16,995 research outputs found

    Computational Aspects of the Hausdorff Distance in Unbounded Dimension

    Full text link
    We study the computational complexity of determining the Hausdorff distance of two polytopes given in halfspace- or vertex-presentation in arbitrary dimension. Subsequently, a matching problem is investigated where a convex body is allowed to be homothetically transformed in order to minimize its Hausdorff distance to another one. For this problem, we characterize optimal solutions, deduce a Helly-type theorem and give polynomial time (approximation) algorithms for polytopes

    The parameterized complexity of some geometric problems in unbounded dimension

    Full text link
    We study the parameterized complexity of the following fundamental geometric problems with respect to the dimension dd: i) Given nn points in \Rd, compute their minimum enclosing cylinder. ii) Given two nn-point sets in \Rd, decide whether they can be separated by two hyperplanes. iii) Given a system of nn linear inequalities with dd variables, find a maximum-size feasible subsystem. We show that (the decision versions of) all these problems are W[1]-hard when parameterized by the dimension dd. %and hence not solvable in O(f(d)nc){O}(f(d)n^c) time, for any computable function ff and constant cc %(unless FPT=W[1]). Our reductions also give a nΩ(d)n^{\Omega(d)}-time lower bound (under the Exponential Time Hypothesis)

    Reverse Chv\'atal-Gomory rank

    Full text link
    We introduce the reverse Chv\'atal-Gomory rank r*(P) of an integral polyhedron P, defined as the supremum of the Chv\'atal-Gomory ranks of all rational polyhedra whose integer hull is P. A well-known example in dimension two shows that there exist integral polytopes P with r*(P) equal to infinity. We provide a geometric characterization of polyhedra with this property in general dimension, and investigate upper bounds on r*(P) when this value is finite.Comment: 21 pages, 4 figure

    An update on the Hirsch conjecture

    Get PDF
    The Hirsch conjecture was posed in 1957 in a letter from Warren M. Hirsch to George Dantzig. It states that the graph of a d-dimensional polytope with n facets cannot have diameter greater than n - d. Despite being one of the most fundamental, basic and old problems in polytope theory, what we know is quite scarce. Most notably, no polynomial upper bound is known for the diameters that are conjectured to be linear. In contrast, very few polytopes are known where the bound ndn-d is attained. This paper collects known results and remarks both on the positive and on the negative side of the conjecture. Some proofs are included, but only those that we hope are accessible to a general mathematical audience without introducing too many technicalities.Comment: 28 pages, 6 figures. Many proofs have been taken out from version 2 and put into the appendix arXiv:0912.423

    Sharpening Geometric Inequalities using Computable Symmetry Measures

    Full text link
    Many classical geometric inequalities on functionals of convex bodies depend on the dimension of the ambient space. We show that this dimension dependence may often be replaced (totally or partially) by different symmetry measures of the convex body. Since these coefficients are bounded by the dimension but possibly smaller, our inequalities sharpen the original ones. Since they can often be computed efficiently, the improved bounds may also be used to obtain better bounds in approximation algorithms.Comment: This is a preprint. The proper publication in final form is available at journals.cambridge.org, DOI 10.1112/S002557931400029

    Sign rank versus VC dimension

    Full text link
    This work studies the maximum possible sign rank of N×NN \times N sign matrices with a given VC dimension dd. For d=1d=1, this maximum is {three}. For d=2d=2, this maximum is Θ~(N1/2)\tilde{\Theta}(N^{1/2}). For d>2d >2, similar but slightly less accurate statements hold. {The lower bounds improve over previous ones by Ben-David et al., and the upper bounds are novel.} The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension -- answering a question of Frankl from '89, and (ii) design an efficient algorithm that provides an O(N/log(N))O(N/\log(N)) multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the N×NN \times N adjacency matrix of a Δ\Delta regular graph with a second eigenvalue of absolute value λ\lambda and ΔN/2\Delta \leq N/2. We show that the sign rank of the signed version of this matrix is at least Δ/λ\Delta/\lambda. We use this connection to prove the existence of a maximum class C{±1}NC\subseteq\{\pm 1\}^N with VC dimension 22 and sign rank Θ~(N1/2)\tilde{\Theta}(N^{1/2}). This answers a question of Ben-David et al.~regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics.Comment: 33 pages. This is a revised version of the paper "Sign rank versus VC dimension". Additional results in this version: (i) Estimates on the number of maximum VC classes (answering a question of Frankl from '89). (ii) Estimates on the sign rank of large VC classes (answering a question of Ben-David et al. from '03). (iii) A discussion on the computational complexity of computing the sign-ran

    Unbounded-error One-way Classical and Quantum Communication Complexity

    Full text link
    This paper studies the gap between quantum one-way communication complexity Q(f)Q(f) and its classical counterpart C(f)C(f), under the {\em unbounded-error} setting, i.e., it is enough that the success probability is strictly greater than 1/2. It is proved that for {\em any} (total or partial) Boolean function ff, Q(f)=C(f)/2Q(f)=\lceil C(f)/2 \rceil, i.e., the former is always exactly one half as large as the latter. The result has an application to obtaining (again an exact) bound for the existence of (m,n,p)(m,n,p)-QRAC which is the nn-qubit random access coding that can recover any one of mm original bits with success probability p\geq p. We can prove that (m,n,>1/2)(m,n,>1/2)-QRAC exists if and only if m22n1m\leq 2^{2n}-1. Previously, only the construction of QRAC using one qubit, the existence of (O(n),n,>1/2)(O(n),n,>1/2)-RAC, and the non-existence of (22n,n,>1/2)(2^{2n},n,>1/2)-QRAC were known.Comment: 9 pages. To appear in Proc. ICALP 200
    corecore