10 research outputs found

    Performance Analysis of Bearings-only Tracking Problems for Maneuvering Target and Heterogeneous Sensor Applications

    Get PDF
    State estimation, i.e. determining the trajectory, of a maneuvering target from noisy measurements collected by a single or multiple passive sensors (e.g. passive sonar and radar) has wide civil and military applications, for example underwater surveillance, air defence, wireless communications, and self-protection of military vehicles. These passive sensors are listening to target emitted signals without emitting signals themselves which give them concealing properties. Tactical scenarios exists where the own position shall not be revealed, e.g. for tracking submarines with passive sonar or tracking an aerial target by means of electro-optic image sensors like infrared sensors. This estimation process is widely known as bearings-only tracking. On the one hand, a challenge is the high degree of nonlinearity in the estimation process caused by the nonlinear relation of angular measurements to the Cartesian state. On the other hand, passive sensors cannot provide direct target location measurements, so bearings-only tracking suffers from poor target trajectory estimation accuracy due to marginal observability from sensor measurements. In order to achieve observability, that means to be able to estimate the complete target state, multiple passive sensor measurements must be fused. The measurements can be recorded spatially distributed by multiple dislocated sensor platforms or temporally distributed by a single, moving sensor platform. Furthermore, an extended case of bearings-only tracking is given if heterogeneous measurements from targets emitting different types of signals, are involved. With this, observability can also be achieved on a single, not necessarily moving platform. In this work, a performance bound for complex motion models, i.e. piecewisely maneuvering targets with unknown maneuver change times, by means of bearings-only measurements from a single, moving sensor platform is derived and an efficient estimator is implemented and analyzed. Furthermore, an observability analysis is carried out for targets emitting acoustic and electromagnetic signals. Here, the different signal propagation velocities can be exploited to ensure observability on a single, not necessarily moving platform. Based on the theoretical performance and observability analyses a distributed fusion system has been realized by means of heterogeneous sensors, which shall detect an event and localize a threat. This is performed by a microphone array to detect sound waves emitted by the threat as well as a radar detector that detects electromagnetic emissions from the threat. Since multiple platforms are involved to provide increased observability and also redundancy against possible breakdowns, a WiFi mobile ad hoc network is used for communications. In order to keep up the network in a breakdown OLSR (optimized link state routing) routing approach is employed

    Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond

    Get PDF
    Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov–Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed ‘Gaussian conjugacy’ in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity

    Stochastic Real-time Optimal Control for Bearing-only Trajectory Planning

    Get PDF
    A method is presented to simultaneously solve the optimal control problem and the optimal estimation problem for a bearing-only sensor. For bearing-only systems that require a minimum level of certainty in position relative to a source for mission accomplishment, some amount of maneuver is required to measure range. Traditional methods of trajectory optimization and optimal estimation minimize an information metric. This paper proposes constraining the final value of the information states with known time propagation dynamics relative to a given trajectory which allows for attainment of the required level of information with minimal deviation from a general performance index that can be tailored to a specific vehicle. The proposed method does not suffer from compression of the information metric into a scalar, and provides a route that will attain a particular target estimate quality while maneuvering to a desired relative point or set. An algorithm is created to apply the method in real-time, iteratively estimating target position with an Unscented Kalman Filter and updating the trajectory with an efficient pseudospectral method. Methods and tools required for hardware implementation are presented that apply to any real-time optimal control (RTOC) system. The algorithm is validated with both simulation and flight test, autonomously landing a quadrotor on a wire

