9,450 research outputs found

    The Algorithmic Complexity of Modular Decomposition

    Get PDF
    Modular decomposition is a thoroughly investigated topic inmany areas such as switching theory, reliability theory, game theory andgraph theory. We propose an O(mn)-algorithm for the recognition of amodular set of a monotone Boolean function f with m prime implicantsand n variables. Using this result we show that the computation ofthe modular closure of a set can be done in time O(mn2). On the otherhand, we prove that the recognition problem for general Boolean functions is NP-complete. Moreover, we introduce the so called generalizedShannon decomposition of a Boolean functions as an efficient tool forproving theorems on Boolean function decompositions.computational complexity;Boolean functions;decomposition algorithm;modular decomposition;substitution decomposition

    Efficient enumeration of solutions produced by closure operations

    Full text link
    In this paper we address the problem of generating all elements obtained by the saturation of an initial set by some operations. More precisely, we prove that we can generate the closure of a boolean relation (a set of boolean vectors) by polymorphisms with a polynomial delay. Therefore we can compute with polynomial delay the closure of a family of sets by any set of "set operations": union, intersection, symmetric difference, subsets, supersets \dots). To do so, we study the MembershipFMembership_{\mathcal{F}} problem: for a set of operations F\mathcal{F}, decide whether an element belongs to the closure by F\mathcal{F} of a family of elements. In the boolean case, we prove that MembershipFMembership_{\mathcal{F}} is in P for any set of boolean operations F\mathcal{F}. When the input vectors are over a domain larger than two elements, we prove that the generic enumeration method fails, since MembershipFMembership_{\mathcal{F}} is NP-hard for some F\mathcal{F}. We also study the problem of generating minimal or maximal elements of closures and prove that some of them are related to well known enumeration problems such as the enumeration of the circuits of a matroid or the enumeration of maximal independent sets of a hypergraph. This article improves on previous works of the same authors.Comment: 30 pages, 1 figure. Long version of the article arXiv:1509.05623 of the same name which appeared in STACS 2016. Final version for DMTCS journa

    The Algorithmic Complexity of Modular Decomposition

    Get PDF
    Modular decomposition is a thoroughly investigated topic in many areas such as switching theory, reliability theory, game theory and graph theory. We propose an O(mn)-algorithm for the recognition of a modular set of a monotone Boolean function f with m prime implicants and n variables. Using this result we show that the computation of the modular closure of a set can be done in time O(mn2). On the other hand, we prove that the recognition problem for general Boolean func tions is NP-complete. Moreover, we introduce the so called generalized Shannon decomposition of a Boolean functions as an efficient tool for proving theorems on Boolean function decompositions

    On implicational bases of closure systems with unique critical sets

    Get PDF
    We show that every optimum basis of a finite closure system, in D.Maier's sense, is also right-side optimum, which is a parameter of a minimum CNF representation of a Horn Boolean function. New parameters for the size of the binary part are also established. We introduce a K-basis of a general closure system, which is a refinement of the canonical basis of Duquenne and Guigues, and discuss a polynomial algorithm to obtain it. We study closure systems with the unique criticals and some of its subclasses, where the K-basis is unique. A further refinement in the form of the E-basis is possible for closure systems without D-cycles. There is a polynomial algorithm to recognize the D-relation from a K-basis. Thus, closure systems without D-cycles can be effectively recognized. While E-basis achieves an optimum in one of its parts, the optimization of the others is an NP-complete problem.Comment: Presented on International Symposium of Artificial Intelligence and Mathematics (ISAIM-2012), Ft. Lauderdale, FL, USA Results are included into plenary talk on conference Universal Algebra and Lattice Theory, June 2012, Szeged, Hungary 29 pages and 2 figure

    Simple universal models capture all classical spin physics

    Get PDF
    Spin models are used in many studies of complex systems---be it condensed matter physics, neural networks, or economics---as they exhibit rich macroscopic behaviour despite their microscopic simplicity. Here we prove that all the physics of every classical spin model is reproduced in the low-energy sector of certain `universal models'. This means that (i) the low energy spectrum of the universal model reproduces the entire spectrum of the original model to any desired precision, (ii) the corresponding spin configurations of the original model are also reproduced in the universal model, (iii) the partition function is approximated to any desired precision, and (iv) the overhead in terms of number of spins and interactions is at most polynomial. This holds for classical models with discrete or continuous degrees of freedom. We prove necessary and sufficient conditions for a spin model to be universal, and show that one of the simplest and most widely studied spin models, the 2D Ising model with fields, is universal.Comment: v1: 4 pages with 2 figures (main text) + 4 pages with 3 figures (supplementary info). v2: 12 pages with 3 figures (main text) + 35 pages with 6 figures (supplementary info) (all single column). v2 contains new results and major revisions (results for spin models with continuous degrees of freedom, explicit constructions, examples...). Close to published version. v3: minor typo correcte

    Boolean Operations, Joins, and the Extended Low Hierarchy

    Get PDF
    We prove that the join of two sets may actually fall into a lower level of the extended low hierarchy than either of the sets. In particular, there exist sets that are not in the second level of the extended low hierarchy, EL_2, yet their join is in EL_2. That is, in terms of extended lowness, the join operator can lower complexity. Since in a strong intuitive sense the join does not lower complexity, our result suggests that the extended low hierarchy is unnatural as a complexity measure. We also study the closure properties of EL_ and prove that EL_2 is not closed under certain Boolean operations. To this end, we establish the first known (and optimal) EL_2 lower bounds for certain notions generalizing Selman's P-selectivity, which may be regarded as an interesting result in its own right.Comment: 12 page

    Circuit complexity, proof complexity, and polynomial identity testing

    Full text link
    We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity
    corecore