 + 1

)
𝑥154 +

(
𝑎7 + 𝑎3) 𝑥153 +

(
𝑎7 + 𝑎6 + 𝑎2) 𝑥152 +(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎3 + 𝑎2 + 𝑎
)
𝑥151 +

(
𝑎7 + 𝑎6 + 𝑎2 + 𝑎

)
𝑥150 +

(
𝑎7 + 𝑎5) 𝑥149 +(

𝑎7 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎
)
𝑥148 +

(
𝑎7 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥147 +

(
𝑎7 + 𝑎5 + 𝑎3 + 1

)
𝑥146 +(

𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2) 𝑥145 +
(
𝑎5 + 𝑎4 + 𝑎 + 1

)
𝑥144 +

(
𝑎5 + 𝑎4 + 𝑎

)
𝑥143 +(

𝑎7 + 𝑎6 + 𝑎2 + 1
)
𝑥142 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎2 + 𝑎

)
𝑥141 +

(
𝑎6 + 𝑎5 + 𝑎4 + 𝑎 + 1

)
𝑥140 +(

𝑎7 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 1
)
𝑥139 +

(
𝑎7 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥138 +(

𝑎7 + 𝑎5 + 𝑎3 + 𝑎2 + 1
)
𝑥137 +

(
𝑎7 + 𝑎4 + 𝑎3 + 𝑎2) 𝑥136 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎3) 𝑥135 +(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎4) 𝑥134 +
(
𝑎4 + 𝑎3 + 1

)
𝑥133 +

(
𝑎7 + 𝑎5 + 𝑎4 + 𝑎3) 𝑥132 +
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(
𝑎5 + 𝑎4 + 𝑎3 + 𝑎2) 𝑥131 +

(
𝑎7 + 𝑎4 + 𝑎2 + 𝑎 + 1

)
𝑥130 +

(
𝑎7 + 𝑎5 + 𝑎3 + 𝑎 + 1

)
𝑥129 +(

𝑎7 + 𝑎5 + 𝑎3 + 𝑎2 + 1
)
𝑥128 +

(
𝑎5 + 𝑎2) 𝑥127 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥126 +(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎
)
𝑥125 +

