2,618 research outputs found

    On the cross-combined measure of families of binary lattices and sequences

    Get PDF
    The cross-combined measure (which is a natural extension of cross-correlation measure) is introduced and important constructions of large families of binary lattices with optimal or nearly optimal cross-combined measures are presented. These results are also strongly related to the one-dimensional case: An easy method is showed obtaining strong constructions of families of binary sequences with nearly optimal cross-correlation measures based on the previous constructions of families of lattices. The important feature of this result is that so far there exists only one type of constructions of very large families of binary sequences with small cross-correlation measure, and this only type of constructions was based on one-variable irreducible polynomials. Since it is very complicated to construct one-variable irreducible polynomials over Fp\mathbb F_p, it became necessary to show other types of constructions where the generation of sequences is much faster. Using binary lattices based on two-variable irreducible polynomials this problem can be avoided. (Since, contrary to one-variable polynomials, using Sch\"oneman-Eisenstein criteria it is possible to generate two-variable irreducible polynomials over Fp\mathbb F_p fast.

    Generation of further pseudorandom binary sequences, I

    Get PDF

    Generation of further pseudorandom binary sequences, I (Blowing up a single sequence)

    Get PDF
    Assume that a binary sequence is given with strong pseudorandom properties. An algorithm is presented and studied which prepares many further binary sequences from the given one. It is shown that if certain conditions hold then each of the sequences obtained in this way also possesses strong pseudorandom properties. Moreover, it is proved that certain large families of these sequences also posses strong pseudorandom properties

    RCA-Seq: an Original Approach for Enhancing the Analysis of Sequential Data Based on Hierarchies of Multilevel Closed Partially-Ordered Patterns

    Get PDF
    International audienceMethods for analysing sequential data generally produce a huge number of sequential patterns that have then to be evaluated and interpreted by domain experts. To diminish this number and thus the difficulty of the interpretation task, methods that directly extract a more compact representation of sequential patterns, namely closed partially-ordered patterns (CPO-patterns), were introduced. In spite of the fewer number of obtained CPO-patterns, their analysis is still a challenging task for experts since they are unorgan-ised and besides, do not provide a global view of the discovered regularities. To address these problems, we present and formalise an original approach within the framework of Relational Concept Analysis (RCA), referred to as RCA-Seq, that focuses on facilitating the interpretation task of experts. The hierarchical RCA result allows to directly obtain and organize the relationships between the extracted CPO-patterns. Moreover, a generalisation order on items is also revealed, and multilevel CPO-patterns are obtained. Therefore, a hierarchy of such CPO-patterns guides the interpretation task, helps experts in better understanding the extracted patterns, and minimises the chance of overlooking interesting CPO-patterns. RCA-Seq is compared with another approach that relies on pattern structures. In addition, we highlight the adaptability of RCA-Seq by integrating a user-defined tax-* onomy over the items, and by considering user-specified constraints on the order relations on itemsets

    Introduction by the Organisers

    Get PDF

    Random Planar Lattices and Integrated SuperBrownian Excursion

    Get PDF
    In this paper, a surprising connection is described between a specific brand of random lattices, namely planar quadrangulations, and Aldous' Integrated SuperBrownian Excursion (ISE). As a consequence, the radius r_n of a random quadrangulation with n faces is shown to converge, up to scaling, to the width r=R-L of the support of the one-dimensional ISE. More generally the distribution of distances to a random vertex in a random quadrangulation is described in its scaled limit by the random measure ISE shifted to set the minimum of its support in zero. The first combinatorial ingredient is an encoding of quadrangulations by trees embedded in the positive half-line, reminiscent of Cori and Vauquelin's well labelled trees. The second step relates these trees to embedded (discrete) trees in the sense of Aldous, via the conjugation of tree principle, an analogue for trees of Vervaat's construction of the Brownian excursion from the bridge. From probability theory, we need a new result of independent interest: the weak convergence of the encoding of a random embedded plane tree by two contour walks to the Brownian snake description of ISE. Our results suggest the existence of a Continuum Random Map describing in term of ISE the scaled limit of the dynamical triangulations considered in two-dimensional pure quantum gravity.Comment: 44 pages, 22 figures. Slides and extended abstract version are available at http://www.loria.fr/~schaeffe/Pub/Diameter/ and http://www.iecn.u-nancy.fr/~chassain

    The Future of Computation

    Full text link
    ``The purpose of life is to obtain knowledge, use it to live with as much satisfaction as possible, and pass it on with improvements and modifications to the next generation.'' This may sound philosophical, and the interpretation of words may be subjective, yet it is fairly clear that this is what all living organisms--from bacteria to human beings--do in their life time. Indeed, this can be adopted as the information theoretic definition of life. Over billions of years, biological evolution has experimented with a wide range of physical systems for acquiring, processing and communicating information. We are now in a position to make the principles behind these systems mathematically precise, and then extend them as far as laws of physics permit. Therein lies the future of computation, of ourselves, and of life.Comment: 7 pages, Revtex. Invited lecture at the Workshop on Quantum Information, Computation and Communication (QICC-2005), IIT Kharagpur, India, February 200

    Duality and free energy analyticity bounds for few-body Ising models with extensive homology rank

    Get PDF
    We consider pairs of few-body Ising models where each spin enters a bounded number of interaction terms (bonds) such that each model can be obtained from the dual of the other after freezing k spins on large-degree sites. Such a pair of Ising models can be interpreted as a two-chain complex with k being the rank of the first homology group. Our focus is on the case where k is extensive, that is, scales linearly with the number of bonds n. Flipping any of these additional spins introduces a homologically nontrivial defect (generalized domain wall). In the presence of bond disorder, we prove the existence of a low-temperature weak-disorder region where additional summation over the defects has no effect on the free energy density f(T) in the thermodynamical limit and of a high-temperature region where an extensive homological defect does not affect f(T). We also discuss the convergence of the high- and low-temperature series for the free energy density, prove the analyticity of limiting f(T) at high and low temperatures, and construct inequalities for the critical point(s) where analyticity is lost. As an application, we prove multiplicity of the conventionally defined critical points for Ising models on all { f, d} tilings of the infinite hyperbolic plane, where df/(d + f) \u3e 2. Namely, for these infinite graphs, we show that critical temperatures with free and wired boundary conditions differ, Tc(f)T(f)
    • …
    corecore