13 research outputs found

    On the Computational Complexity of Vertex Integrity and Component Order Connectivity

    Full text link
    The Weighted Vertex Integrity (wVI) problem takes as input an nn-vertex graph GG, a weight function w:V(G)Nw:V(G)\to\mathbb{N}, and an integer pp. The task is to decide if there exists a set XV(G)X\subseteq V(G) such that the weight of XX plus the weight of a heaviest component of GXG-X is at most pp. Among other results, we prove that: (1) wVI is NP-complete on co-comparability graphs, even if each vertex has weight 11; (2) wVI can be solved in O(pp+1n)O(p^{p+1}n) time; (3) wVI admits a kernel with at most p3p^3 vertices. Result (1) refutes a conjecture by Ray and Deogun and answers an open question by Ray et al. It also complements a result by Kratsch et al., stating that the unweighted version of the problem can be solved in polynomial time on co-comparability graphs of bounded dimension, provided that an intersection model of the input graph is given as part of the input. An instance of the Weighted Component Order Connectivity (wCOC) problem consists of an nn-vertex graph GG, a weight function w:V(G)Nw:V(G)\to \mathbb{N}, and two integers kk and ll, and the task is to decide if there exists a set XV(G)X\subseteq V(G) such that the weight of XX is at most kk and the weight of a heaviest component of GXG-X is at most ll. In some sense, the wCOC problem can be seen as a refined version of the wVI problem. We prove, among other results, that: (4) wCOC can be solved in O(min{k,l}n3)O(\min\{k,l\}\cdot n^3) time on interval graphs, while the unweighted version can be solved in O(n2)O(n^2) time on this graph class; (5) wCOC is W[1]-hard on split graphs when parameterized by kk or by ll; (6) wCOC can be solved in 2O(klogl)n2^{O(k\log l)} n time; (7) wCOC admits a kernel with at most kl(k+l)+kkl(k+l)+k vertices. We also show that result (6) is essentially tight by proving that wCOC cannot be solved in 2o(klogl)nO(1)2^{o(k \log l)}n^{O(1)} time, unless the ETH fails.Comment: A preliminary version of this paper already appeared in the conference proceedings of ISAAC 201

    Parameterized Complexity of Critical Node Cuts

    Get PDF
    We consider the following natural graph cut problem called Critical Node Cut (CNC): Given a graph GG on nn vertices, and two positive integers kk and xx, determine whether GG has a set of kk vertices whose removal leaves GG with at most xx connected pairs of vertices. We analyze this problem in the framework of parameterized complexity. That is, we are interested in whether or not this problem is solvable in f(κ)nO(1)f(\kappa) \cdot n^{O(1)} time (i.e., whether or not it is fixed-parameter tractable), for various natural parameters κ\kappa. We consider four such parameters: - The size kk of the required cut. - The upper bound xx on the number of remaining connected pairs. - The lower bound yy on the number of connected pairs to be removed. - The treewidth ww of GG. We determine whether or not CNC is fixed-parameter tractable for each of these parameters. We determine this also for all possible aggregations of these four parameters, apart from w+kw+k. Moreover, we also determine whether or not CNC admits a polynomial kernel for all these parameterizations. That is, whether or not there is an algorithm that reduces each instance of CNC in polynomial time to an equivalent instance of size κO(1)\kappa^{O(1)}, where κ\kappa is the given parameter

    Safe sets, network majority on weighted trees

    Get PDF
    Let G = (V, E) be a graph and let w : V → ℝ>0 be a positive weight function on the vertices of G. For every subset X of V, let w(X) ≔ ∑v∈Gw(v). A non-empty subset ∑ is a weighted safe set if, for every component C of the subgraph induced by S and every component D of G/S, we have w(C) ≥ w(D) whenever there is an edge between C and D. If the subgraph G(S) induced by a weighted safe set S is connected, then the set S is called a weighted connected safe set. In this article, we show that the problem of computing the minimum weight of a safe set is NP-hard for trees, even if the underlying tree is restricted to be a star, but it is polynomially solvable for paths. We also give an O(n log n) time 2-approximation algorithm for finding a weighted connected safe set with minimum weight in a weighted tree. Then, as a generalization of the concept of a minimum safe set, we define the concept of a parameterized infinite family of proper central subgraphs on weighted trees, whose polar ends are the vertex set of the tree and the centroid points. We show that each of these central subgraphs includes a centroid point. © 2017 Wiley Periodicals, Inc

    Assigning times to minimise reachability in temporal graphs

    Get PDF
    Temporal graphs (in which edges are active at specified times) are of particular relevance for spreading processes on graphs, e.g.~the spread of disease or dissemination of information. Motivated by real-world applications, modification of static graphs to control this spread has proven a rich topic for previous research. Here, we introduce a new type of modification for temporal graphs: the number of active times for each edge is fixed, but we can change the relative order in which (sets of) edges are active. We investigate the problem of determining an ordering of edges that minimises the maximum number of vertices reachable from any single starting vertex; epidemiologically, this corresponds to the worst-case number of vertices infected in a single disease outbreak. We study two versions of this problem, both of which we show to be \NP-hard, and identify cases in which the problem can be solved or approximated efficiently.Comment: Author final version, to appear in Journal of Computer and System Sciences. Material from the previous version has been reorganised substantially, and some results have been strengthene

    Assigning times to minimise reachability in temporal graphs

    Get PDF
    Temporal graphs (in which edges are active at specified times) are of particular relevance for spreading processes on graphs, e.g. the spread of disease or dissemination of information. Motivated by real-world applications, modification of static graphs to control this spread has proven a rich topic for previous research. Here, we introduce a new type of modification for temporal graphs: the number of active times for each edge is fixed, but we can change the relative order in which (sets of) edges are active. We investigate the problem of determining an ordering of edges that minimises the maximum number of vertices reachable from any single starting vertex; epidemiologically, this corresponds to the worst-case number of vertices infected in a single disease outbreak. We study two versions of this problem, both of which we show to be -hard, and identify cases in which the problem can be solved or approximated efficiently
    corecore