(
𝑎6 + 𝑎3) 𝑥124 +

(
𝑎7 + 𝑎5 + 𝑎2 + 𝑎 + 1

)
𝑥123 +(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎
)
𝑥122 +

(
𝑎7 + 𝑎5 + 𝑎4 + 𝑎 + 1

)
𝑥121 +(

𝑎7 + 𝑎6 + 𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥120 +

(
𝑎3 + 1

)
𝑥119 +

(
𝑎7 + 𝑎3 + 𝑎2) 𝑥118 +(

𝑎7 + 𝑎6 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎
)
𝑥117 +

(
𝑎5 + 𝑎2 + 1

)
𝑥116 +

(
𝑎6 + 𝑎4 + 𝑎2) 𝑥115 +(

𝑎6 + 𝑎5 + 𝑎3 + 1
)
𝑥114 +

(
𝑎4 + 𝑎2 + 𝑎 + 1

)
𝑥113 +

(
𝑎6 + 𝑎5 + 𝑎2 + 𝑎 + 1

)
𝑥112 +(

𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 1
)
𝑥111 +

(
𝑎7 + 𝑎6 + 𝑎4 + 𝑎3 + 𝑎

)
𝑥110 +

(
𝑎6 + 𝑎5 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥109

+
(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎3 + 𝑎

)
𝑥108 +

(
𝑎3 + 𝑎 + 1

)
𝑥107 +

(
𝑎7 + 𝑎5 + 1

)
𝑥106 +(

𝑎6 + 𝑎5 + 𝑎4 + 𝑎3) 𝑥105 +
(
𝑎7 + 𝑎6 + 𝑎5 + 1

)
𝑥104 +

(
𝑎6 + 𝑎5 + 𝑎

)
𝑥103 +

(
𝑎7 + 𝑎3 + 1

)
𝑥102 +(

𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎
)
𝑥101 +

(
𝑎7 + 𝑎5 + 𝑎4 + 𝑎3 + 1

)
𝑥100 +

(
𝑎7 + 𝑎6 + 𝑎4 + 𝑎3 + 𝑎2) 𝑥99 +

𝑎5𝑥98 +
(
𝑎7 + 𝑎6 + 𝑎 + 1

)
𝑥97 +

(
𝑎6 + 𝑎4 + 𝑎2) 𝑥96 +

(
𝑎7 + 𝑎5 + 𝑎3 + 𝑎 + 1

)
𝑥95 +(

𝑎7 + 𝑎5 + 𝑎3 + 𝑎2) 𝑥94 +
(
𝑎7 + 𝑎6 + 𝑎3 + 𝑎2 + 1

)
𝑥93 +

(
𝑎6 + 𝑎4 + 𝑎3 + 𝑎2 + 1

)
𝑥92 +(

𝑎7 + 𝑎5 + 𝑎2 + 𝑎 + 1
)
𝑥91 +

(
𝑎6 + 𝑎4 + 𝑎3 + 𝑎 + 1

)
𝑥90 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎2 + 𝑎

)
𝑥89 +(

𝑎5 + 𝑎4 + 𝑎
)
𝑥88 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎3 + 𝑎

)
𝑥87 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎 + 1

)
𝑥86 +(

𝑎6 + 𝑎3 + 1
)
𝑥85 +

(
𝑎6 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥84 +

(
𝑎6 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥83 +

(
𝑎6 + 𝑎2) 𝑥82 +(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥81 +

(
𝑎6 + 𝑎5 + 𝑎4 + 1

)
𝑥80 +(

𝑎7 + 𝑎6 + 𝑎4 + 𝑎3 + 𝑎 + 1
)
𝑥79 + 𝑎4𝑥78 +

(
𝑎6 + 𝑎4 + 𝑎

)
𝑥77 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎2 + 1

)
𝑥76 +(

𝑎6 + 𝑎5 + 𝑎3 + 𝑎
)
𝑥75 + 𝑎5𝑥74 +

(
𝑎6 + 𝑎3 + 𝑎 + 1

)
𝑥73 +

(
𝑎7 + 𝑎5 + 𝑎4 + 𝑎2 + 𝑎

)
𝑥72 + 𝑎6𝑥71 +(

𝑎5 + 𝑎2) 𝑥70 +
(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 1

)
𝑥69 +

(
𝑎7 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎 + 1

)
𝑥68 + 𝑎2𝑥67 +(

𝑎6 + 𝑎5 + 𝑎 + 1
)
𝑥66 +

(
𝑎7 + 𝑎3 + 1

)
𝑥65 +

(
𝑎7 + 𝑎6 + 𝑎4 + 𝑎3) 𝑥64 +

(
𝑎7 + 𝑎4 + 𝑎2 + 1

)
𝑥63 +(

𝑎7 + 𝑎5 + 𝑎2 + 𝑎 + 1
)
𝑥62 +

(
𝑎6 + 𝑎5 + 𝑎4 + 𝑎 + 1

)
𝑥61 +

(
𝑎5 + 𝑎4 + 𝑎3 + 𝑎

)
𝑥60 +(

𝑎5 + 𝑎2 + 𝑎
)
𝑥59 +

(
𝑎7 + 𝑎5 + 𝑎3 + 𝑎 + 1

)
𝑥58 +

(
𝑎7 + 𝑎6 + 𝑎4 + 1

)
𝑥57 +(

𝑎6 + 𝑎5 + 𝑎2 + 𝑎
)
𝑥56 +

(
𝑎2 + 1

)
𝑥55 +

(
𝑎7 + 𝑎6 + 𝑎 + 1

)
𝑥54 +

(
𝑎6 + 𝑎3 + 𝑎 + 1

)
𝑥53 +(

𝑎6 + 𝑎3 + 𝑎
)
𝑥52 +

(
𝑎6 + 𝑎4 + 1

)
𝑥51 +

(
𝑎4 + 𝑎 + 1

)
𝑥50 +

(
𝑎7 + 𝑎3 + 𝑎 + 1

)
𝑥49 +(

𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1
)
𝑥48 +

(
𝑎7 + 𝑎5 + 𝑎3 + 𝑎2 + 1

)
𝑥47 +

(
𝑎7 + 𝑎5 + 𝑎2 + 1

)
𝑥46 +(

𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 1
)
𝑥45+

(
𝑎7 + 𝑎4 + 𝑎3 + 𝑎

)
𝑥44+

(
𝑎5 + 𝑎3 + 𝑎2) 𝑥43+

(
𝑎7 + 𝑎6 + 1

)
𝑥42+(

𝑎7 + 𝑎5 + 𝑎3 + 𝑎 + 1
)
𝑥41 +

(
𝑎7 + 𝑎5 + 𝑎4 + 𝑎3 + 1

)
𝑥40 +

(
𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥39 +(

𝑎7 + 𝑎5 + 𝑎3 + 𝑎
)
𝑥38+

(
𝑎7 + 𝑎2 + 1

)
𝑥37+

(
𝑎7 + 𝑎6 + 𝑎4) 𝑥36+

(
𝑎7 + 𝑎5 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥35+(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎3 + 𝑎2) 𝑥34 +
(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎2 + 𝑎 + 1

