1,368 research outputs found

    A Continuous-Discontinuous Second-Order Transition in the Satisfiability of Random Horn-SAT Formulas

    Full text link
    We compute the probability of satisfiability of a class of random Horn-SAT formulae, motivated by a connection with the nonemptiness problem of finite tree automata. In particular, when the maximum clause length is 3, this model displays a curve in its parameter space along which the probability of satisfiability is discontinuous, ending in a second-order phase transition where it becomes continuous. This is the first case in which a phase transition of this type has been rigorously established for a random constraint satisfaction problem

    Complexity Theory and the Operational Structure of Algebraic Programming Systems

    Get PDF
    An algebraic programming system is a language built from a fixed algebraic data abstraction and a selection of deterministic, and non-deterministic, assignment and control constructs. First, we give a detailed analysis of the operational structure of an algebraic data type, one which is designed to classify programming systems in terms of the complexity of their implementations. Secondly, we test our operational description by comparing the computations in deterministic and non-deterministic programming systems under certain space and time restrictions

    Generating Functions For Kernels of Digraphs (Enumeration & Asymptotics for Nim Games)

    Full text link
    In this article, we study directed graphs (digraphs) with a coloring constraint due to Von Neumann and related to Nim-type games. This is equivalent to the notion of kernels of digraphs, which appears in numerous fields of research such as game theory, complexity theory, artificial intelligence (default logic, argumentation in multi-agent systems), 0-1 laws in monadic second order logic, combinatorics (perfect graphs)... Kernels of digraphs lead to numerous difficult questions (in the sense of NP-completeness, #P-completeness). However, we show here that it is possible to use a generating function approach to get new informations: we use technique of symbolic and analytic combinatorics (generating functions and their singularities) in order to get exact and asymptotic results, e.g. for the existence of a kernel in a circuit or in a unicircuit digraph. This is a first step toward a generatingfunctionology treatment of kernels, while using, e.g., an approach "a la Wright". Our method could be applied to more general "local coloring constraints" in decomposable combinatorial structures.Comment: Presented (as a poster) to the conference Formal Power Series and Algebraic Combinatorics (Vancouver, 2004), electronic proceeding

    Tropically convex constraint satisfaction

    Full text link
    A semilinear relation S is max-closed if it is preserved by taking the componentwise maximum. The constraint satisfaction problem for max-closed semilinear constraints is at least as hard as determining the winner in Mean Payoff Games, a notorious problem of open computational complexity. Mean Payoff Games are known to be in the intersection of NP and co-NP, which is not known for max-closed semilinear constraints. Semilinear relations that are max-closed and additionally closed under translations have been called tropically convex in the literature. One of our main results is a new duality for open tropically convex relations, which puts the CSP for tropically convex semilinaer constraints in general into NP intersected co-NP. This extends the corresponding complexity result for scheduling under and-or precedence constraints, or equivalently the max-atoms problem. To this end, we present a characterization of max-closed semilinear relations in terms of syntactically restricted first-order logic, and another characterization in terms of a finite set of relations L that allow primitive positive definitions of all other relations in the class. We also present a subclass of max-closed constraints where the CSP is in P; this class generalizes the class of max-closed constraints over finite domains, and the feasibility problem for max-closed linear inequalities. Finally, we show that the class of max-closed semilinear constraints is maximal in the sense that as soon as a single relation that is not max-closed is added to L, the CSP becomes NP-hard.Comment: 29 pages, 2 figure

    Generating and Searching Families of FFT Algorithms

    Full text link
    A fundamental question of longstanding theoretical interest is to prove the lowest exact count of real additions and multiplications required to compute a power-of-two discrete Fourier transform (DFT). For 35 years the split-radix algorithm held the record by requiring just 4n log n - 6n + 8 arithmetic operations on real numbers for a size-n DFT, and was widely believed to be the best possible. Recent work by Van Buskirk et al. demonstrated improvements to the split-radix operation count by using multiplier coefficients or "twiddle factors" that are not n-th roots of unity for a size-n DFT. This paper presents a Boolean Satisfiability-based proof of the lowest operation count for certain classes of DFT algorithms. First, we present a novel way to choose new yet valid twiddle factors for the nodes in flowgraphs generated by common power-of-two fast Fourier transform algorithms, FFTs. With this new technique, we can generate a large family of FFTs realizable by a fixed flowgraph. This solution space of FFTs is cast as a Boolean Satisfiability problem, and a modern Satisfiability Modulo Theory solver is applied to search for FFTs requiring the fewest arithmetic operations. Surprisingly, we find that there are FFTs requiring fewer operations than the split-radix even when all twiddle factors are n-th roots of unity.Comment: Preprint submitted on March 28, 2011, to the Journal on Satisfiability, Boolean Modeling and Computatio

    The Complexity of Change

    Full text link
    Many combinatorial problems can be formulated as "Can I transform configuration 1 into configuration 2, if certain transformations only are allowed?". An example of such a question is: given two k-colourings of a graph, can I transform the first k-colouring into the second one, by recolouring one vertex at a time, and always maintaining a proper k-colouring? Another example is: given two solutions of a SAT-instance, can I transform the first solution into the second one, by changing the truth value one variable at a time, and always maintaining a solution of the SAT-instance? Other examples can be found in many classical puzzles, such as the 15-Puzzle and Rubik's Cube. In this survey we shall give an overview of some older and more recent work on this type of problem. The emphasis will be on the computational complexity of the problems: how hard is it to decide if a certain transformation is possible or not?Comment: 28 pages, 6 figure

    Deciding the consistency of non-linear real arithmetic constraints with a conflict driven search using cylindrical algebraic coverings

    Get PDF
    We present a new algorithm for determining the satisfiability of conjunctions of non-linear polynomial constraints over the reals, which can be used as a theory solver for satisfiability modulo theory (SMT) solving for non-linear real arithmetic. The algorithm is a variant of Cylindrical Algebraic Decomposition (CAD) adapted for satisfiability, where solution candidates (sample points) are constructed incrementally, either until a satisfying sample is found or sufficient samples have been sampled to conclude unsatisfiability. The choice of samples is guided by the input constraints and previous conflicts. The key idea behind our new approach is to start with a partial sample; demonstrate that it cannot be extended to a full sample; and from the reasons for that rule out a larger space around the partial sample, which build up incrementally into a cylindrical algebraic covering of the space. There are similarities with the incremental variant of CAD, the NLSAT method of Jovanovic and de Moura, and the NuCAD algorithm of Brown; but we present worked examples and experimental results on a preliminary implementation to demonstrate the differences to these, and the benefits of the new approach
    corecore