156,098 research outputs found

    Implicit branching and parameterized partial cover problems

    Get PDF
    AbstractCovering problems are fundamental classical problems in optimization, computer science and complexity theory. Typically an input to these problems is a family of sets over a finite universe and the goal is to cover the elements of the universe with as few sets of the family as possible. The variations of covering problems include well-known problems like Set Cover, Vertex Cover, Dominating Set and Facility Location to name a few. Recently there has been a lot of study on partial covering problems, a natural generalization of covering problems. Here, the goal is not to cover all the elements but to cover the specified number of elements with the minimum number of sets. In this paper we study partial covering problems in graphs in the realm of parameterized complexity. Classical (non-partial) version of all these problems has been intensively studied in planar graphs and in graphs excluding a fixed graph H as a minor. However, the techniques developed for parameterized version of non-partial covering problems cannot be applied directly to their partial counterparts. The approach we use, to show that various partial covering problems are fixed parameter tractable on planar graphs, graphs of bounded local treewidth and graph excluding some graph as a minor, is quite different from previously known techniques. The main idea behind our approach is the concept of implicit branching. We find implicit branching technique to be interesting on its own and believe that it can be used for some other problems

    Covering Partial Cubes with Zones

    Full text link
    A partial cube is a graph having an isometric embedding in a hypercube. Partial cubes are characterized by a natural equivalence relation on the edges, whose classes are called zones. The number of zones determines the minimal dimension of a hypercube in which the graph can be embedded. We consider the problem of covering the vertices of a partial cube with the minimum number of zones. The problem admits several special cases, among which are the problem of covering the cells of a line arrangement with a minimum number of lines, and the problem of finding a minimum-size fibre in a bipartite poset. For several such special cases, we give upper and lower bounds on the minimum size of a covering by zones. We also consider the computational complexity of those problems, and establish some hardness results

    Distributed Computation of Large-scale Graph Problems

    Full text link
    Motivated by the increasing need for fast distributed processing of large-scale graphs such as the Web graph and various social networks, we study a message-passing distributed computing model for graph processing and present lower bounds and algorithms for several graph problems. This work is inspired by recent large-scale graph processing systems (e.g., Pregel and Giraph) which are designed based on the message-passing model of distributed computing. Our model consists of a point-to-point communication network of kk machines interconnected by bandwidth-restricted links. Communicating data between the machines is the costly operation (as opposed to local computation). The network is used to process an arbitrary nn-node input graph (typically nk>1n \gg k > 1) that is randomly partitioned among the kk machines (a common implementation in many real world systems). Our goal is to study fundamental complexity bounds for solving graph problems in this model. We present techniques for obtaining lower bounds on the distributed time complexity. Our lower bounds develop and use new bounds in random-partition communication complexity. We first show a lower bound of Ω(n/k)\Omega(n/k) rounds for computing a spanning tree (ST) of the input graph. This result also implies the same bound for other fundamental problems such as computing a minimum spanning tree (MST). We also show an Ω(n/k2)\Omega(n/k^2) lower bound for connectivity, ST verification and other related problems. We give algorithms for various fundamental graph problems in our model. We show that problems such as PageRank, MST, connectivity, and graph covering can be solved in O~(n/k)\tilde{O}(n/k) time, whereas for shortest paths, we present algorithms that run in O~(n/k)\tilde{O}(n/\sqrt{k}) time (for (1+ϵ)(1+\epsilon)-factor approx.) and in O~(n/k)\tilde{O}(n/k) time (for O(logn)O(\log n)-factor approx.) respectively.Comment: In Proceedings of SODA 201

    Temporal vertex cover with a sliding time window.

    Get PDF
    Modern, inherently dynamic systems are usually characterized by a network structure which is subject to discrete changes over time. Given a static underlying graph, a temporal graph can be represented via an assignment of a set of integer time-labels to every edge, indicating the discrete time steps when this edge is active. While most of the recent theoretical research on temporal graphs focused on temporal paths and other “path-related” temporal notions, only few attempts have been made to investigate “non-path” temporal problems. In this paper we introduce and study two natural temporal extensions of the classical problem VERTEX COVER. We present a thorough investigation of the computational complexity and approximability of these two temporal covering problems. We provide strong hardness results, complemented by approximation and exact algorithms. Some of our algorithms are polynomial-time, while others are asymptotically almost optimal under the Exponential Time Hypothesis (ETH) and other plausible complexity assumptions