)
𝑥33 +(

𝑎7 + 𝑎6 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎
)
𝑥32 +

(
𝑎6 + 𝑎4 + 𝑎3 + 𝑎2 + 1

)
𝑥31 +

(
𝑎7 + 𝑎5 + 1

)
𝑥30 +(

𝑎7 + 𝑎6 + 𝑎2) 𝑥29 +
(
𝑎5 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥28 +

(
𝑎5 + 𝑎 + 1

)
𝑥27 +

(
𝑎7 + 𝑎3 + 𝑎2 + 1

)
𝑥26 +(

𝑎5 + 1
)
𝑥25 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎

)
𝑥24 +

(
𝑎6 + 𝑎4 + 1

)
𝑥23 +

(
𝑎7 + 𝑎4 + 𝑎2 + 1

)
𝑥22 +
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(
𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎

)
𝑥21 +

(
𝑎7 + 𝑎4 + 𝑎2 + 𝑎

)
𝑥20 +

(
𝑎7 + 𝑎6 + 𝑎4 + 𝑎

)
𝑥19 +(

𝑎7 + 𝑎6 + 𝑎5 + 𝑎2 + 1
)
𝑥18 +

(
𝑎7 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥17 +

(
𝑎4 + 𝑎3 + 𝑎2) 𝑥16 +(

𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 1
)
𝑥15 +

(
𝑎7 + 𝑎6 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥14 +

(
𝑎7 + 𝑎6 + 𝑎3 + 𝑎

)
𝑥13 +(

𝑎7 + 𝑎6 + 𝑎5) 𝑥12 +
(
𝑎7 + 𝑎4 + 1

)
𝑥11 +

(
𝑎7 + 𝑎5 + 𝑎4 + 𝑎

)
𝑥10 +(

𝑎7 + 𝑎6 + 𝑎4 + 𝑎3 + 𝑎2 + 1
)
𝑥9 +

(
𝑎7 + 𝑎6 + 𝑎4 + 𝑎2 + 𝑎 + 1

)
𝑥8 +

(
𝑎7 + 𝑎6 + 𝑎4 + 𝑎2 + 𝑎

)
𝑥7

+
(
𝑎7 + 𝑎5 + 𝑎4 + 𝑎

)
𝑥6 +

(
𝑎7 + 𝑎6 + 𝑎5 + 𝑎2 + 𝑎 + 1

)
𝑥5 +

(
𝑎6 + 𝑎5 + 𝑎3 + 𝑎2 + 𝑎 + 1

)
𝑥4 +(

𝑎4 + 𝑎3 + 𝑎
)
𝑥3 +

(
𝑎7 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎

)
𝑥2 +

(
𝑎6 + 𝑎3 + 𝑎

)
𝑥 + 𝑎6 + 𝑎4 + 𝑎

A.2 SageMath Code
In this section we document some of the code used for perfect 𝑐-nonlinearity, 𝑐-differential
bentness, and 𝑐-differential uniformity computations. Thank you to Professor Dibyendu Roy
for greatly improving the code with the inclusion of multiprocessing.

A.2.1 𝑐-Differential Bentness and Perfect 𝑐-Nonlinearity
In Section 3.4 we provided examples of P𝑐N and 𝑐-differential bent functions by calculating
their 𝑐-autocorrelations for various values of 𝑐. Recall a function is P𝑐N (equivalently 𝑐-
differential bent) if the non-trivial 𝑐-autocorrelation values are 0. For a specific 𝑐, we used
the following code to compute the 𝑐-autocorrelation values:

from collections import Counter

#define the environment

n = (#choose n)

p = (#choose p)

c = (#choose c)

F = GF(p)

FF.<g> = GF(p^n)

FFlist = list(FF)

