We compute the probability of satisfiability of a class of random Horn-SAT
formulae, motivated by a connection with the nonemptiness problem of finite
tree automata. In particular, when the maximum clause length is 3, this model
displays a curve in its parameter space along which the probability of
satisfiability is discontinuous, ending in a second-order phase transition
where it becomes continuous. This is the first case in which a phase transition
of this type has been rigorously established for a random constraint
satisfaction problem