    Construction of near-optimal vertex clique covering for real-world networks

    Get PDF
    We propose a method based on combining a constructive and a bounding heuristic to solve the vertex clique covering problem (CCP), where the aim is to partition the vertices of a graph into the smallest number of classes, which induce cliques. Searching for the solution to CCP is highly motivated by analysis of social and other real-world networks, applications in graph mining, as well as by the fact that CCP is one of the classical NP-hard problems. Combining the construction and the bounding heuristic helped us not only to find high-quality clique coverings but also to determine that in the domain of real-world networks, many of the obtained solutions are optimal, while the rest of them are near-optimal. In addition, the method has a polynomial time complexity and shows much promise for its practical use. Experimental results are presented for a fairly representative benchmark of real-world data. Our test graphs include extracts of web-based social networks, including some very large ones, several well-known graphs from network science, as well as coappearance networks of literary works' characters from the DIMACS graph coloring benchmark. We also present results for synthetic pseudorandom graphs structured according to the Erdös-Renyi model and Leighton's model

    Hitting Meets Packing: How Hard Can it Be?

    Full text link
    We study a general family of problems that form a common generalization of classic hitting (also referred to as covering or transversal) and packing problems. An instance of X-HitPack asks: Can removing k (deletable) vertices of a graph G prevent us from packing \ell vertex-disjoint objects of type X? This problem captures a spectrum of problems with standard hitting and packing on opposite ends. Our main motivating question is whether the combination X-HitPack can be significantly harder than these two base problems. Already for a particular choice of X, this question can be posed for many different complexity notions, leading to a large, so-far unexplored domain in the intersection of the areas of hitting and packing problems. On a high-level, we present two case studies: (1) X being all cycles, and (2) X being all copies of a fixed graph H. In each, we explore the classical complexity, as well as the parameterized complexity with the natural parameters k+l and treewidth. We observe that the combined problem can be drastically harder than the base problems: for cycles or for H being a connected graph with at least 3 vertices, the problem is \Sigma_2^P-complete and requires double-exponential dependence on the treewidth of the graph (assuming the Exponential-Time Hypothesis). In contrast, the combined problem admits qualitatively similar running times as the base problems in some cases, although significant novel ideas are required. For example, for X being all cycles, we establish a 2^poly(k+l)n^O(1) algorithm using an involved branching method. Also, for X being all edges (i.e., H = K_2; this combines Vertex Cover and Maximum Matching) the problem can be solved in time 2^\poly(tw)n^O(1) on graphs of treewidth tw. The key step enabling this running time relies on a combinatorial bound obtained from an algebraic (linear delta-matroid) representation of possible matchings

    Can Language Models Solve Graph Problems in Natural Language?

    Full text link
    Large language models (LLMs) are increasingly adopted for a variety of tasks with implicit graphical structures, such as planning in robotics, multi-hop question answering or knowledge probing, structured commonsense reasoning, and more. While LLMs have advanced the state-of-the-art on these tasks with structure implications, whether LLMs could explicitly process textual descriptions of graphs and structures, map them to grounded conceptual spaces, and perform structured operations remains underexplored. To this end, we propose NLGraph (Natural Language Graph), a comprehensive benchmark of graph-based problem solving designed in natural language. NLGraph contains 29,370 problems, covering eight graph reasoning tasks with varying complexity from simple tasks such as connectivity and shortest path up to complex problems such as maximum flow and simulating graph neural networks. We evaluate LLMs (GPT-3/4) with various prompting approaches on the NLGraph benchmark and find that 1) language models do demonstrate preliminary graph reasoning abilities, 2) the benefit of advanced prompting and in-context learning diminishes on more complex graph problems, while 3) LLMs are also (un)surprisingly brittle in the face of spurious correlations in graph and problem settings. We then propose Build-a-Graph Prompting and Algorithmic Prompting, two instruction-based approaches to enhance LLMs in solving natural language graph problems. Build-a-Graph and Algorithmic prompting improve the performance of LLMs on NLGraph by 3.07% to 16.85% across multiple tasks and settings, while how to solve the most complicated graph reasoning tasks in our setup with language models remains an open research question. The NLGraph benchmark and evaluation code are available at https://github.com/Arthur-Heng/NLGraph.Comment: NeurIPS 2023 Spotligh
    corecore