#non-zero finite field elements

FFstar = [i for i in FF][1:]

R.<x> = FF[]

U=list(FF)
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#finite field without identity (1)

FF1=Set(U).difference([g^0])

#we need the primitive root for c-autocorrelation

z=exp(2*pi*I/p)

def trace(x):

return sum(x^(p^s) for s in [0..n-1])

def f(x):

return(#choose function to analyze)

#c-autocorrelation function

def cCb(f,c,a,b):

return sum(z^(ZZ(trace(b*(f(x+a)-c*f(x))))) for x in FFlist)

#compute the c-autocorrelation table

auto=[[cCb(f,c,a,b) for b in FFlist] for a in FFlist]

#the "auto" will need to be formatted for easier table viewing

To find all values of 𝑐 for which a function is P𝑐N (i.e., 𝑐-differential bent), we added
multiprocessing techniques and used the following:

import multiprocessing

from multiprocessing import Process

from collections import Counter

#define the environment

n = (#choose n)

p = (#choose p)

F = GF(p)

FF.<g> = GF(p^n)

FFlist = list(FF)
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R.<x> = FF[]

U=list(FF)

FF1=Set(U).difference([g^0])

z=exp(2*pi*I/p)

def trace(x):

return sum(x^(p^s) for s in [0..n-1])

def f(x):

return(#enter function to analyze here)

#c-autocorrelation

def cCb(f,c,a,b):

return sum(z^(ZZ(trace(b*(f(x+a)-c*f(x))))) for x in FFlist)

#nth is number of processes for multiprocessing

nth = 4

sz = p^n/nth

#Split the FF into ’nth’ many rows for multiprocessing

FFth = matrix(FF,nth,sz,[U[i*sz:(i+1)*sz] for i in range(nth)])

Stt=[0]*nth

dfres=[0]*nth

#define a global list to merge from each process

manager = multiprocessing.Manager()

fl = manager.list()

#define function for each process

def thfun(num):
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print(’process id:’, os.getpid())

#following loop is for each row of FFth

St=[]

Stt1=[]

for c in FFth[num]:

St=[]

Stt1=[]

Su=[[simplify(expand(cCb(f,c,a,b))) for a in FFlist] for b in FFstar]

#looking for all non-trivial values to be 0

if set(flatten(simplify(Su)))=={0}:

print(c)

#prints values of c for PcN

A.2.2 𝑐-Differential Uniformity
We first computed a function’s 𝑐DU in Subsection 4.2.1. Later, in Chapter 6 we computed
the 𝑐DU of the S-boxes of many real-world ciphers. The following code computes the
maximum 𝑐DU of a function across all 𝑐 ≠ 1:

import multiprocessing

from multiprocessing import Process

from collections import Counter

#define the environment

n = (#choose n)

p = (#choose p)

F = GF(p)

FF.<g> = GF(p^n)

FFlist = list(FF)

R.<x> = FF[]

U=list(FF)

125



FF1=Set(U).difference([g^0])

def f(x):

return(#enter function to analyze here)

#nth is number of processes for multiprocessing

nth = 4

sz = p^n/nth

#Split the FF into ’nth’ many rows for multiprocessing

FFth = matrix(FF,nth,sz,[U[i*sz:(i+1)*sz] for i in range(nth)])

Stt=[0]*nth

dfres=[0]*nth

#define a global list to merge from each process

manager = multiprocessing.Manager()

fl = manager.list()

#define function for each process

def thfun(num):

print(’process id:’, os.getpid())

#following loop is for each row of FFth

for a in FFth[num]:

#The c-derivative counts, running through c not equal to 1

dfres[num] = [[f(x+a) - c*f(x) for x in FF] for c in FF1]

freq=[]

for i in range(len(dfres[num])):

freq.append(Counter(dfres[num][i]).most_common())

St=[]

Stt1=[]

for i in [0..len(freq)-1]:

for j in [0..len(freq[i])-1]:
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St.append(freq[i][j][1])

Stt1.append(list(flatten(list(St))))

fl.append(St)

# defining jobs

jobs = []

for i in range(0, nth):

out_list = list()

pro = Process(target=thfun, args=(i,))

jobs.append(pro)

#starting each process

for j in jobs:

j.start()

#joining each process

for j in jobs:

j.join()

print(’process complete’)

print(’Max Difference: ’,max(flatten(fl)))

#max difference is the cDU across all c not equal to 1
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