25,588 research outputs found

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    Synthesis of behavioral models from scenarios

    No full text

    Confluence Detection for Transformations of Labelled Transition Systems

    Get PDF
    The development of complex component software systems can be made more manageable by first creating an abstract model and then incrementally adding details. Model transformation is an approach to add such details in a controlled way. In order for model transformation systems to be useful, it is crucial that they are confluent, i.e. that when applied on a given model, they will always produce a unique output model, independent of the order in which rules of the system are applied on the input. In this work, we consider Labelled Transition Systems (LTSs) to reason about the semantics of models, and LTS transformation systems to reason about model transformations. In related work, the problem of confluence detection has been investigated for general graph structures. We observe, however, that confluence can be detected more efficiently in special cases where the graphs have particular structural properties. In this paper, we present a number of observations to detect confluence of LTS transformation systems, and propose both a new confluence detection algorithm and a conflict resolution algorithm based on them.Comment: In Proceedings GaM 2015, arXiv:1504.0244

    PLTL Partitioned Model Checking for Reactive Systems under Fairness Assumptions

    Full text link
    We are interested in verifying dynamic properties of finite state reactive systems under fairness assumptions by model checking. The systems we want to verify are specified through a top-down refinement process. In order to deal with the state explosion problem, we have proposed in previous works to partition the reachability graph, and to perform the verification on each part separately. Moreover, we have defined a class, called Bmod, of dynamic properties that are verifiable by parts, whatever the partition. We decide if a property P belongs to Bmod by looking at the form of the Buchi automaton that accepts the negation of P. However, when a property P belongs to Bmod, the property f => P, where f is a fairness assumption, does not necessarily belong to Bmod. In this paper, we propose to use the refinement process in order to build the parts on which the verification has to be performed. We then show that with such a partition, if a property P is verifiable by parts and if f is the expression of the fairness assumptions on a system, then the property f => P is still verifiable by parts. This approach is illustrated by its application to the chip card protocol T=1 using the B engineering design language

    Learning to Prove Safety over Parameterised Concurrent Systems (Full Version)

    Full text link
    We revisit the classic problem of proving safety over parameterised concurrent systems, i.e., an infinite family of finite-state concurrent systems that are represented by some finite (symbolic) means. An example of such an infinite family is a dining philosopher protocol with any number n of processes (n being the parameter that defines the infinite family). Regular model checking is a well-known generic framework for modelling parameterised concurrent systems, where an infinite set of configurations (resp. transitions) is represented by a regular set (resp. regular transducer). Although verifying safety properties in the regular model checking framework is undecidable in general, many sophisticated semi-algorithms have been developed in the past fifteen years that can successfully prove safety in many practical instances. In this paper, we propose a simple solution to synthesise regular inductive invariants that makes use of Angluin's classic L* algorithm (and its variants). We provide a termination guarantee when the set of configurations reachable from a given set of initial configurations is regular. We have tested L* algorithm on standard (as well as new) examples in regular model checking including the dining philosopher protocol, the dining cryptographer protocol, and several mutual exclusion protocols (e.g. Bakery, Burns, Szymanski, and German). Our experiments show that, despite the simplicity of our solution, it can perform at least as well as existing semi-algorithms.Comment: Full version of FMCAD'17 pape
    • …
    corecore