3,120 research outputs found

    Preliminary candidate advanced avionics system for general aviation

    Get PDF
    An integrated avionics system design was carried out to the level which indicates subsystem function, and the methods of overall system integration. Sufficient detail was included to allow identification of possible system component technologies, and to perform reliability, modularity, maintainability, cost, and risk analysis upon the system design. Retrofit to older aircraft, availability of this system to the single engine two place aircraft, was considered

    Application of LSI to signal detection: The deltic DFPCC

    Get PDF
    The development of the DELTIC DFPCC serial mode signal processor is discussed. The processor is designed to detect in the presence of background noise a signal coded into the zero crossings of the waveform. The unique features of the DELTIC DFPCC include versatility in handling a variety of signals and relative simplicity in implementation. A theoretical performance model is presented which predicts the expected value of the output signal as a function of the input signal to noise ratio. Experimental results obtained with the prototype system, which was breadboarded with LSI, MSI and SSI components, are given. The device was compared with other LSI schemes for signal processing and it was concluded that the DELTIC DFPCC is simpler and in some cases more versatile than other systems. With established LSI technology, low frequency systems applicable to sonar and similar problems are feasible

    Second year technical report on-board processing for future satellite communications systems

    Get PDF
    Advanced baseband and microwave switching techniques for large domestic communications satellites operating in the 30/20 GHz frequency bands are discussed. The nominal baseband processor throughput is one million packets per second (1.6 Gb/s) from one thousand T1 carrier rate customer premises terminals. A frequency reuse factor of sixteen is assumed by using 16 spot antenna beams with the same 100 MHz bandwidth per beam and a modulation with a one b/s per Hz bandwidth efficiency. Eight of the beams are fixed on major metropolitan areas and eight are scanning beams which periodically cover the remainder of the U.S. under dynamic control. User signals are regenerated (demodulated/remodulated) and message packages are reformatted on board. Frequency division multiple access and time division multiplex are employed on the uplinks and downlinks, respectively, for terminals within the coverage area and dwell interval of a scanning beam. Link establishment and packet routing protocols are defined. Also described is a detailed design of a separate 100 x 100 microwave switch capable of handling nonregenerated signals occupying the remaining 2.4 GHz bandwidth with 60 dB of isolation, at an estimated weight and power consumption of approximately 400 kg and 100 W, respectively

    Chip level simulation of fault tolerant computers

    Get PDF
    Chip level modeling techniques, functional fault simulation, simulation software development, a more efficient, high level version of GSP, and a parallel architecture for functional simulation are discussed

    Design study of a low cost civil aviation GPS receiver system

    Get PDF
    A low cost Navstar receiver system for civil aviation applications was defined. User objectives and constraints were established. Alternative navigation processing design trades were evaluated. Receiver hardware was synthesized by comparing technology projections with various candidate system designs. A control display unit design was recommended as the result of field test experience with Phase I GPS sets and a review of special human factors for general aviation users. Areas requiring technology development to ensure a low cost Navstar Set in the 1985 timeframe were identified

    Design of a fault tolerant airborne digital computer. Volume 1: Architecture

    Get PDF
    This volume is concerned with the architecture of a fault tolerant digital computer for an advanced commercial aircraft. All of the computations of the aircraft, including those presently carried out by analogue techniques, are to be carried out in this digital computer. Among the important qualities of the computer are the following: (1) The capacity is to be matched to the aircraft environment. (2) The reliability is to be selectively matched to the criticality and deadline requirements of each of the computations. (3) The system is to be readily expandable. contractible, and (4) The design is to appropriate to post 1975 technology. Three candidate architectures are discussed and assessed in terms of the above qualities. Of the three candidates, a newly conceived architecture, Software Implemented Fault Tolerance (SIFT), provides the best match to the above qualities. In addition SIFT is particularly simple and believable. The other candidates, Bus Checker System (BUCS), also newly conceived in this project, and the Hopkins multiprocessor are potentially more efficient than SIFT in the use of redundancy, but otherwise are not as attractive

    Design of a fault tolerant airborne digital computer. Volume 2: Computational requirements and technology

    Get PDF
    This final report summarizes the work on the design of a fault tolerant digital computer for aircraft. Volume 2 is composed of two parts. Part 1 is concerned with the computational requirements associated with an advanced commercial aircraft. Part 2 reviews the technology that will be available for the implementation of the computer in the 1975-1985 period. With regard to the computation task 26 computations have been categorized according to computational load, memory requirements, criticality, permitted down-time, and the need to save data in order to effect a roll-back. The technology part stresses the impact of large scale integration (LSI) on the realization of logic and memory. Also considered was module interconnection possibilities so as to minimize fault propagation

    14-bit 2.2-MS/s sigma-delta ADC's

    Get PDF

    PROGRAPE-1: A Programmable, Multi-Purpose Computer for Many-Body Simulations

    Get PDF
    We have developed PROGRAPE-1 (PROgrammable GRAPE-1), a programmable multi-purpose computer for many-body simulations. The main difference between PROGRAPE-1 and "traditional" GRAPE systems is that the former uses FPGA (Field Programmable Gate Array) chips as the processing elements, while the latter rely on the hardwired pipeline processor specialized to gravitational interactions. Since the logic implemented in FPGA chips can be reconfigured, we can use PROGRAPE-1 to calculate not only gravitational interactions but also other forms of interactions such as van der Waals force, hydrodynamical interactions in SPH calculation and so on. PROGRAPE-1 comprises two Altera EPF10K100 FPGA chips, each of which contains nominally 100,000 gates. To evaluate the programmability and performance of PROGRAPE-1, we implemented a pipeline for gravitational interaction similar to that of GRAPE-3. One pipeline fitted into a single FPGA chip, which operated at 16 MHz clock. Thus, for gravitational interaction, PROGRAPE-1 provided the speed of 0.96 Gflops-equivalent. PROGRAPE will prove to be useful for wide-range of particle-based simulations in which the calculation cost of interactions other than gravity is high, such as the evaluation of SPH interactions.Comment: 20 pages with 9 figures; submitted to PAS

    A parallel algorithm for switch-level timing simulation on a hypercube multiprocessor

    Get PDF
    The parallel approach to speeding up simulation is studied, specifically the simulation of digital LSI MOS circuitry on the Intel iPSC/2 hypercube. The simulation algorithm is based on RSIM, an event driven switch-level simulator that incorporates a linear transistor model for simulating digital MOS circuits. Parallel processing techniques based on the concepts of Virtual Time and rollback are utilized so that portions of the circuit may be simulated on separate processors, in parallel for as large an increase in speed as possible. A partitioning algorithm is also developed in order to subdivide the circuit for parallel processing
    • …
    corecore