131 research outputs found

    Kleene algebra with domain

    Full text link
    We propose Kleene algebra with domain (KAD), an extension of Kleene algebra with two equational axioms for a domain and a codomain operation, respectively. KAD considerably augments the expressiveness of Kleene algebra, in particular for the specification and analysis of state transition systems. We develop the basic calculus, discuss some related theories and present the most important models of KAD. We demonstrate applicability by two examples: First, an algebraic reconstruction of Noethericity and well-foundedness; second, an algebraic reconstruction of propositional Hoare logic.Comment: 40 page

    On Bisimulations for Description Logics

    Full text link
    We study bisimulations for useful description logics. The simplest among the considered logics is ALCreg\mathcal{ALC}_{reg} (a variant of PDL). The others extend that logic with inverse roles, nominals, quantified number restrictions, the universal role, and/or the concept constructor for expressing the local reflexivity of a role. They also allow role axioms. We give results about invariance of concepts, TBoxes and ABoxes, preservation of RBoxes and knowledge bases, and the Hennessy-Milner property w.r.t. bisimulations in the considered description logics. Using the invariance results we compare the expressiveness of the considered description logics w.r.t. concepts, TBoxes and ABoxes. Our results about separating the expressiveness of description logics are naturally extended to the case when instead of ALCreg\mathcal{ALC}_{reg} we have any sublogic of ALCreg\mathcal{ALC}_{reg} that extends ALC\mathcal{ALC}. We also provide results on the largest auto-bisimulations and quotient interpretations w.r.t. such equivalence relations. Such results are useful for minimizing interpretations and concept learning in description logics. To deal with minimizing interpretations for the case when the considered logic allows quantified number restrictions and/or the constructor for the local reflexivity of a role, we introduce a new notion called QS-interpretation, which is needed for obtaining expected results. By adapting Hopcroft's automaton minimization algorithm and the Paige-Tarjan algorithm, we give efficient algorithms for computing the partition corresponding to the largest auto-bisimulation of a finite interpretation.Comment: 42 page

    Parametrised enumeration

    Get PDF
    In this thesis, we develop a framework of parametrised enumeration complexity. At first, we provide the reader with preliminary notions such as machine models and complexity classes besides proving them to be well-chosen. Then, we study the interplay and the landscape of these classes and present connections to classical enumeration classes. Afterwards, we translate the fundamental methods of kernelisation and self-reducibility into equivalent techniques in the setting of parametrised enumeration. Subsequently, we illustrate the introduced classes by investigating the parametrised enumeration complexity of Max-Ones-SAT and strong backdoor sets as well as sharpen the first result by presenting a dichotomy theorem for Max-Ones-SAT. After this, we extend the definitions of parametrised enumeration algorithms by allowing orders on the solution space. In this context, we study the relations ``order by size'' and ``lexicographic order'' for graph modification problems and observe a trade-off between enumeration delay and space requirements of enumeration algorithms. These results then yield an enumeration technique for generalised modification problems that is illustrated by applying this method to the problems closest string, weak and strong backdoor sets, and weighted satisfiability. Eventually, we consider the enumeration of satisfying teams of formulas of poor man's propositional dependence logic. There, we present an enumeration algorithm with FPT delay and exponential space which is one of the first enumeration complexity results of a problem in a team logic. Finally, we show how this algorithm can be modified such that only polynomial space is required, however, by increasing the delay to incremental FPT time.In diesem Werk begründen wir die Theorie der parametrisierten Enumeration, präsentieren die grundlegenden Definitionen und prüfen ihre Sinnhaftigkeit. Im nächsten Schritt, untersuchen wir das Zusammenspiel der eingeführten Komplexitätsklassen und zeigen Verbindungen zur klassischen Enumerationskomplexität auf. Anschließend übertragen wir die zwei fundamentalen Techniken der Kernelisierung und Selbstreduzierbarkeit in Entsprechungen in dem Gebiet der parametrisierten Enumeration. Schließlich untersuchen wir das Problem Max-Ones-SAT und das Problem der Aufzählung starker Backdoor-Mengen als typische Probleme in diesen Klassen. Die vorherigen Resultate zu Max-Ones-SAT werden anschließend in einem Dichotomie-Satz vervollständigt. Im nächsten Abschnitt erweitern wir die neuen Definitionen auf Ordnungen (auf dem Lösungsraum) und erforschen insbesondere die zwei Relationen \glqq Größenordnung\grqq\ und \glqq lexikographische Reihenfolge\grqq\ im Kontext von Graphen-Modifikationsproblemen. Hierbei scheint es, als müsste man zwischen Delay und Speicheranforderungen von Aufzählungsalgorithmen abwägen, wobei dies jedoch nicht abschließend gelöst werden kann. Aus den vorherigen Überlegungen wird schließlich ein generisches Enumerationsverfahren für allgemeine Modifikationsprobleme entwickelt und anhand der Probleme Closest String, schwacher und starker Backdoor-Mengen sowie gewichteter Erfüllbarkeit veranschaulicht. Im letzten Abschnitt betrachten wir die parametrisierte Enumerationskomplexität von Erfüllbarkeitsproblemen im Bereich der Poor Man's Propositional Dependence Logic und stellen einen Aufzählungsalgorithmus mit FPT Delay vor, der mit exponentiellem Platz arbeitet. Dies ist einer der ersten Aufzählungsalgorithmen im Bereich der Teamlogiken. Abschließend zeigen wir, wie dieser Algorithmus so modifiziert werden kann, dass nur polynomieller Speicherplatz benötigt wird, bezahlen jedoch diese Einsparung mit einem Anstieg des Delays auf inkrementelle FPT Zeit (IncFPT)

