139 research outputs found

    Problems in extremal graph theory

    Get PDF
    We consider a variety of problems in extremal graph and set theory. The {\em chromatic number} of GG, χ(G)\chi(G), is the smallest integer kk such that GG is kk-colorable. The {\it square} of GG, written G2G^2, is the supergraph of GG in which also vertices within distance 2 of each other in GG are adjacent. A graph HH is a {\it minor} of GG if HH can be obtained from a subgraph of GG by contracting edges. We show that the upper bound for χ(G2)\chi(G^2) conjectured by Wegner (1977) for planar graphs holds when GG is a K4K_4-minor-free graph. We also show that χ(G2)\chi(G^2) is equal to the bound only when G2G^2 contains a complete graph of that order. One of the central problems of extremal hypergraph theory is finding the maximum number of edges in a hypergraph that does not contain a specific forbidden structure. We consider as a forbidden structure a fixed number of members that have empty common intersection as well as small union. We obtain a sharp upper bound on the size of uniform hypergraphs that do not contain this structure, when the number of vertices is sufficiently large. Our result is strong enough to imply the same sharp upper bound for several other interesting forbidden structures such as the so-called strong simplices and clusters. The {\em nn-dimensional hypercube}, QnQ_n, is the graph whose vertex set is {0,1}n\{0,1\}^n and whose edge set consists of the vertex pairs differing in exactly one coordinate. The generalized Tur\'an problem asks for the maximum number of edges in a subgraph of a graph GG that does not contain a forbidden subgraph HH. We consider the Tur\'an problem where GG is QnQ_n and HH is a cycle of length 4k+24k+2 with k3k\geq 3. Confirming a conjecture of Erd{\H o}s (1984), we show that the ratio of the size of such a subgraph of QnQ_n over the number of edges of QnQ_n is o(1)o(1), i.e. in the limit this ratio approaches 0 as nn approaches infinity

    Graph edge coloring and a new approach to the overfull conjecture

    Get PDF
    The graph edge coloring problem is to color the edges of a graph such that adjacent edges receives different colors. Let GG be a simple graph with maximum degree Δ\Delta. The minimum number of colors needed for such a coloring of GG is called the chromatic index of GG, written χ2˘7(G)\chi\u27(G). We say GG is of class one if χ2˘7(G)=Δ\chi\u27(G)=\Delta, otherwise it is of class 2. A majority of edge coloring papers is devoted to the Classification Problem for simple graphs. A graph GG is said to be \emph{overfull} if E(G)3˘eΔV(G)/2|E(G)|\u3e\Delta \lfloor |V(G)|/2\rfloor. Hilton in 1985 conjectured that every graph GG of class two with Δ(G)3˘eV(G)3\Delta(G)\u3e\frac{|V(G)|}{3} contains an overfull subgraph HH with Δ(H)=Δ(G)\Delta(H)=\Delta(G). In this thesis, I will introduce some of my researches toward the Classification Problem of simple graphs, and a new approach to the overfull conjecture together with some new techniques and ideas

    Basic Neutrosophic Algebraic Structures and their Application to Fuzzy and Neutrosophic Models

    Get PDF
    The involvement of uncertainty of varying degrees when the total of the membership degree exceeds one or less than one, then the newer mathematical paradigm shift, Fuzzy Theory proves appropriate. For the past two or more decades, Fuzzy Theory has become the potent tool to study and analyze uncertainty involved in all problems. But, many real-world problems also abound with the concept of indeterminacy. In this book, the new, powerful tool of neutrosophy that deals with indeterminacy is utilized. Innovative neutrosophic models are described. The theory of neutrosophic graphs is introduced and applied to fuzzy and neutrosophic models. This book is organized into four chapters. In Chapter One we introduce some of the basic neutrosophic algebraic structures essential for the further development of the other chapters. Chapter Two recalls basic graph theory definitions and results which has interested us and for which we give the neutrosophic analogues. In this chapter we give the application of graphs in fuzzy models. An entire section is devoted for this purpose. Chapter Three introduces many new neutrosophic concepts in graphs and applies it to the case of neutrosophic cognitive maps and neutrosophic relational maps. The last section of this chapter clearly illustrates how the neutrosophic graphs are utilized in the neutrosophic models. The final chapter gives some problems about neutrosophic graphs which will make one understand this new subject.Comment: 149 pages, 130 figure
    corecore