    On particle filters in radar target tracking

    Get PDF
    The dissertation focused on the research, implementation, and evaluation of particle filters for radar target track filtering of a maneuvering target, through quantitative simulations and analysis thereof. Target track filtering, also called target track smoothing, aims to minimize the error between a radar target's predicted and actual position. From the literature it had been suggested that particle filters were more suitable for filtering in non-linear/non-Gaussian systems. Furthermore, it had been determined that particle filters were a relatively newer field of research relating to radar target track filtering for non-linear, non-Gaussian maneuvering target tracking problems, compared to the more traditional and widely known and implemented approaches and techniques. The objectives of the research project had been achieved through the development of a software radar target tracking filter simulator, which implemented a sequential importance re-sampling particle filter algorithm and suitable target and noise models. This particular particle filter had been identified from a review of the theory of particle filters. The theory of the more conventional tracking filters used in radar applications had also been reviewed and discussed. The performance of the sequential importance re-sampling particle filter for radar target track filtering had been evaluated through quantitative simulations and analysis thereof, using predefined metrics identified from the literature. These metrics had been the root mean squared error metric for accuracy, and the normalized processing time metric for computational complexity. It had been shown that the sequential importance re-sampling particle filter achieved improved accuracy performance in the track filtering of a maneuvering radar target in a non-Gaussian (Laplacian) noise environment, compared to a Gaussian noise environment. It had also been shown that the accuracy performance of the sequential importance re-sampling particle filter is a function of the number of particles used in the sequential importance re-sampling particle filter algorithm. The sequential importance re-sampling particle filter had also been compared to two conventional tracking filters, namely the alpha-beta filter and the Singer-Kalman filter, and had better accuracy performance in both cases. The normalized processing time of the sequential importance re-sampling particle filter had been shown to be a function of the number of particles used in the sequential importance re-sampling particle filter algorithm. The normalized processing time of the sequential importance re-sampling particle filter had been shown to be higher than that of both the alpha-beta filter and the Singer-Kalman filter. Analysis of the posterior Cramér-Rao lower bound of the sequential importance re-sampling particle filter had also been conducted and presented in the dissertation

    Tracking the Tracker from its Passive Sonar ML-PDA Estimates

    Full text link
    Target motion analysis with wideband passive sonar has received much attention. Maximum likelihood probabilistic data-association (ML-PDA) represents an asymptotically efficient estimator for deterministic target motion, and is especially well-suited for low-observable targets; the results presented here apply to situations with higher signal to noise ratio as well, including of course the situation of a deterministic target observed via clean measurements without false alarms or missed detections. Here we study the inverse problem, namely, how to identify the observing platform (following a two-leg motion model) from the results of the target estimation process, i.e. the estimated target state and the Fisher information matrix, quantities we assume an eavesdropper might intercept. We tackle the problem and we present observability properties, with supporting simulation results.Comment: To appear in IEEE Transactions on Aerospace and Electronic System

    Approximate Gaussian Conjugacy: Parametric Recursive Filtering Under Nonlinearity, Multimodal, Uncertainty, and Constraint, and Beyond

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Frontiers of Information Technology & Electronic Engineering. The final authenticated version is available online at: https://doi.org/10.1631/FITEE.1700379Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov–Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed ‘Gaussian conjugacy’ in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity

    Interference Mitigation and Localization Based on Time-Frequency Analysis for Navigation Satellite Systems

    Get PDF
    Interference Mitigation and Localization Based on Time-Frequency Analysis for Navigation Satellite SystemsNowadays, the operation of global navigation satellite systems (GNSS) is imperative across a multitude of applications worldwide. The increasing reliance on accurate positioning and timing information has made more serious than ever the consequences of possible service outages in the satellite navigation systems. Among others, interference is regarded as the primary threat to their operation. Due the recent proliferation of portable interferers, notably jammers, it has now become common for GNSS receivers to endure simultaneous attacks from multiple sources of interference, which are likely spatially distributed and transmit different modulations. To the best knowledge of the author, the present dissertation is the first publication to investigate the use of the S-transform (ST) to devise countermeasures to interference. The original contributions in this context are mainly: • the formulation of a complexity-scalable ST implementable in real time as a bank of filters; • a method for characterizing and localizing multiple in-car jammers through interference snapshots that are collected by separate receivers and analysed with a clever use of the ST; • a preliminary assessment of novel methods for mitigating generic interference at the receiver end by means the ST and more computationally efficient variants of the transform. Besides GNSSs, the countermeasures to interference proposed are equivalently applicable to protect any direct-sequence spread spectrum (DS-SS) communication

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties
    corecore