    Applications of Finite Model Theory: Optimisation Problems, Hybrid Modal Logics and Games.

    Get PDF
    There exists an interesting relationships between two seemingly distinct fields: logic from the field of Model Theory, which deals with the truth of statements about discrete structures; and Computational Complexity, which deals with the classification of problems by how much of a particular computer resource is required in order to compute a solution. This relationship is known as Descriptive Complexity and it is the primary application of the tools from Model Theory when they are restricted to the finite; this restriction is commonly called Finite Model Theory. In this thesis, we investigate the extension of the results of Descriptive Complexity from classes of decision problems to classes of optimisation problems. When dealing with decision problems the natural mapping from true and false in logic to yes and no instances of a problem is used but when dealing with optimisation problems, other features of a logic need to be used. We investigate what these features are and provide results in the form of logical frameworks that can be used for describing optimisation problems in particular classes, building on the existing research into this area. Another application of Finite Model Theory that this thesis investigates is the relative expressiveness of various fragments of an extension of modal logic called hybrid modal logic. This is achieved through taking the Ehrenfeucht-Fraïssé game from Model Theory and modifying it so that it can be applied to hybrid modal logic. Then, by developing winning strategies for the players in the game, results are obtained that show strict hierarchies of expressiveness for fragments of hybrid modal logic that are generated by varying the quantifier depth and the number of proposition and nominal symbols available

    Monoids with tests and the algebra of possibly non-halting programs

    Get PDF
    We study the algebraic theory of computable functions, which can be viewed as arising from possibly non-halting computer programs or algorithms, acting on some state space, equipped with operations of composition, if-then-else and while-do defined in terms of a Boolean algebra of conditions. It has previously been shown that there is no finite axiomatisation of algebras of partial functions under these operations alone, and this holds even if one restricts attention to transformations (representing halting programs) rather than partial functions, and omits while-do from the signature. In the halting case, there is a natural “fix”, which is to allow composition of halting programs with conditions, and then the resulting algebras admit a finite axiomatisation. In the current setting such compositions are not possible, but by extending the notion of if-then-else, we are able to give finite axiomatisations of the resulting algebras of (partial) functions, with while-do in the signature if the state space is assumed finite. The axiomatisations are extended to consider the partial predicate of equality. All algebras considered turn out to be enrichments of the notion of a (one-sided) restriction semigrou

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Querying the Unary Negation Fragment with Regular Path Expressions

    Get PDF
    The unary negation fragment of first-order logic (UNFO) has recently been proposed as a generalization of modal logic that shares many of its good computational and model-theoretic properties. It is attractive from the perspective of database theory because it can express conjunctive queries (CQs) and ontologies formulated in many description logics (DLs). Both are relevant for ontology-mediated querying and, in fact, CQ evaluation under UNFO ontologies (and thus also under DL ontologies) can be `expressed\u27 in UNFO as a satisfiability problem. In this paper, we consider the natural extension of UNFO with regular expressions on binary relations. The resulting logic UNFOreg can express (unions of) conjunctive two-way regular path queries (C2RPQs) and ontologies formulated in DLs that include transitive roles and regular expressions on roles. Our main results are that evaluating C2RPQs under UNFOreg ontologies is decidable, 2ExpTime-complete in combined complexity, and coNP-complete in data complexity, and that satisfiability in UNFOreg is 2ExpTime-complete, thus not harder than in UNFO

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Synchronous Kleene algebra

    Get PDF
    AbstractThe work presented here investigates the combination of Kleene algebra with the synchrony model of concurrency from Milner’s SCCS calculus. The resulting algebraic structure is called synchronous Kleene algebra. Models are given in terms of sets of synchronous strings and finite automata accepting synchronous strings. The extension of synchronous Kleene algebra with Boolean tests is presented together with models on sets of guarded synchronous strings and the associated automata on guarded synchronous strings. Completeness w.r.t. the standard interpretations is given for each of the two new formalisms. Decidability follows from completeness. Kleene algebra with synchrony should be included in the class of true concurrency models. In this direction, a comparison with Mazurkiewicz traces is made which yields their incomparability with synchronous Kleene algebras (one cannot simulate the other). On the other hand, we isolate a class of pomsets which captures exactly synchronous Kleene algebras. We present an application to Hoare-like reasoning about parallel programs in the style of synchrony
    corecore